视频中基于时空相关性和拓扑学习的行人重识别

Spatial-Temporal Correlation and Topology Learning for Person Re-Identification in Videos
论文地址:Paper

解决的问题:

本文提出一个新的时空相关性和拓扑学习框架(CTL),通过建立跨尺度的时空相关性来追求有区别的和鲁棒的表示。

  • 利用一个CNN主干和一个关键点估计其从人体中提取多个粒度的语义局部特征作为图节点。通过考虑全局上下文信息和人体的物理联系,探索了一种上下文增强拓扑来构造多尺度图。
  • 设计三维图形卷积和跨尺度图形卷积,有助于跨时空和跨尺度信息的直接传播,以捕获分层的时空相关性和结构信息。通过执行这两个卷积,CTL有效挖掘与外观信息互补的综合线索,以增强表示能力。

本文的创新点:

  • 提出一个时间-空间相关联的拓扑式学习框架
  • 学习上下文增强的拓扑结构构造多尺度图,同时考虑从人体全局上下文信息和物理连接
  • 提出3D图卷积和跨尺度图形卷积模拟高阶时空依赖性和拓扑信息

细小的知识点:

行人重识别分类:

基于图像的方法:利用没有时间信息的静态图像来检索行人。

基于视频的方法:包含一段时间丰富的时空信息。可为解决这些问题提供清晰而丰富的线索。

针对遮挡问题,有文献采用姿态估计模型自适应定位行人关键点,以提取对准的行人特征,但是剧烈的视点和姿态变化以及视频中的遮挡会影响姿态估计的准确性。

本文提出一种时空相关、拓扑学习框架基于视频的行人重识别方法,有区分性和强代表性。CTL从多粒度级别提取特征,为了捕获不同的有区别的语义和不稳定的估计框架学习身体部位间的潜在跨尺度空间时间依赖性和结构信息,它可以增强特征表示,CTL使用CNN作为主干,用关键的点估计从人体中提取语义特征,将三个关键节点作为图节点,提出具有拓扑结构的上下文骨架来建立多层次图。通过考虑人体的全局背景信息和物理信息有效地模拟节点之间固有的时空关系。

使用3D图形卷积核跨尺度图形卷积有利于跨时空和跨尺度信息传播,以适应更高层的时空相关性和结构信息,通过联合执行不同的卷积,CTL可以有效地发现和总和有区别的线索,这些线索不完整且没有外观信息。

基于图片的ReID:设计有区别的手工标注的标签,距离度量学习,深度学习技术。

部分遮挡问题,不准确的检测,姿态变化的鲁棒估计:刚性条纹分割,注意机制

通常用于建模节点之间的关系。

算法概述:

模型的组成:关键点估计器的主干网络,上下文块,多级别3D图形卷积层(3D-GCL),多级别跨尺度图形卷积层(CS-GCL),融合块。

实验结果:

数据集和评估标准

数据集:MARS,iLIDS-VID

评估标准:CMC,mAP

训练策略:从长度可变的序列随机抽取6帧作为输入,每一个小batch有8个特征和4个视频剪辑,视频帧大小256*128,然后对数据进行增强。主干ResNet50在ImageNet上预训练,ResNet50最后一个stride设置为1,Adam优化器,初始lr为0.0003,权重衰减0.0005,总共240个epoch,后60个epoch的lr减小10倍。

