训练修改一下路径,将图片存到指定的位置即可。

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Simple transfer learning with Inception v3 or Mobilenet models.With support for TensorBoard.This example shows how to take a Inception v3 or Mobilenet model trained on
ImageNet images, and train a new top layer that can recognize other classes of
images.The top layer receives as input a 2048-dimensional vector (1001-dimensional for
Mobilenet) for each image. We train a softmax layer on top of this
representation. Assuming the softmax layer contains N labels, this corresponds
to learning N + 2048*N (or 1001*N)  model parameters corresponding to the
learned biases and weights.Here's an example, which assumes you have a folder containing class-named
subfolders, each full of images for each label. The example folder flower_photos
should have a structure like this:~/flower_photos/daisy/photo1.jpg
~/flower_photos/daisy/photo2.jpg
...
~/flower_photos/rose/anotherphoto77.jpg
...
~/flower_photos/sunflower/somepicture.jpgThe subfolder names are important, since they define what label is applied to
each image, but the filenames themselves don't matter. Once your images are
prepared, you can run the training with a command like this:bash:
bazel build tensorflow/examples/image_retraining:retrain && \
bazel-bin/tensorflow/examples/image_retraining/retrain \--image_dir ~/flower_photosOr, if you have a pip installation of tensorflow, `retrain.py` can be run
without bazel:bash:
python tensorflow/examples/image_retraining/retrain.py \--image_dir ~/flower_photosYou can replace the image_dir argument with any folder containing subfolders of
images. The label for each image is taken from the name of the subfolder it's
in.This produces a new model file that can be loaded and run by any TensorFlow
program, for example the label_image sample code.By default this script will use the high accuracy, but comparatively large and
slow Inception v3 model architecture. It's recommended that you start with this
to validate that you have gathered good training data, but if you want to deploy
on resource-limited platforms, you can try the `--architecture` flag with a
Mobilenet model. For example:bash:
python tensorflow/examples/image_retraining/retrain.py \--image_dir ~/flower_photos --architecture mobilenet_1.0_224There are 32 different Mobilenet models to choose from, with a variety of file
size and latency options. The first number can be '1.0', '0.75', '0.50', or
'0.25' to control the size, and the second controls the input image size, either
'224', '192', '160', or '128', with smaller sizes running faster. See
https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.html
for more information on Mobilenet.To use with TensorBoard:By default, this script will log summaries to /tmp/retrain_logs directoryVisualize the summaries with this command:tensorboard --logdir /tmp/retrain_logs"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport argparse
from datetime import datetime
import hashlib
import os.path
import random
import re
import sys
import tarfileimport numpy as np
from six.moves import urllib
import tensorflow as tffrom tensorflow.python.framework import graph_util
from tensorflow.python.framework import tensor_shape
from tensorflow.python.platform import gfile
from tensorflow.python.util import compatFLAGS = None# These are all parameters that are tied to the particular model architecture
# we're using for Inception v3. These include things like tensor names and their
# sizes. If you want to adapt this script to work with another model, you will
# need to update these to reflect the values in the network you're using.
MAX_NUM_IMAGES_PER_CLASS = 2 ** 27 - 1  # ~134Mdef create_image_lists(image_dir, testing_percentage, validation_percentage):"""Builds a list of training images from the file system.Analyzes the sub folders in the image directory, splits them into stabletraining, testing, and validation sets, and returns a data structuredescribing the lists of images for each label and their paths.Args:image_dir: String path to a folder containing subfolders of images.testing_percentage: Integer percentage of the images to reserve for tests.validation_percentage: Integer percentage of images reserved for validation.Returns:A dictionary containing an entry for each label subfolder, with images splitinto training, testing, and validation sets within each label."""if not gfile.Exists(image_dir):tf.logging.error("Image directory '" + image_dir + "' not found.")return Noneresult = {}sub_dirs = [x[0] for x in gfile.Walk(image_dir)]# The root directory comes first, so skip it.is_root_dir = Truefor sub_dir in sub_dirs:if is_root_dir:is_root_dir = Falsecontinueextensions = ['jpg', 'jpeg', 'JPG', 'JPEG']file_list = []dir_name = os.path.basename(sub_dir)if dir_name == image_dir:continuetf.logging.info("Looking for images in '" + dir_name + "'")for extension in extensions:file_glob = os.path.join(image_dir, dir_name, '*.' + extension)file_list.extend(gfile.Glob(file_glob))if not file_list:tf.logging.warning('No files found')continueif len(file_list) < 20:tf.logging.warning('WARNING: Folder has less than 20 images, which may cause issues.')elif len(file_list) > MAX_NUM_IMAGES_PER_CLASS:tf.logging.warning('WARNING: Folder {} has more than {} images. Some images will ''never be selected.'.format(dir_name, MAX_NUM_IMAGES_PER_CLASS))label_name = re.sub(r'[^a-z0-9]+', ' ', dir_name.lower())training_images = []testing_images = []validation_images = []for file_name in file_list:base_name = os.path.basename(file_name)# We want to ignore anything after '_nohash_' in the file name when# deciding which set to put an image in, the data set creator has a way of# grouping photos that are close variations of each other. For example# this is used in the plant disease data set to group multiple pictures of# the same leaf.hash_name = re.sub(r'_nohash_.*$', '', file_name)# This looks a bit magical, but we need to decide whether this file should# go into the training, testing, or validation sets, and we want to keep# existing files in the same set even if more files are subsequently# added.# To do that, we need a stable way of deciding based on just the file name# itself, so we do a hash of that and then use that to generate a# probability value that we use to assign it.hash_name_hashed = hashlib.sha1(compat.as_bytes(hash_name)).hexdigest()percentage_hash = ((int(hash_name_hashed, 16) %(MAX_NUM_IMAGES_PER_CLASS + 1)) *(100.0 / MAX_NUM_IMAGES_PER_CLASS))if percentage_hash < validation_percentage:validation_images.append(base_name)elif percentage_hash < (testing_percentage + validation_percentage):testing_images.append(base_name)else:training_images.append(base_name)result[label_name] = {'dir': dir_name,'training': training_images,'testing': testing_images,'validation': validation_images,}return resultdef get_image_path(image_lists, label_name, index, image_dir, category):""""Returns a path to an image for a label at the given index.Args:image_lists: Dictionary of training images for each label.label_name: Label string we want to get an image for.index: Int offset of the image we want. This will be moduloed by theavailable number of images for the label, so it can be arbitrarily large.image_dir: Root folder string of the subfolders containing the trainingimages.category: Name string of set to pull images from - training, testing, orvalidation.Returns:File system path string to an image that meets the requested parameters."""if label_name not in image_lists:tf.logging.fatal('Label does not exist %s.', label_name)label_lists = image_lists[label_name]if category not in label_lists:tf.logging.fatal('Category does not exist %s.', category)category_list = label_lists[category]if not category_list:tf.logging.fatal('Label %s has no images in the category %s.',label_name, category)mod_index = index % len(category_list)base_name = category_list[mod_index]sub_dir = label_lists['dir']full_path = os.path.join(image_dir, sub_dir, base_name)return full_pathdef get_bottleneck_path(image_lists, label_name, index, bottleneck_dir,category, architecture):""""Returns a path to a bottleneck file for a label at the given index.Args:image_lists: Dictionary of training images for each label.label_name: Label string we want to get an image for.index: Integer offset of the image we want. This will be moduloed by theavailable number of images for the label, so it can be arbitrarily large.bottleneck_dir: Folder string holding cached files of bottleneck values.category: Name string of set to pull images from - training, testing, orvalidation.architecture: The name of the model architecture.Returns:File system path string to an image that meets the requested parameters."""return get_image_path(image_lists, label_name, index, bottleneck_dir,category) + '_' + architecture + '.txt'def create_model_graph(model_info):""""Creates a graph from saved GraphDef file and returns a Graph object.Args:model_info: Dictionary containing information about the model architecture.Returns:Graph holding the trained Inception network, and various tensors we'll bemanipulating."""with tf.Graph().as_default() as graph:model_path = os.path.join(FLAGS.model_dir, model_info['model_file_name'])with gfile.FastGFile(model_path, 'rb') as f:graph_def = tf.GraphDef()graph_def.ParseFromString(f.read())bottleneck_tensor, resized_input_tensor = (tf.import_graph_def(graph_def,name='',return_elements=[model_info['bottleneck_tensor_name'],model_info['resized_input_tensor_name'],]))return graph, bottleneck_tensor, resized_input_tensor###利用inception_3将image进行卷积输出
def run_bottleneck_on_image(sess, image_data, image_data_tensor,decoded_image_tensor, resized_input_tensor,bottleneck_tensor):"""Runs inference on an image to extract the 'bottleneck' summary layer.Args:sess: Current active TensorFlow Session.image_data: String of raw JPEG data.image_data_tensor: Input data layer in the graph.decoded_image_tensor: Output of initial image resizing and preprocessing.resized_input_tensor: The input node of the recognition graph.bottleneck_tensor: Layer before the final softmax.Returns:Numpy array of bottleneck values."""# First decode the JPEG image, resize it, and rescale the pixel values.resized_input_values = sess.run(decoded_image_tensor,{image_data_tensor: image_data})# Then run it through the recognition network.bottleneck_values = sess.run(bottleneck_tensor,{resized_input_tensor: resized_input_values})bottleneck_values = np.squeeze(bottleneck_values)return bottleneck_valuesdef maybe_download_and_extract(data_url):"""Download and extract model tar file.If the pretrained model we're using doesn't already exist, this functiondownloads it from the TensorFlow.org website and unpacks it into a directory.Args:data_url: Web location of the tar file containing the pretrained model."""dest_directory = FLAGS.model_dirif not os.path.exists(dest_directory):os.makedirs(dest_directory)filename = data_url.split('/')[-1]filepath = os.path.join(dest_directory, filename)if not os.path.exists(filepath):def _progress(count, block_size, total_size):sys.stdout.write('\r>> Downloading %s %.1f%%' %(filename,float(count * block_size) / float(total_size) * 100.0))sys.stdout.flush()filepath, _ = urllib.request.urlretrieve(data_url, filepath, _progress)print()statinfo = os.stat(filepath)tf.logging.info('Successfully downloaded', filename, statinfo.st_size,'bytes.')tarfile.open(filepath, 'r:gz').extractall(dest_directory)def ensure_dir_exists(dir_name):"""Makes sure the folder exists on disk.Args:dir_name: Path string to the folder we want to create."""if not os.path.exists(dir_name):os.makedirs(dir_name)bottleneck_path_2_bottleneck_values = {}def create_bottleneck_file(bottleneck_path, image_lists, label_name, index,image_dir, category, sess, jpeg_data_tensor,decoded_image_tensor, resized_input_tensor,bottleneck_tensor):"""Create a single bottleneck file."""tf.logging.info('Creating bottleneck at ' + bottleneck_path)image_path = get_image_path(image_lists, label_name, index,image_dir, category)if not gfile.Exists(image_path):tf.logging.fatal('File does not exist %s', image_path)image_data = gfile.FastGFile(image_path, 'rb').read()try:bottleneck_values = run_bottleneck_on_image(sess, image_data, jpeg_data_tensor, decoded_image_tensor,resized_input_tensor, bottleneck_tensor)except Exception as e:raise RuntimeError('Error during processing file %s (%s)' % (image_path,str(e)))bottleneck_string = ','.join(str(x) for x in bottleneck_values)with open(bottleneck_path, 'w') as bottleneck_file:bottleneck_file.write(bottleneck_string)def get_or_create_bottleneck(sess, image_lists, label_name, index, image_dir,category, bottleneck_dir, jpeg_data_tensor,decoded_image_tensor, resized_input_tensor,bottleneck_tensor, architecture):"""Retrieves or calculates bottleneck values for an image.If a cached version of the bottleneck data exists on-disk, return that,otherwise calculate the data and save it to disk for future use.Args:sess: The current active TensorFlow Session.image_lists: Dictionary of training images for each label.label_name: Label string we want to get an image for.index: Integer offset of the image we want. This will be modulo-ed by theavailable number of images for the label, so it can be arbitrarily large.image_dir: Root folder string of the subfolders containing the trainingimages.category: Name string of which set to pull images from - training, testing,or validation.bottleneck_dir: Folder string holding cached files of bottleneck values.jpeg_data_tensor: The tensor to feed loaded jpeg data into.decoded_image_tensor: The output of decoding and resizing the image.resized_input_tensor: The input node of the recognition graph.bottleneck_tensor: The output tensor for the bottleneck values.architecture: The name of the model architecture.Returns:Numpy array of values produced by the bottleneck layer for the image."""label_lists = image_lists[label_name]sub_dir = label_lists['dir']sub_dir_path = os.path.join(bottleneck_dir, sub_dir)ensure_dir_exists(sub_dir_path)bottleneck_path = get_bottleneck_path(image_lists, label_name, index,bottleneck_dir, category, architecture)if not os.path.exists(bottleneck_path):create_bottleneck_file(bottleneck_path, image_lists, label_name, index,image_dir, category, sess, jpeg_data_tensor,decoded_image_tensor, resized_input_tensor,bottleneck_tensor)with open(bottleneck_path, 'r') as bottleneck_file:bottleneck_string = bottleneck_file.read()did_hit_error = Falsetry:bottleneck_values = [float(x) for x in bottleneck_string.split(',')]except ValueError:tf.logging.warning('Invalid float found, recreating bottleneck')did_hit_error = Trueif did_hit_error:create_bottleneck_file(bottleneck_path, image_lists, label_name, index,image_dir, category, sess, jpeg_data_tensor,decoded_image_tensor, resized_input_tensor,bottleneck_tensor)with open(bottleneck_path, 'r') as bottleneck_file:bottleneck_string = bottleneck_file.read()# Allow exceptions to propagate here, since they shouldn't happen after a# fresh creationbottleneck_values = [float(x) for x in bottleneck_string.split(',')]return bottleneck_valuesdef cache_bottlenecks(sess, image_lists, image_dir, bottleneck_dir,jpeg_data_tensor, decoded_image_tensor,resized_input_tensor, bottleneck_tensor, architecture):"""Ensures all the training, testing, and validation bottlenecks are cached.Because we're likely to read the same image multiple times (if there are nodistortions applied during training) it can speed things up a lot if wecalculate the bottleneck layer values once for each image duringpreprocessing, and then just read those cached values repeatedly duringtraining. Here we go through all the images we've found, calculate thosevalues, and save them off.Args:sess: The current active TensorFlow Session.image_lists: Dictionary of training images for each label.image_dir: Root folder string of the subfolders containing the trainingimages.bottleneck_dir: Folder string holding cached files of bottleneck values.jpeg_data_tensor: Input tensor for jpeg data from file.decoded_image_tensor: The output of decoding and resizing the image.resized_input_tensor: The input node of the recognition graph.bottleneck_tensor: The penultimate output layer of the graph.architecture: The name of the model architecture.Returns:Nothing."""how_many_bottlenecks = 0ensure_dir_exists(bottleneck_dir)for label_name, label_lists in image_lists.items():for category in ['training', 'testing', 'validation']:category_list = label_lists[category]for index, unused_base_name in enumerate(category_list):get_or_create_bottleneck(sess, image_lists, label_name, index, image_dir, category,bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,resized_input_tensor, bottleneck_tensor, architecture)how_many_bottlenecks += 1if how_many_bottlenecks % 100 == 0:tf.logging.info(str(how_many_bottlenecks) + ' bottleneck files created.')def get_random_cached_bottlenecks(sess, image_lists, how_many, category,bottleneck_dir, image_dir, jpeg_data_tensor,decoded_image_tensor, resized_input_tensor,bottleneck_tensor, architecture):"""Retrieves bottleneck values for cached images.If no distortions are being applied, this function can retrieve the cachedbottleneck values directly from disk for images. It picks a random set ofimages from the specified category.Args:sess: Current TensorFlow Session.image_lists: Dictionary of training images for each label.how_many: If positive, a random sample of this size will be chosen.If negative, all bottlenecks will be retrieved.category: Name string of which set to pull from - training, testing, orvalidation.bottleneck_dir: Folder string holding cached files of bottleneck values.image_dir: Root folder string of the subfolders containing the trainingimages.jpeg_data_tensor: The layer to feed jpeg image data into.decoded_image_tensor: The output of decoding and resizing the image.resized_input_tensor: The input node of the recognition graph.bottleneck_tensor: The bottleneck output layer of the CNN graph.architecture: The name of the model architecture.Returns:List of bottleneck arrays, their corresponding ground truths, and therelevant filenames."""class_count = len(image_lists.keys())bottlenecks = []ground_truths = []filenames = []if how_many >= 0:# Retrieve a random sample of bottlenecks.for unused_i in range(how_many):label_index = random.randrange(class_count)label_name = list(image_lists.keys())[label_index]image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1)image_name = get_image_path(image_lists, label_name, image_index,image_dir, category)bottleneck = get_or_create_bottleneck(sess, image_lists, label_name, image_index, image_dir, category,bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,resized_input_tensor, bottleneck_tensor, architecture)ground_truth = np.zeros(class_count, dtype=np.float32)ground_truth[label_index] = 1.0bottlenecks.append(bottleneck)ground_truths.append(ground_truth)filenames.append(image_name)else:# Retrieve all bottlenecks.for label_index, label_name in enumerate(image_lists.keys()):for image_index, image_name in enumerate(image_lists[label_name][category]):image_name = get_image_path(image_lists, label_name, image_index,image_dir, category)bottleneck = get_or_create_bottleneck(sess, image_lists, label_name, image_index, image_dir, category,bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,resized_input_tensor, bottleneck_tensor, architecture)ground_truth = np.zeros(class_count, dtype=np.float32)ground_truth[label_index] = 1.0bottlenecks.append(bottleneck)ground_truths.append(ground_truth)filenames.append(image_name)return bottlenecks, ground_truths, filenamesdef