实验结果

在MARS数据集上的比较

在iLIDS-VID数据集上的结果比较

消融研究

各部分之间的相互依存性

第一行是使用具有关键点估计器的主干网络来学习全局和多尺度部分特征。

第二行使用上下文增强拓扑来构造多尺度逐帧图,并使用原始GCN学习细化多尺度局部特征和全局特征。

第三行CTL用加法运算代替CS-GCL学习融合后的零件特征和局部特征

第四行是CTL的整个学习框架。

  • 上下文增强拓扑捕捉身体部位之间的内在关系以增强特征表示的有效性。
  • CS-GCL有效地捕捉了跨多个尺度的不同视觉语义,并将它们整合到一个综合的表示中。

上下文增强拓扑

Asm\mathbf A^m_sAsm​简单的提高了图拓扑的灵活性,并且捕获了更复杂的时空相关性。

Asc\mathbf A^c_sAsc​是物理拓扑的补充,并通过考虑所有节点的全局上下文信息来挖掘潜在的信息连接。

3D-GCL

一层的3D-GCL不足以捕捉复杂的时空信息,三层的3D-GCL会带来更多的训练参数,导致难以优化并且性能下降。

b图中3比1获得更好的性能,利用来自局部时间邻域节点的时间互补信息,为5时,由于过大的局部时间邻域节点抵消了聚集特征中的区别线索,模型性能减小。

CS-GCL

两层CS-GCL比一层的CS-GCL性能下降,因为两层倾向于融合大量冗余信息,削弱了表征能力。第五行通过结合更多细粒度级零件特征比其他两行获得更好的效果。

CS-GCL能够有效地从每个尺度上挖掘出不同的模式,并通过融合它们之间的互补信息来增强特征表示。

可视化结果

a)来自行人的不同视频帧的特征图在相同的辨别区域上具有更强的响应,这验证了CTL可以通过建模跨尺度时空相关性来提取对齐的辨别线索。

b)CTL的排名5的检索结果都是匹配的。这表明CTL有效地缓解了未对准和遮挡、视点变化等问题。

算法详述:

多尺度特征提取:

视频序列{It}t=1T\{I_t\}^T_{t=1}{It​}t=1T​,T是序列长度。 每一帧的特征F={Ft∣Ft∈RH×W×C}t=1TF = \{F_t | F_t \in R^{H \times W \times C}\}^T_{t=1}F={Ft​∣Ft​∈RH×W×C}t=1T​,主干网络为ResNet50。

关键点估计自适应的定位人体关键点并以这些关键点提取对准的部分特征来对抗部分遮挡来对准和视点变化,但对复杂场景效果不是很理想。

因此需要探索具有时空相关性的多尺度部分特征,以减轻不可靠的关键点估计结果并且捕捉不同的区别语义。

根据特征可将人体分为三种粒度:关键点尺度(s1),低级部分尺度(s2),高级部分尺度(s3)。基于人类的自然特征麻将空间上临近的关键点合并到更粗糙的尺度的每个部分,关键点的热度图m通过关键点估计器生成,然后使用softmax函数归一化。粒度s1的语义局部特征组和全局特征组计算:
Vs1={vs1}=gGAP(Ft⊗ms1t)Vg=gGAP(F)\mathbf V_{s1} = \{v_{s1}\} = g_{GAP}(\mathbf F_t \otimes\mathbf m^t_{s1})\\ \mathbf {V}_g = g_{GAP}(\mathbf F) Vs1​={vs1​}=gGAP​(Ft​⊗ms1t​)Vg​=gGAP​(F)
其中,⊗,gGAP\otimes,g_{GAP}⊗,gGAP​代表乘积和全局平均池化操作。低级别局部和高级别局部的局部特征Vs2,Vs3\mathbf V_{s2},\mathbf V_{s3}Vs2​,Vs3​使用过对每个身体部位内关键点的特征Vs1\mathbf V_{s1}Vs1​执行平均汇集操作来计算的。

上下文增强拓扑图:

采用先进的GCN方法建模分层的时空相关性和结构信息。G={Gs}s∈{s1,s2,s3}\mathcal G = \{\mathcal G_s\}_{s \in \{s_1,s_2,s_3\}}G={Gs​}s∈{s1​,s2​,s3​}​是一个视频帧中的一组构造的多尺度图,其中每个图对应与一个特定的粒度级别s。具体来说,Gs(Vs,Es)\mathcal G_s(\mathcal V_s,\mathcal E_s)Gs​(Vs​,Es​)包括节点Ns,vi∈VsN_s,v_i \in V_sNs​,vi​∈Vs​和边eij=(vi,vj)∈Ese_{ij}= (v_i,v_j)\in \mathcal E_seij​=(vi​,vj​)∈Es​.视频帧中身体的每个部分都被视为一个节点,边代表的是这些身体部分之间的关系。t帧的节点特征表示为Xst=Vst∈RNs×C,As∈RNs×Ns\mathbf X^t_s=\mathbf V^t_s \in \mathbb R^{N_s \times C},A_s \in \mathbb R^{N_s \times N_s}Xst​=Vst​∈RNs​×C,As​∈RNs​×Ns​表示对应帧级邻接矩阵,其中每个元素代表两个任意节点的连接。图的拓扑实际上有AsA_sAs​决定。现有的基于GCN的重标识方法通过计算成对特征相似度来独立预测两个节点之间的关系,忽略了所有其他上下文节点的影响,只考虑了无向依赖,限制了图模型的容量和表达能力