get_random_distorted_bottlenecks(sess, image_lists, how_many, category, image_dir, input_jpeg_tensor,distorted_image, resized_input_tensor, bottleneck_tensor):"""Retrieves bottleneck values for training images, after distortions.If we're training with distortions like crops, scales, or flips, we have torecalculate the full model for every image, and so we can't use cachedbottleneck values. Instead we find random images for the requested category,run them through the distortion graph, and then the full graph to get thebottleneck results for each.Args:sess: Current TensorFlow Session.image_lists: Dictionary of training images for each label.how_many: The integer number of bottleneck values to return.category: Name string of which set of images to fetch - training, testing,or validation.image_dir: Root folder string of the subfolders containing the trainingimages.input_jpeg_tensor: The input layer we feed the image data to.distorted_image: The output node of the distortion graph.resized_input_tensor: The input node of the recognition graph.bottleneck_tensor: The bottleneck output layer of the CNN graph.Returns:List of bottleneck arrays and their corresponding ground truths."""class_count = len(image_lists.keys())bottlenecks = []ground_truths = []for unused_i in range(how_many):label_index = random.randrange(class_count)label_name = list(image_lists.keys())[label_index]image_index = random.randrange(MAX_NUM_IMAGES_PER_CLASS + 1)image_path = get_image_path(image_lists, label_name, image_index, image_dir,category)if not gfile.Exists(image_path):tf.logging.fatal('File does not exist %s', image_path)jpeg_data = gfile.FastGFile(image_path, 'rb').read()# Note that we materialize the distorted_image_data as a numpy array before# sending running inference on the image. This involves 2 memory copies and# might be optimized in other implementations.distorted_image_data = sess.run(distorted_image,{input_jpeg_tensor: jpeg_data})bottleneck_values = sess.run(bottleneck_tensor,{resized_input_tensor: distorted_image_data})bottleneck_values = np.squeeze(bottleneck_values)ground_truth = np.zeros(class_count, dtype=np.float32)ground_truth[label_index] = 1.0bottlenecks.append(bottleneck_values)ground_truths.append(ground_truth)return bottlenecks, ground_truthsdef should_distort_images(flip_left_right, random_crop, random_scale,random_brightness):"""Whether any distortions are enabled, from the input flags.Args:flip_left_right: Boolean whether to randomly mirror images horizontally.random_crop: Integer percentage setting the total margin used around thecrop box.random_scale: Integer percentage of how much to vary the scale by.random_brightness: Integer range to randomly multiply the pixel values by.Returns:Boolean value indicating whether any distortions should be applied."""return (flip_left_right or (random_crop != 0) or (random_scale != 0) or(random_brightness != 0))def add_input_distortions(flip_left_right, random_crop, random_scale,random_brightness, input_width, input_height,input_depth, input_mean, input_std):"""Creates the operations to apply the specified distortions.During training it can help to improve the results if we run the imagesthrough simple distortions like crops, scales, and flips. These reflect thekind of variations we expect in the real world, and so can help train themodel to cope with natural data more effectively. Here we take the suppliedparameters and construct a network of operations to apply them to an image.Cropping~~~~~~~~Cropping is done by placing a bounding box at a random position in the fullimage. The cropping parameter controls the size of that box relative to theinput image. If it's zero, then the box is the same size as the input and nocropping is performed. If the value is 50%, then the crop box will be half thewidth and height of the input. In a diagram it looks like this:<       width         >+---------------------+|                     ||   width - crop%     ||    <      >         ||    +------+         ||    |      |         ||    |      |         ||    |      |         ||    +------+         ||                     ||                     |+---------------------+Scaling~~~~~~~Scaling is a lot like cropping, except that the bounding box is alwayscentered and its size varies randomly within the given range. For example ifthe scale percentage is zero, then the bounding box is the same size as theinput and no scaling is applied. If it's 50%, then the bounding box will be ina random range between half the width and height and full size.Args:flip_left_right: Boolean whether to randomly mirror images horizontally.random_crop: Integer percentage setting the total margin used around thecrop box.random_scale: Integer percentage of how much to vary the scale by.random_brightness: Integer range to randomly multiply the pixel values by.graph.input_width: Horizontal size of expected input image to model.input_height: Vertical size of expected input image to model.input_depth: How many channels the expected input image should have.input_mean: Pixel value that should be zero in the image for the graph.input_std: How much to divide the pixel values by before recognition.Returns:The jpeg input layer and the distorted result tensor."""jpeg_data = tf.placeholder(tf.string, name='DistortJPGInput')decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth)decoded_image_as_float = tf.cast(decoded_image, dtype=tf.float32)decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0)margin_scale = 1.0 + (random_crop / 100.0)resize_scale = 1.0 + (random_scale / 100.0)margin_scale_value = tf.constant(margin_scale)resize_scale_value = tf.random_uniform(tensor_shape.scalar(),minval=1.0,maxval=resize_scale)scale_value = tf.multiply(margin_scale_value, resize_scale_value)precrop_width = tf.multiply(scale_value, input_width)precrop_height = tf.multiply(scale_value, input_height)precrop_shape = tf.stack([precrop_height, precrop_width])precrop_shape_as_int = tf.cast(precrop_shape, dtype=tf.int32)precropped_image = tf.image.resize_bilinear(decoded_image_4d,precrop_shape_as_int)precropped_image_3d = tf.squeeze(precropped_image, squeeze_dims=[0])cropped_image = tf.random_crop(precropped_image_3d,[input_height, input_width, input_depth])if flip_left_right:flipped_image = tf.image.random_flip_left_right(cropped_image)else:flipped_image = cropped_imagebrightness_min = 1.0 - (random_brightness / 100.0)brightness_max = 1.0 + (random_brightness / 100.0)brightness_value = tf.random_uniform(tensor_shape.scalar(),minval=brightness_min,maxval=brightness_max)brightened_image = tf.multiply(flipped_image, brightness_value)offset_image = tf.subtract(brightened_image, input_mean)mul_image = tf.multiply(offset_image, 1.0 / input_std)distort_result = tf.expand_dims(mul_image, 0, name='DistortResult')return jpeg_data, distort_resultdef variable_summaries(var):"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""with tf.name_scope('summaries'):mean = tf.reduce_mean(var)tf.summary.scalar('mean', mean)with tf.name_scope('stddev'):stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))tf.summary.scalar('stddev', stddev)tf.summary.scalar('max', tf.reduce_max(var))tf.summary.scalar('min', tf.reduce_min(var))tf.summary.histogram('histogram', var)def add_final_training_ops(class_count, final_tensor_name, bottleneck_tensor,bottleneck_tensor_size):"""Adds a new softmax and fully-connected layer for training.We need to retrain the top layer to identify our new classes, so this functionadds the right operations to the graph, along with some variables to hold theweights, and then sets up all the gradients for the backward pass.The set up for the softmax and fully-connected layers is based on:https://www.tensorflow.org/versions/master/tutorials/mnist/beginners/index.htmlArgs:class_count: Integer of how many categories of things we're trying torecognize.final_tensor_name: Name string for the new final node that produces results.bottleneck_tensor: The output of the main CNN graph.bottleneck_tensor_size: How many entries in the bottleneck vector.Returns:The tensors for the training and cross entropy results, and tensors for thebottleneck input and ground truth input."""with tf.name_scope('input'):bottleneck_input = tf.placeholder_with_default(bottleneck_tensor,shape=[None, bottleneck_tensor_size],name='BottleneckInputPlaceholder')ground_truth_input = tf.placeholder(tf.float32,[None, class_count],name='GroundTruthInput')# Organizing the following ops as `final_training_ops` so they're easier# to see in TensorBoardlayer_name = 'final_training_ops'with tf.name_scope(layer_name):with tf.name_scope('weights'):initial_value = tf.truncated_normal([bottleneck_tensor_size, class_count], stddev=0.001)layer_weights = tf.Variable(initial_value, name='final_weights')variable_summaries(layer_weights)with tf.name_scope('biases'):layer_biases = tf.Variable(tf.zeros([class_count]), name='final_biases')variable_summaries(layer_biases)with tf.name_scope('Wx_plus_b'):logits = tf.matmul(bottleneck_input, layer_weights) + layer_biasestf.summary.histogram('pre_activations', logits)final_tensor = tf.nn.softmax(logits, name=final_tensor_name)tf.summary.histogram('activations', final_tensor)with tf.name_scope('cross_entropy'):cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=ground_truth_input, logits=logits)with tf.name_scope('total'):cross_entropy_mean = tf.reduce_mean(cross_entropy)tf.summary.scalar('cross_entropy', cross_entropy_mean)with tf.name_scope('train'):optimizer = tf.train.GradientDescentOptimizer(FLAGS.learning_rate)train_step = optimizer.minimize(cross_entropy_mean)return (train_step, cross_entropy_mean, bottleneck_input, ground_truth_input,final_tensor)def add_evaluation_step(result_tensor, ground_truth_tensor):"""Inserts the operations we need to evaluate the accuracy of our results.Args:result_tensor: The new final node that produces results.ground_truth_tensor: The node we feed ground truth datainto.Returns:Tuple of (evaluation step, prediction)."""with tf.name_scope('accuracy'):with tf.name_scope('correct_prediction'):prediction = tf.argmax(result_tensor, 1)correct_prediction = tf.equal(prediction, tf.argmax(ground_truth_tensor, 1))with tf.name_scope('accuracy'):evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))tf.summary.scalar('accuracy', evaluation_step)return evaluation_step, predictiondef save_graph_to_file(sess, graph, graph_file_name):output_graph_def = graph_util.convert_variables_to_constants(sess, graph.as_graph_def(), [FLAGS.final_tensor_name])with gfile.FastGFile(graph_file_name, 'wb') as f:f.write(output_graph_def.SerializeToString())returndef prepare_file_system():# Setup the directory we'll write summaries to for TensorBoardif tf.gfile.Exists(FLAGS.summaries_dir):tf.gfile.DeleteRecursively(FLAGS.summaries_dir)tf.gfile.MakeDirs(FLAGS.summaries_dir)if FLAGS.intermediate_store_frequency > 0:ensure_dir_exists(FLAGS.intermediate_output_graphs_dir)returndef create_model_info(architecture):"""Given the name of a model architecture, returns information about it.There are different base image recognition pretrained models that can beretrained using transfer learning, and this function translates from the nameof a model to the attributes that are needed to download and train with it.Args:architecture: Name of a model architecture.Returns:Dictionary of information about the model, or None if the name isn'trecognizedRaises:ValueError: If architecture name is unknown."""architecture = architecture.lower()if architecture == 'inception_v3':# pylint: disable=line-too-longdata_url = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'# pylint: enable=line-too-longbottleneck_tensor_name = 'pool_3/_reshape:0'bottleneck_tensor_size = 2048input_width = 299input_height = 299input_depth = 3resized_input_tensor_name = 'Mul:0'model_file_name = 'classify_image_graph_def.pb'input_mean = 128input_std = 128elif architecture.startswith('mobilenet_'):parts = architecture.split('_')if len(parts) != 3 and len(parts) != 4:tf.logging.error("Couldn't understand architecture name '%s'",architecture)return Noneversion_string = parts[1]if (version_string != '1.0' and version_string != '0.75' andversion_string != '0.50' and version_string != '0.25'):tf.logging.error(""""The Mobilenet version should be '1.0', '0.75', '0.50', or '0.25',but found '%s' for architecture '%s'""",version_string, architecture)return Nonesize_string = parts[2]if (size_string != '224' and size_string != '192' andsize_string != '160' and size_string != '128'):tf.logging.error("""The Mobilenet input size should be '224', '192', '160', or '128',but found '%s' for architecture '%s'""",size_string, architecture)return Noneif len(parts) == 3:is_quantized = Falseelse:if parts[3] != 'quantized':tf.logging.error("Couldn't understand architecture suffix '%s' for '%s'", parts[3],architecture)return Noneis_quantized = Truedata_url = 'http://download.tensorflow.org/models/mobilenet_v1_'data_url += version_string + '_' + size_string + '_frozen.tgz'bottleneck_tensor_name = 'MobilenetV1/Predictions/Reshape:0'bottleneck_tensor_size = 1001input_width = int(size_string)input_height = int(size_string)input_depth = 3resized_input_tensor_name = 'input:0'if is_quantized:model_base_name = 'quantized_graph.pb'else:model_base_name = 'frozen_graph.pb'model_dir_name = 'mobilenet_v1_' + version_string + '_' + size_stringmodel_file_name = os.path.join(model_dir_name, model_base_name)input_mean = 127.5input_std = 127.5else:tf.logging.error("Couldn't understand architecture name '%s'", architecture)raise ValueError('Unknown architecture', architecture)return {'data_url': data_url,'bottleneck_tensor_name': bottleneck_tensor_name,'bottleneck_tensor_size': bottleneck_tensor_size,'input_width': input_width,'input_height': input_height,'input_depth': input_depth,'resized_input_tensor_name': resized_input_tensor_name,'model_file_name': model_file_name,'input_mean': input_mean,'input_std': input_std,}def add_jpeg_decoding(input_width, input_height, input_depth, input_mean,input_std):"""Adds operations that perform JPEG decoding and resizing to the graph..Args:input_width: Desired width of the image fed into the recognizer graph.input_height: Desired width of the image fed into the recognizer graph.input_depth: Desired channels of the image fed into the recognizer graph.input_mean: Pixel value that should be zero in the image for the graph.input_std: How much to divide the pixel values by before recognition.Returns:Tensors for the node to feed JPEG data into, and the output of thepreprocessing steps."""jpeg_data = tf.placeholder(tf.string, name='DecodeJPGInput')decoded_image = tf.image.decode_jpeg(jpeg_data, channels=input_depth)decoded_image_as_float = tf.cast(decoded_image, dtype=tf.float32)decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0)resize_shape = tf.stack([input_height, input_width])resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32)resized_image = tf.image.resize_bilinear(decoded_image_4d,resize_shape_as_int)offset_image = tf.subtract(resized_image, input_mean)mul_image = tf.multiply(offset_image, 1.0 / input_std)return jpeg_data, mul_imagedef main(_):# Needed to make sure the logging output is visible.# See https://github.com/tensorflow/tensorflow/issues/3047tf.logging.set_verbosity(tf.logging.INFO)# Prepare necessary directories that can be used during trainingprepare_file_system()# Gather information about the model architecture we'll be using.model_info = create_model_info(FLAGS.architecture)if not model_info:tf.logging.error('Did not recognize architecture flag')return -1# Set up the pre-trained graph.maybe_download_and_extract(model_info['data_url'])graph, bottleneck_tensor, resized_image_tensor = (create_model_graph(model_info))# Look at the folder structure, and create lists of all the images.image_lists = create_image_lists(FLAGS.image_dir, FLAGS.testing_percentage,FLAGS.validation_percentage)class_count = len(image_lists.keys())if class_count == 0:tf.logging.error('No valid folders of images found at ' + FLAGS.image_dir)return -1if class_count == 1:tf.logging.error('Only one valid folder of images found at ' +FLAGS.image_dir +' - multiple classes are needed for classification.')return -1# See if the command-line flags mean we're applying any distortions.do_distort_images = should_distort_images(FLAGS.flip_left_right, FLAGS.random_crop, FLAGS.random_scale,FLAGS.random_brightness)with tf.Session(graph=graph) as sess:# Set up the image decoding sub-graph.jpeg_data_tensor, decoded_image_tensor = add_jpeg_decoding(model_info['input_width'], model_info['input_height'],model_info['input_depth'], model_info['input_mean'],model_info['input_std'])if do_distort_images:# We will be applying distortions, so setup the operations we'll need.(distorted_jpeg_data_tensor,distorted_image_tensor) = add_input_distortions(FLAGS.flip_left_right, FLAGS.random_crop, FLAGS.random_scale,FLAGS.random_brightness, model_info['input_width'],model_info['input_height'], model_info['input_depth'],model_info['input_mean'], model_info['input_std'])else:# We'll make sure we've calculated the 'bottleneck' image summaries and# cached them on disk.cache_bottlenecks(sess, image_lists, FLAGS.image_dir,FLAGS.bottleneck_dir, jpeg_data_tensor,decoded_image_tensor, resized_image_tensor,bottleneck_tensor, FLAGS.architecture)# Add the new layer that we'll be training.(train_step, cross_entropy, bottleneck_input, ground_truth_input,final_tensor) = add_final_training_ops(len(image_lists.keys()), FLAGS.final_tensor_name, bottleneck_tensor,model_info['bottleneck_tensor_size'])# Create the operations we need to evaluate the accuracy of our new layer.evaluation_step, prediction = add_evaluation_step(final_tensor, ground_truth_input)# Merge all the summaries and write them out to the summaries_dirmerged = tf.summary.merge_all()train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train',sess.graph)validation_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/validation')# Set up all our weights to their initial default values.init = tf.global_variables_initializer()sess.run(init)# Run the training for as many cycles as requested on the command line.for i in range(FLAGS.how_many_training_steps):# Get a batch of input bottleneck values, either calculated fresh every# time with distortions applied, or from the cache stored on disk.if do_distort_images:(train_bottlenecks,train_ground_truth) = get_random_distorted_bottlenecks(sess, image_lists, FLAGS.train_batch_size, 'training',FLAGS.image_dir, distorted_jpeg_data_tensor,distorted_image_tensor, resized_image_tensor, bottleneck_tensor)else:(train_bottlenecks,train_ground_truth, _) = get_random_cached_bottlenecks(sess, image_lists, FLAGS.train_batch_size, 'training',FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor,decoded_image_tensor, resized_image_tensor, bottleneck_tensor,FLAGS.architecture)# Feed the bottlenecks and ground truth into the graph, and run a training# step. Capture training summaries for TensorBoard with the `merged` op.train_summary, _ = sess.run([merged, train_step],feed_dict={bottleneck_input: train_bottlenecks,ground_truth_input: train_ground_truth})train_writer.add_summary(train_summary, i)# Every so often, print out how well the graph is training.is_last_step = (i + 1 == FLAGS.how_many_training_steps)if (i % FLAGS.eval_step_interval) == 0 or is_last_step:train_accuracy, cross_entropy_value = sess.run([evaluation_step, cross_entropy],feed_dict={bottleneck_input: train_bottlenecks,ground_truth_input: train_ground_truth})tf.logging.info('%s: Step %d: Train accuracy = %.1f%%' %(datetime.now(), i, train_accuracy * 100))tf.logging.info('%s: Step %d: Cross entropy = %f' %(datetime.now(), i, cross_entropy_value))validation_bottlenecks, validation_ground_truth, _ = (get_random_cached_bottlenecks(sess, image_lists, FLAGS.validation_batch_size, 'validation',FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor,decoded_image_tensor, resized_image_tensor, bottleneck_tensor,FLAGS.architecture))# Run a validation step and capture training summaries for TensorBoard# with the `merged` op.validation_summary, validation_accuracy = sess.run([merged, evaluation_step],feed_dict={bottleneck_input: validation_bottlenecks,ground_truth_input: validation_ground_truth})validation_writer.add_summary(validation_summary, i)tf.logging.info('%s: Step %d: Validation accuracy = %.1f%% (N=%d)' %(datetime.now(), i, validation_accuracy * 100,len(validation_bottlenecks)))# Store intermediate resultsintermediate_frequency = FLAGS.intermediate_store_frequencyif (intermediate_frequency > 0 and (i % intermediate_frequency == 0)and i > 0):intermediate_file_name = (FLAGS.intermediate_output_graphs_dir +'intermediate_' + str(i) + '.pb')tf.logging.info('Save intermediate result to : ' +intermediate_file_name)save_graph_to_file(sess, graph, intermediate_file_name)# We've completed all our training, so run a final test evaluation on# some new images we haven't used before.test_bottlenecks, test_ground_truth, test_filenames = (get_random_cached_bottlenecks(sess, image_lists, FLAGS.test_batch_size, 'testing',FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor,decoded_image_tensor, resized_image_tensor, bottleneck_tensor,FLAGS.architecture))test_accuracy, predictions = sess.run([evaluation_step, prediction],feed_dict={bottleneck_input: test_bottlenecks,ground_truth_input: test_ground_truth})tf.logging.info('Final test accuracy = %.1f%% (N=%d)' %(test_accuracy * 100, len(test_bottlenecks)))if FLAGS.print_misclassified_test_images:tf.logging.info('=== MISCLASSIFIED TEST IMAGES ===')for i, test_filename in enumerate(test_filenames):if predictions[i] != test_ground_truth[i].argmax():tf.logging.info('%70s  %s' %(test_filename,list(image_lists.keys())[predictions[i]]))# Write out the trained graph and labels with the weights stored as# constants.save_graph_to_file(sess, graph, FLAGS.output_graph)with gfile.FastGFile(FLAGS.output_labels, 'w') as f:f.write('\n'.join(image_lists.keys()) + '\n')import  os
os.chdir(r'E:\work\dog\test_dog')if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--image_dir',type=str,default='./data/insect',help='Path to folders of labeled images.')parser.add_argument('--output_graph',type=str,default='./output_graph.pb',help='Where to save the trained graph.')parser.add_argument('--intermediate_output_graphs_dir',type=str,default='./intermediate_graph/',help='Where to save the intermediate graphs.')parser.add_argument('--intermediate_store_frequency',type=int,default=0,help="""\How many steps to store intermediate graph. If "0" then will notstore.\""")parser.add_argument('--output_labels',type=str,default='./output_labels.txt',help='Where to save the trained graph\'s labels.')parser.add_argument('--summaries_dir',type=str,default='./retrain_logs',help='Where to save summary logs for TensorBoard.')parser.add_argument('--how_many_training_steps',type=int,default=4000,help='How many training steps to run before ending.')parser.add_argument('--learning_rate',type=float,default=0.01,help='How large a learning rate to use when training.')parser.add_argument('--testing_percentage',type=int,default=25,help='What percentage of images to use as a test set.')parser.add_argument('--validation_percentage',type=int,default=25,help='What percentage of images to use as a validation set.')parser.add_argument('--eval_step_interval',type=int,default=10,help='How often to evaluate the training results.')parser.add_argument('--train_batch_size',type=int,default=100,help='How many images to train on at a time.')parser.add_argument('--test_batch_size',type=int,default=-1,help="""\How many images to test on. This test set is only used once, to evaluatethe final accuracy of the model after training completes.A value of -1 causes the entire test set to be used, which leads to morestable results across runs.\""")parser.add_argument('--validation_batch_size',type=int,default=100,help="""\How many images to use in an evaluation batch. This validation set isused much more often than the test set, and is an early indicator of howaccurate the model is during training.A value of -1 causes the entire validation set to be used, which leads tomore stable results across training iterations, but may be slower on largetraining sets.\""")parser.add_argument('--print_misclassified_test_images',default=False,help="""\Whether to print out a list of all misclassified test images.\""",action='store_true')parser.add_argument('--model_dir',type=str,default='./inception_v3',help="""\Path to classify_image_graph_def.pb,imagenet_synset_to_human_label_map.txt, andimagenet_2012_challenge_label_map_proto.pbtxt.\""")parser.add_argument('--bottleneck_dir',type=str,default='./bottleneck',help='Path to cache bottleneck layer values as files.')parser.add_argument('--final_tensor_name',type=str,default='final_result',help="""\The name of the output classification layer in the retrained graph.\""")parser.add_argument('--flip_left_right',default=False,help="""\Whether to randomly flip half of the training images horizontally.\""",action='store_true')parser.add_argument('--random_crop',type=int,default=0,help="""\A percentage determining how much of a margin to randomly crop off thetraining images.\""")parser.add_argument('--random_scale',type=int,default=0,help="""\A percentage determining how much to randomly scale up the size of thetraining images by.\""")parser.add_argument('--random_brightness',type=int,default=0,help="""\A percentage determining how much to randomly multiply the training imageinput pixels up or down by.\""")parser.add_argument('--architecture',type=str,default='inception_v3',help="""\Which model architecture to use. 'inception_v3' is the most accurate, butalso the slowest. For faster or smaller models, chose a MobileNet with theform 'mobilenet_<parameter size>_<input_size>[_quantized]'. For example,'mobilenet_1.0_224' will pick a model that is 17 MB in size and takes 224pixel input images, while 'mobilenet_0.25_128_quantized' will choose a muchless accurate, but smaller and faster network that's 920 KB on disk andtakes 128x128 images. See https://research.googleblog.com/2017/06/mobilenets-open-source-models-for.htmlfor more information on Mobilenet.\""")FLAGS, unparsed = parser.parse_known_args()tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