本文提出一种上下文增强的拓扑来构建图,同时编码了沿着节点的上下文信息、时间和特征维度以及人体的物理结构信息。它由三部分组成:
As=Asp+Asm+Asc\mathbf A_s = \mathbf A^p_s + \mathbf A^m_s + \mathbf A^c_s As​=Asp​+Asm​+Asc​
Asp∈{0,1}Ns×NsA^p_s \in \{0,1\}^{N_s \times N_s}Asp​∈{0,1}Ns​×Ns​表示人体具有丰富结构信息的物理联系,训练过程是固定的。第二项表示掩码邻接矩阵,用作对物理结构的关注,提高了静态全局结构Asp\mathbf A^p_sAsp​的灵活性和通用性,训练过程用零矩阵初始化并与其他参数一起优化。Asc\mathbf A^c_sAsc​是一个数据相关的独立邻接矩阵,它包含所有节点的全局上下文信息,并为每个样本学习一个唯一的动态拓扑图。

Asc\mathbf A^c_sAsc​通过上下文块来学习,图4(a),给定节点特征{Xst}t=1T∈RT×Ns×C\{\mathbf X^t_s\}^T_{t=1} \in \mathbb R^{T \times N_s \times C}{Xst​}t=1T​∈RT×Ns​×C,上下文块首先通过两个具有1×1核的卷积层挤压每个节点的特征和时间维度。然后,利用一个附加的1×1卷积层将NsN_sNs​维特征向量转化为Ns×NsN_s\times N_sNs​×Ns​邻接矩阵Asc\mathbf A^c_sAsc​,然后对每一行Asc\mathbf A^c_sAsc​进行L2归一化操作,实现稳定优化。当测量两个任意节点之间的关系时,上下文块充分考虑了所有其他节点的影响。

3D图卷积

在得到所有帧的帧级图后,使用3D图卷积有效地生成信息和更新节点特征。它允许直接跨时空信息传播,以捕捉复杂的时空相关性和时空图中的结构信息,3D-GCL首先在帧级图形序列上使用大小为τ\tauτ的时间滑动窗口,每一个滑动窗口,时空子图Gs(τ)=(Vs(τ),Es(τ))\mathcal G^{(\tau)}_s = (\mathcal V^{(\tau)}_s,\mathcal E^{(\tau)}_s)Gs(τ)​=(Vs(τ)​,Es(τ)​),其中Vs(τ)=Vs1⋃...⋃Vsτ\mathcal V^{(\tau)}_s = \mathcal V^1_s \bigcup ... \bigcup\mathcal V^{\tau}_sVs(τ)​=Vs1​⋃...⋃Vsτ​表示该窗口中所有节点在τ\tauτ个视频帧上的并集、Es(τ)\mathcal E^{(\tau)}_sEs(τ)​表示邻接矩阵As(τ)\mathbf A^{(\tau)}_sAs(τ)​,这样计算:

其中每个子矩阵指定ViV_iVi​图节点通过帧级空间连接扩展到时间域而连接到它们自身和它们在帧j处的时间相邻接点。等式左边依然由三部分组成。块邻接矩阵As(τ),p\mathbf A^{(\tau),p}_sAs(τ),p​是通过平铺每个块中的静态Asp\mathbf A^{p}_sAsp​来计算的。As(τ),m\mathbf A^{(\tau),m}_sAs(τ),m​用同样的方法求得。As(τ),c\mathbf A^{(\tau),c}_sAs(τ),c​由图4(b)中的高级上下文模块学习。同时,通过在Xs(τ)∈RT×τNs×C\mathbf X^{(\tau)}_s \in \mathbb R^{T \times \tau N_s \times C}Xs(τ)​∈RT×τNs​×C上使用滑动时间窗口并进行零矩阵填充操作来构建T窗口,从而获得X0={Xst}t=1T∈RT×Ns×C\mathbf X^0 = \{\mathbf X^t_s\}^T_{t=1} \in \mathbb R^{T \times N_s \times C}X0={Xst​}t=1T​∈RT×Ns​×C,这是3D-GCL的输入。

第一次迭代时第t个时间窗口的3D图形卷积公式如下:
[Xs(τ),l+1]t=σ(D~−12A^s,t(τ)D~−12[Xs(τ),l]tWl)[\mathbf X^{(\tau),l+1}_s]_t = \sigma(\tilde {\mathbf D}^{- \frac 1 2} \hat {\mathbf A}^{(\tau)}_{s,t}\tilde {\mathbf D}^{- \frac 1 2}[\mathbf X^{(\tau),l}_s]_t \mathbf W^l) [Xs(τ),l+1​]t​=σ(D~−21​A^s,t(τ)​D~−21​[Xs(τ),l​]t​Wl)
D~i,i=∑j(A^s,t(τ))i,j\tilde {\mathbf D}_{i,i}=\sum_j (\hat {\mathbf A}^{(\tau)}_{s,t})_{i,j}D~i,i​=∑j​(A^s,t(τ)​)i,j​表示对角节点的度矩阵。A^s,t(τ)=As,t(τ)+IτNs\hat {\mathbf A}^{(\tau)}_{s,t} = \mathbf A^{(\tau)}_{s,t} + I_{\tau N_s}A^s,t(τ)​=As,t(τ)​+IτNs​​表示自环邻接矩阵。IτNsI_{\tau N_s}IτNs​​表示单位矩阵。Wl\mathbf W^lWl指可学习参数,σ\sigmaσ代表非线性激活函数。在每一个三维GCL之后,采用一个卷积层、一个批量归一化层和一个校正线性单元层来折叠窗口维度τ\tauτ,并输出更新的节点特征Xl+1∈RT×Ns×C\mathbf X^{l+1} \in \mathcal R^{T\times N_s \times C}Xl+1∈RT×Ns​×C。此外,采用短接Xl+1=Xl+1+Xl,1≤l≤L−1\mathbf X^{l+1} = \mathbf X^{l+1} + \mathbf X^{l},1 \leq l \leq L-1Xl+1=Xl+1+Xl,1≤l≤L−1进行有效和稳定的优化。通过执行多个3D-GCLs,最终获得三个粒度Xs1^,Xs2^,Xs3^\hat {\mathbf X_{s1}},\hat {\mathbf X_{s2}},\hat {\mathbf X_{s3}}Xs1​^​,Xs2​^​,Xs3​^​的细化局部特征。

跨尺度图卷积层:

实现跨尺度的信息扩散赫尔学习综合表示,本文提出跨尺度图形卷积,将局部特征的信息线索从一个尺度传播到另一个尺度,跨尺度拓扑图是一个有向图,它将一个尺度图中的节点对应到另一个尺度图中的节点。为简单起见,我们精心制作了一个从s2s_2s2​到s3s_3s3​关联的CS-GCL。交叉标度图的相邻矩阵As2,s3∈RNs3×Ns2\mathbf A_{s_2,s_3} \in \mathbb R^{N_{s_3}\times N_{s_2}}As2​,s3​​∈RNs3​​×Ns2​​预测交叉标度关系。