测试:test

# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
import os
from PIL import Image
import matplotlib.pyplot as pltmodel_dir = r'E:\work\dog\test_dog'
model_name = 'output_graph.pb'
image_dir =r'E:\work\dog\test_dog\testimages'
label_dir = r'E:\work\dog\test_dog'
label_filename = 'output_labels.txt'# 读取并创建一个图graph来存放Google训练好的Inception_v3模型(函数)
def create_graph():with tf.gfile.FastGFile(os.path.join(model_dir, model_name), 'rb') as f:# 使用tf.GraphDef()定义一个空的Graphgraph_def = tf.GraphDef()graph_def.ParseFromString(f.read())# Imports the graph from graph_def into the current default Graph.tf.import_graph_def(graph_def, name='')# 读取标签labels
def load_labels(label_file_dir):if not tf.gfile.Exists(label_file_dir):# 预先检测地址是否存在tf.logging.fatal('File does not exist %s', label_file_dir)else:# 读取所有的标签返并回一个listlabels = tf.gfile.GFile(label_file_dir).readlines()for i in range(len(labels)):labels[i] = labels[i].strip('\n')return labels# 创建graph
create_graph()# 创建会话,因为是从已有的Inception_v3模型中恢复,所以无需初始化
with tf.Session() as sess:# Inception_v3模型的最后一层final_result:0的输出softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')# 遍历目录for root, dirs, files in os.walk(image_dir):for file in files:# 载入图片image_data = tf.gfile.FastGFile(os.path.join(root, file), 'rb').read()# 输入图像(jpg格式)数据,得到softmax概率值(一个shape=(1,1008)的向量)predictions = sess.run(softmax_tensor, {'DecodeJpeg/contents:0': image_data})# 将结果转为1维数据predictions = np.squeeze(predictions)# 打印图片路径及名称image_path = os.path.join(root, file)print(image_path)# 显示图片img = Image.open(image_path)#plt.imshow(img)#plt.axis('off')#plt.show()# 排序,取出前5个概率最大的值(top-5),本数据集一共就5个# argsort()返回的是数组值从小到大排列所对应的索引值top_5 = predictions.argsort()[-5:][::-1]for label_index in top_5:# 获取分类名称label_name = load_labels(os.path.join(label_dir, label_filename))[label_index]# 获取该分类的置信度label_score = predictions[label_index]print('%s (score = %.5f)' % (label_name, label_score))print()

转载于https://www.jianshu.com/p/613c3b08faea

inception retrain 实现相关推荐

  1. Tensorflow(七)Retrain Google Inception V3

    1.下载Inception V3模型 Download-Link 在tensorflow官网中可以直接下载,下载完压缩包以后解压,注意不要删除这个压缩包,后面可能会用到,然后在同目录下创建一个log文 ...

  2. Retrain a tensorflow model based on Inception v3

    本文在谷歌2015_CVPR Inception v3模型的基础上,结合花朵识别的具体问题重新训练该模型,以获取自己需要的tensorflow模型. 重新训练Inception v3实质是在原有模型输 ...

  3. tf11: retrain谷歌Inception模型

    前一帖使用到了谷歌训练的Inception模型,本帖就基于Inception模型retrain一个图像分类器. 图像分类器应用广泛,连农业都在使用,如判断黄瓜种类. 本帖使用的训练数据是PixelCN ...

  4. TensorFlow练习11: 图像分类器 – retrain谷歌Inception模型(转)

    原文地址:https://www.tuicool.com/articles/ieQZVfa 前一帖< TensorFlow练习10: 实现谷歌Deep Dream >使用到了谷歌训练的In ...

  5. TensorFlow 之基于Inception V3的多标签分类 retrain

    本文参考http://blog.csdn.net/Numeria/article/details/73604339 以及参考开源代码github链接: https://github.com/Barty ...

  6. tensorflow学习笔记十7:tensorflow官方文档学习 How to Retrain Inception's Final Layer for New Categories

    现代物体识别模型有数以百万计的参数,可能需要数周才能完全训练.学习迁移是一个捷径,很多这样的工作,以充分的训练模式的一组类ImageNet技术,并从现有的权重进行新课.在这个例子中,我们将从头再训练最 ...

  7. 迁移学习-使用预训练的Inception v3进行宠物分类

    个人博客:http://www.chenjianqu.com/ 原文链接:http://www.chenjianqu.com/show-53.html 迁移学习 迁移学习(Transfer Learn ...

  8. win10使用Inception v3进行图像分类TensorFlow学习记录

    win10中构建TensorFlow环境: 下载并安装anaconda环境,具体步骤这里有:spark2.3在Windows10当中来搭建python3的使用环境pyspark,只需要看anacond ...

  9. TensorFlow学习笔记之源码分析(3)---- retrain.py

    https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/image_retraining/retrain.py ...

最新文章

  1. 在虚拟机中 windows 2003 装.net framework 3.5 出现问题.
  2. 厦门大学宋宁宇:统计学专业到蚂蚁风控岗!
  3. 浅析Web工程目录和tomcat目录
  4. 基于catalog 创建RMAN存储脚本
  5. Sublime Text 快捷键使用
  6. js几种常见排序的实现
  7. 汤姆克兰西全境封锁服务器维护时间,汤姆克兰西全境封锁无法登录怎么解决 无法登录解决方法攻略...
  8. flash调用swf文件服务器,浏览器如何加载Flash文件? (SWF)
  9. 错过SaaS,就是错过这个时代
  10. C# switch语句中,可以放哪些类型
  11. WSL2之gdb通过qemu调试ARM汇编(五)
  12. java 冒泡算法_关于java中的冒泡算法
  13. mysql问题_MySQL 各种问题解决方案(一)
  14. java根据url下载文件
  15. 北师大计算机专业保研率,师范类高校保研情况,3所学校保研率超20%,北师大最高达到35%...
  16. XGBoost结合SHAP应用:回归、二分类、多分类模型
  17. 我和宁夏日报 【白述礼】
  18. 记录一下家里双路由实现wifi漫游功能
  19. MP-SPDZ详细介绍
  20. Tkinter Treeview tag_configure失效问题

热门文章

  1. 服务器文件夹取消只读,服务器上的excle文件有人打开文件编辑后关闭文件,别人再去打开文件时“**”正在编辑,用只读方式打开!excel怎样解除只读...
  2. 趣图:程序员的生活写照
  3. SQL server 2012 附加数据库
  4. sql 不等于 字符串要加单引号
  5. 双因素认证(2FA)教程
  6. 别人的【计算机视觉算法岗面经】“吐血”整理:2019秋招资料
  7. React 并发渲染的前世今生
  8. 【哈希表】554. 砖墙
  9. 简单的时序图工具---Markdown
  10. 21 高斯的推导(1809)