如图6所示,s2s_2s2​中第i部分和s3s_3s3​中第m部分之间的依赖关系(As2,s3)i,m(\mathbb A_{s_2,s_3})_{i,m}(As2​,s3​​)i,m​计算如下:
pi,s2=∑j=1Ns2hs2([ϕ(xi,s2),φ(xj,s2−xi,s2)])ri,s2=fs2([xi,s2,pi,s2])pi,s3=∑j=1Ns3hs3([ϕ(xi,s3),φ(xj,s3−xi,s3)])ri,s3=fs3([xi,s3,pi,s3])(As2,s3)i,m=softmax(rm,s3⊤ri,s2)\mathbf p_{i,s_2} = \sum^{N_{s_2}}_{j=1}h_{s_2}([\phi(\mathbf x_{i,s_2}),\varphi(\mathbf x_{j,s_2}-\mathbf x_{i,s_2})]) \\ r_{i,s_2} = f_{s_2}([\mathbf x_{i,s_2},\mathbf p_{i,s_2}]) \\ \mathbf p_{i,s_3} = \sum^{N_{s_3}}_{j=1}h_{s_3}([\phi(\mathbf x_{i,s_3}),\varphi(\mathbf x_{j,s_3}-\mathbf x_{i,s_3})]) \\ r_{i,s_3} = f_{s_3}([\mathbf x_{i,s_3},\mathbf p_{i,s_3}]) \\ (\mathbf A_{s_2,s_3})_{i,m} = softmax(\mathbf r^\top_{m,s_3}\mathbf r_{i,s_2}) pi,s2​​=j=1∑Ns2​​​hs2​​([ϕ(xi,s2​​),φ(xj,s2​​−xi,s2​​)])ri,s2​​=fs2​​([xi,s2​​,pi,s2​​])pi,s3​​=j=1∑Ns3​​​hs3​​([ϕ(xi,s3​​),φ(xj,s3​​−xi,s3​​)])ri,s3​​=fs3​​([xi,s3​​,pi,s3​​])(As2​,s3​​)i,m​=softmax(rm,s3​⊤​ri,s2​​)
其中,xi,s2∈RC\mathbf x_{i,s_2}\in \mathbb R^Cxi,s2​​∈RC表示X^s2\hat X_{s_2}X^s2​​在一个特定帧中的第i个分量。hs2,fs2,ϕ,φh_{s_2},f_{s_2},\phi,\varphihs2​​,fs2​​,ϕ,φ是由具有BN层和ReLU层的全连接层实现的嵌入函数。pi,s2,pm,s3\mathbf p_{i,s_2},\mathbf p_{m,s_3}pi,s2​​,pm,s3​​在两个尺度上将所有其他局部特征的全局关系信息聚集到第i和第m个部件。ri,s2,rm,s3\mathbf r_{i,s_2},\mathbf r_{m,s_3}ri,s2​​,rm,s3​​是增强的全局关系特征,然后用于计算依赖性(As2,s3)i,m(\mathbf A_{s_2,s_3})_{i,m}(As2​,s3​​)i,m​内积运算和softmax函数。因此,As2,s3\mathbf A_{s_2,s_3}As2​,s3​​将s2s_2s2​中身体的影响传递给s3s_3s3​中的每个部分。

给出区域s2s_2s2​的局部特征X^s2\hat {\mathbf X}_{s_2}X^s2​​,t帧的跨尺度卷积公式如下:
[X^s23]t=σ(As2,s3t[X^s2]tWs23)[\hat X_{s_{23}}]_t = \sigma (\mathbf A^t_{s_2,s_3}[\hat X_{s_2}]_t\mathbf W_{s_{23}}) [X^s23​​]t​=σ(As2​,s3​t​[X^s2​​]t​Ws23​​)
其中Ws23\mathbf W_{s_{23}}Ws23​​表示参数矩阵,Xs23^\hat {\mathbf X_{s_{23}}}Xs23​​^​是变换后的局部特征。这种特征自适应地从s2中的相应身体部位收集信息线索。类似地,我们还利用另一个CS-GCL将局部特征Xs1^\hat {\mathbf X_{s_{1}}}Xs1​​^​从s1s_1s1​转移到s3s_3s3​,并产生转换后的局部特征Xs13^\hat {\mathbf X_{s_{13}}}Xs13​​^​。最后,获得具有三粒度信息的综合局部特征Vp\mathbf V_pVp​:
Vp=X^s3+α(X^s13+X^s23)\mathbf V_p = \hat {\mathbf X}_{s_3} +\alpha (\hat {\mathbf X}_{s_{13}}+ \hat {\mathbf X}_{s_{23}}) Vp​=X^s3​​+α(X^s13​​+X^s23​​)
其中α\alphaα是平衡参数。

模型优化

得到特征图Vp∈RT×Ns3×C,Vg\mathbf V_p \in \mathbb R^{T \times N_{s_3}\times C},\mathbf V_gVp​∈RT×Ns3​​×C,Vg​,被送入到融合全局和局部信息,在最后通过损失函数进行优化。融合块由三个部分组成:

  • 第一分支时间平均汇集层TAP生成特征向量Vfg=gTAP(Vg)\mathbf V^g_f = g_{TAP}(\mathbf V_g)Vfg​=gTAP​(Vg​)
  • 第二分支使用gTAP((∑n=1Ns3[Vp]):,n,:+Vg)g_{TAP}((\sum^{N_{s_3}}_{n=1}[\mathbf V_p])_{:,n,:}+\mathbf V_g)gTAP​((∑n=1Ns3​​​[Vp​]):,n,:​+Vg​)生成向量Vfa\mathbf V^a_fVfa​
  • 第三分支使用gTAP([gc([Vp]:,1,:),...,gc([Vp]:,Ns3,:)]+Vg)g_{TAP}([g_c([\mathbf V_p]_{:,1,:}),...,g_c([\mathbf V_p]_{:,N_{s_3},:})]+\mathbf V_g)gTAP​([gc​([Vp​]:,1,:​),...,gc​([Vp​]:,Ns3​​,:​)]+Vg​)产生特征向量Vfc\mathbf V^c_fVfc​,它可以促进全局特征和局部特征之间的通道式语义对齐。

这可以促使全局特征的不同通道关注不同的身体部位以提高性能。Identification loss and triplet loss是行人重识别中常用的损失,Vfg,Vfa,Vfc\mathbf V^g_f,\mathbf V^a_f,\mathbf V^c_fVfg​,Vfa​,Vfc​分别代表这三种特征。此外,提出了一种多样性正则化损失来鼓励局部特征的多样性并增加最终视频表示的区分度。这种损失被表示为:
Ldiv=∣∣VpVpT−I∣∣F2\mathcal L_{div} = ||\mathbf V_p \mathbf V^T_p - \mathbf I ||^2_F Ldiv​=∣∣Vp​VpT​−I∣∣F2​
其中,∣∣⋅∣∣F||\cdot||_F∣∣⋅∣∣F​表示Frobenius范数。针对这一种损失,Vp\mathbf V_pVp​预先应用了时间平均池化和L2归一化。

最终的损失为:
L=λ1⋅Ltri+λ2⋅Lide+λ3⋅Ldiv\mathcal L = \lambda_1 \cdot \mathcal L_{tri} + \lambda_2 \cdot \mathcal L_{ide} + \lambda_3 \cdot \mathcal L_{div} L=λ1​⋅Ltri​+λ2​⋅Lide​+λ3​⋅Ldiv​

总结(自己的理解):

模型梳理:

  • 关键点估计主干网络:自适应地定位人体关键点并以这些关键点提取对准的部分特征来应对部分遮挡、为对准和视点变化问题。
  • 上下文增强拓扑图:构建图,并编码沿节点上下文信息时间和特征维度以及人体的物理结构信息。
  • 多级别3D图卷积:有效生成信息和更新节点特征。
  • 多尺度图卷积层:将局部特征信息线索从一个尺度传播到另一个尺度,即将一个尺度图的节点对应到另一个尺度图的节点。
  • 融合块:促使全局特征的不同通道关注不同的身体部位以提高性能。

消融实验的研究:

  • 上下文增强拓扑捕捉身体部位之间的内在关系以增强特征表示的有效性。
  • CS-GCL有效地捕捉了跨多个尺度的不同视觉语义,并将它们整合到一个综合的表示中。
  • CS-GCL能够有效地从每个尺度上挖掘出不同的模式,并通过融合它们之间的互补信息来增强特征表示。
  • 3D-GCL中层数太小会导致不能很好地利用来自局部时间邻域节点的时间互补信息,层数过大的局部时间邻域节点抵消了聚集特征中的区别线索,模型性能减小。

行人重识别论文阅读2-视频中基于时空相关性和拓扑学习的行人重识别(CTL)相关推荐

  1. 【论文阅读】智能设备中基于深度特征的语音情感识别

    Badshah A M , Rahim N , Ullah N , et al. Deep features-based speech emotion recognition for smart af ...

  2. 行为识别论文阅读(2)——3D Human Sensing, Action and Emotion Recognition in Robot Assisted Therapy of Children

    行为识别论文阅读(2)--3D Human Sensing, Action and Emotion Recognition in Robot Assisted Therapy of Children ...

  3. php 项目反应理论,科学网—好文 | 纽约石溪大学:机器学习中基于项目反应理论的集成学习 - 陈培颖的博文...

    机器学习中,研究者们对分类集成的关注与日俱增,尤其关注分类精度的提升.IJAC近期发表了来自纽约石溪大学研究者的最新成果,该研究基于项目反应理论,提出一种加权投票方法---基于IRT理论的集成学习算法 ...

  4. [行人重识别论文阅读]Invariance Matters: Exemplar Memory for Domain AdaptivePerson Re-identification

    论文链接:https://arxiv.org/abs/1904.01990 代码:https://github.com/zhunzhong07/ECN Abstract 1.传统的无监督方法只关注于缩 ...

  5. 语音情感识别领域-论文阅读笔记1:融合语音和文字的句段级别情感识别技术

    语音情感识别领域-论文阅读笔记1 Fusion Techniques for Utterance-Level Emotion Recognition Combining Speech and Tran ...

  6. 【深度学习】步态识别-论文阅读:(T-PAMI-2021)综述:Deep Gait Recognition

    论文详情: 期刊:T-PAMI-2021 地址:参考笔记 1.Abstract 本文综述了到2021年1月底在步态识别方面的最新进展,以 全面概述了深度学习步态识别的突破和最近的发展,涵盖了广泛的主题 ...

  7. 论文阅读|训练过程中动态改变训练方案的Dynamic R-CNN

    目录 论文相关信息 Abstract. 1 Introduction 2 Related Work 3 Dynamic Quality in the Training Procedure 3.1 Pr ...

  8. 虹膜识别-论文阅读1

    hello,这是鑫鑫鑫的论文分享站,今天分享的文章是Iris Recognition With Off-the-Shelf CNN Features: A Deep Learning Perspect ...

  9. 【深度学习】步态识别-论文阅读(无参考意义):Cross-View Gait Recognition Based on Feature Fusion

    这里写目录标题 摘要 介绍 相关工作 改进 提出 多尺度特征融合 全局和局部特征融合 特征映射 结论 基于特征融合的跨视图步态识别 摘要 与人脸识别相比,步态识别是最有前途的视频生物特征识别技术之一, ...

最新文章

  1. 如何独立开发一个网络请求框架
  2. FileMaker中的腳本觸發器學習筆記
  3. mvn 打包项目到eclipse
  4. 华为5c android n风格,华为荣耀畅玩5C的屏幕怎么样
  5. 《团队激励与沟通》第 5 讲——沟通的技巧 重点部分总结
  6. android handler的机制和原理_第一百八十回:Android中的Handler机制九
  7. 斯坦福DAWNBench最新训练排名!华为云ModelArts用时10分28秒获全球最快
  8. ++++++++++++++++++++++++++++++++++++++++++++1076+++++++++++++++++++++++++++++++++++++++++++++++++++
  9. dart参数传方法_Dart是值传递还是引用传递?
  10. java udp发16进制数据_如何通过接口强制发送UDP数据包?
  11. logistic回归分析优点_一文详尽系列之逻辑回归
  12. APM 、PX4, PIXHAWK
  13. 每天一个linux命令(33):atq命令
  14. lcs问题java_动态规划法(十)最长公共子序列(LCS)问题
  15. 抑郁症自我测试皮肤软件,以躯体症状为主的抑郁症患者的交感神经皮肤反应研究...
  16. [比赛记录] 主流机器学习模型模板代码+经验分享[xgb, lgb, Keras, LR]
  17. 网络安全基础之DNS与DHCP
  18. 等效结点荷载计算机语言,基于FORTRAN的3D等效结点荷载计算
  19. top(linux)——FIELDS/Columns含义
  20. 《Hadoop权威指南》读书笔记——MapeReduce入门

热门文章

  1. fatal error: GLES3/gl31.h: 没有那个文件或目录
  2. 中国康复学会综合年会首届脑功能检测与调控康复论坛
  3. 有偿求新石器x9破解安装应用
  4. 即将毕业。。。鸭梨山大。。
  5. OpenCV修改图片像素值增加、减少
  6. 线切割原理及应用(钣金)
  7. 安卓逆向 实战 某猫免费小说验证码请求协议分析脱机执行
  8. 算法与游戏实战技术之刀光拖尾实现
  9. Unity3D 武器拖尾效果(刀光) 使用PocketRPG Trails
  10. python画动态星空_python3的turtle画模仿3d星空、运动的恒星小宇宙