卡尔曼滤波器

英文kalman filter

这里介绍简单的,只有一个状态的滤波器

卡尔曼滤波器经常用在控制系统中、机器人系统中,但是这里主要讲解如何用在AI的大数据分析预测中

为什么要用kalman filter处理时间序列

假设我们有100个时间点的数据,这个数据就是分别在100个点观测出来的结果。

对于每一个时间点的数据,获取的方法有两个:

第一个就是观测,但是测量的结果不一定准确,可能受限于测量仪器的精度?

第二个就是用这个时间点之前的所有数据,预测这个时间点的数据,当然,这个预测值也是不准的。

可否利用这两种方法,相互促进,预测的值更准,或者说让观测道德值更接近本质?Kalman Filter卡尔曼滤波器就这样做的。

简单讲讲kalman filter的过程

每一个观测数据,严谨的说都应该会有一个偏差值。比方说,现在温度计测量是26度,偏差值是0.5度,那么真实的问题应该是在(25.5,26.5)之间,或者写成\(26\pm0.5\)。

这样我们预测的值,和观测的值,再加上这两个各自的偏差,总共四个已知信息,来推测真实的、更本质的数据。

预测的值:可以通过事先设定的公式,上一个时刻的真实的值算出来;

观测的值:直接读取测量仪器的值。

观测的值的偏差:这个也是可以直接得到的;

预测的值的偏差:这个是从上一个时间点的预测的值的偏差经过给定公式计算出来的。

下面的公式中,脚标k表示时间点,k-1是上一个时间点。大写字母A,B,C表示常数,事先设定的;大写字母H,是一个需要计算的。

预测的值:\(x^{预测}_k=A*x_{k-1}^{真实}+B*u_{k-1}\)

观测的值:\(x^{观测}_k\)

观测的值的偏差:\(p^{观测}_k\)

预测的值的偏差:\(p^{预测}_k = \sqrt{(1-H)*p^{预测}_{k-1}}\)

kalman增益H:\(H_k=\frac{(p^{预测}_k)^2}{(p^{预测}_k)^2+(p^{观测}_k)^2}\)

真实的值:\(x^{真实}_k=H_k*x^{观测}_k+(1-H_k)*x^{预测}_k\)

可以看出,这个kalman增益就是一个加权平均的权重,是观测值更重要还是预测值更重要;两者的重要性就由两者的偏差大小决定,偏差小的更重要。

其中\(u_{k-1}\)表示上一个时间点的控制信号,比方说一个机器人,机器人的状态去觉得机器人自身的行为,但是很多情况这个控制信号是不用考虑的。比方对股市的时间序列做kalman滤波,那么并没有什么控制信号去控制,只是任由其自由发展。

举一个例子,房间的温度的例子:

总共有三个时刻,上午、下午和晚上(实际的话,时间点间隔应该会很短,这里只是举例),上午温度是观测值是23度,偏差是0.5,因为上午是第一个时间点,所以没有预测值;

下午,假设A=1,B=0,所以下午的预测值是23度,然后假设初始偏差时1;下午的观测值是25度,观测值的偏差时0.5,所以可以计算得到kalman增益\(H=\frac{1^2}{1^2+0.5^2}=0.8\),所以下午的真实值是:\(0.8*25+(1-0.8)*23=24.6\)

晚上,晚上的预测值就是上一时刻的真实值,所以是24.6,偏差是\(\sqrt{(1-0.8)*1}=0.4472\);晚上的观测值是20度,然后偏差时0.5,所以kalman增益增益\(H=\frac{0.4472^2}{0.4472^2+0.5^2}=0.4444\),所以这个时刻的真实值是:\(0.4444*20+(1-0.4444)*24.6=22.56\)

最后总结一下,其实我们只需要什么呢?需要知道观测的误差是0.5,然后三个时间点的观测数据:[23,25,20],然后用kalman滤波器之后,就变成[23,24,6,22,56]。其实起到了一个平滑的作用。

python怎么实现呢?

from pykalman import KalmanFilter

def Kalman1D(observations,damping=1):

# To return the smoothed time series data

observation_covariance = damping

initial_value_guess = observations[0]

transition_matrix = 1

transition_covariance = 0.1

initial_value_guess

kf = KalmanFilter(

initial_state_mean=initial_value_guess,

initial_state_covariance=observation_covariance,

observation_covariance=observation_covariance,

transition_covariance=transition_covariance,

transition_matrices=transition_matrix

)

pred_state, state_cov = kf.smooth(observations)

return pred_state

这里面使用的是pykalman库中的KalmanFilter,因为上面讲解的Kalman Filter是简化的,绕靠了正统的解释的正态分布的知识,所以这里的卡尔曼滤波器的参数可能无法与上面给出的卡尔曼公式中一一对应,会产生一定的脱节。

这里讲一下参数:

initial_state_mean和initial_state_covariance:在上面的公式中,一开始的初始值,就是第一个观测值,但是在这个方法中,初始值并不是第一个观测值,而是由一个正态分布中随机采样出来的一个值,这个正太分布就是以initial_state_mean为均值,以initial_state_covariance为方差的;

observation_covariance这个可以相当于观测偏差;

transition_covariance这个就是预测偏差;

transition_matrices就是上面公式中的大写字母A,为1。

运行结果

从上面的那个函数中,可以看到transition_covariance是0.1,也就是预测偏差时0.1,所以假设观测偏差很小,那么可以想象,滤波器后的结果应该与观测值非常接近,这里选取观测偏差为0.001:

然后假设观测误差很大,那么可以想想,平滑的力度会很大,结果就是:

最后看一下在某次比赛中的利用kalman滤波器来平滑数据的前后对比图:

喜欢的话加个微信公众号支持一下吧~目前主要再整理针对机器学习算法岗位的面试可能遇到的知识点。

公众号回复【下载】有精选的免费机器学习学习资料。 公众号每天会更新一个机器学习、深度学习的小知识,都是面试官会问的知识点哦~

【机器学习的基础数学(PDF)】

【竞赛中的大数据处理流程(PDF)】

【如何做大数据的基础特征工程(PDF)】

【自然语言处理NLP的应用实践大合集(PDF)】

【python入门级教材(400页PDF)】

公众号每天会更新一个机器学习、深度学习的小知识,都是面试官会问的知识点哦~

卡尔曼滤波器python_特征工程:利用卡尔曼滤波器处理时间序列(快速入门+python实现)...相关推荐

  1. 教你如何快速入门python_如何快速入门python

    匿名用户 1级 2018-10-10 回答 Python入门到精通学习书籍推荐! 1.Python基础教程(第2版 修订版) <Python基础教程(第2版修订版)>包括Python程序设 ...

  2. R语言利用igraph和networkD3包快速入门做出炫酷的社交网络图等几类图。

    原来CDSN编辑器老出问题,图片各种显示不好(老文章依然是原来编辑器),又将本文整理了一遍地址. 1.igraph包绘制社交关系图(也有叫知识图谱的) 绘图的快速入门技巧是三步:1.看数据源和数据类型 ...

  3. 快速入门python_一天快速入门 Python

    Python 是由Guido Van Rossum在 90 年代早期设计,现在是最常用的编程语言之一.特别是人工智能的火热,再加之它的语法简洁且优美,实乃初学者入门AI必备的编程语言. 作者 | yu ...

  4. 金融分析师 python_量化金融分析师(AQF)|教你快速学会Python

    量化金融分析师(AQF)|教你快速学会Python Python是一个非常适合初学者入门的编程语言.相比较其他不少主流编程语言,有更好的可读性,因此上手相对容易.自带的各种模块加上丰富的第三方模块,免 ...

  5. 手把手教你用Python实现自动特征工程

    任何参与过机器学习比赛的人,都能深深体会特征工程在构建机器学习模型中的重要性,它决定了你在比赛排行榜中的位置. 特征工程具有强大的潜力,但是手动操作是个缓慢且艰巨的过程.Prateek Joshi,是 ...

  6. python特征工程插件_手把手教你用Python实现自动特征工程

    任何参与过机器学习比赛的人,都能深深体会特征工程在构建机器学习模型中的重要性,它决定了你在比赛排行榜中的位置. 特征工程具有强大的潜力,但是手动操作是个缓慢且艰巨的过程.Prateek Joshi,是 ...

  7. 特征工程自动化如何为机器学习带来重大变化

    随着技术的快速发展,在数据科学领域中,包括库.工具和算法等总会不断地变化的.然而,一直都有这么一个趋势,那就是自动化水平不断地提高. 近些年来,在模型的自动化选择和超参数调整方面取得了一些进展,但是机 ...

  8. 机器学习实战之特征工程

    机器学习实战与特征工程 1.机器学习概述 1.1 什么是机器学习 1.2 为什么要机器学习 1.3 机器学习应用场景 1.4 学习框架和资料的介绍 2.特征工程 2.1 特征工程介绍 2.1.1 数据 ...

  9. 如何利用CIC滤波器、CIC补偿滤波器和半带滤波器设计一个高频数字抽取滤波器

    设计了采样频率为640 MHz.过采样率为64的高频数字抽取滤波器.该数字抽取滤波器由CIC(Cascaded Integrator Comb)滤波器(降16倍).CIC补偿滤波器(降2倍)和半带滤波 ...

  10. ML之FE:基于BigMartSales数据集利用Featuretools工具(1个dataframe表结构切为2个Entity表结构)实现自动特征工程之详细攻略

    ML之FE:基于BigMartSales数据集利用Featuretools工具(1个dataframe表结构切为2个Entity表结构)实现自动特征工程之详细攻略 目录 基于BigMartSales数 ...

最新文章

  1. ckedit 文本编辑器
  2. WPF绘制光滑连续贝塞尔曲线
  3. 一种单独适配于NER的数据增强方法:DAGA
  4. java 调用 Oracle 存储过程
  5. java代码中出现乱码怎么解决?
  6. mysql 执行计划不对_MySQL执行计划显示与执行过程不符合
  7. SQL Server同实例下不同数据库表的同步(job实现)
  8. android studio for android learning (十三) 一个简单的图片查看器示例
  9. 怎么打开kux格式?如何把kux格式转换成mp4
  10. idea 中静态图片资源无法导入
  11. c语言程序设计工作任务,C语言程序设计任务驱动教程
  12. Win7系统的电脑还可以装win10吗
  13. 中国哪些云主机比较靠谱?
  14. volatile限定符
  15. 神经系统分类和组成图表,神经系统的组成概念图
  16. Jdbc系列八:批量处理
  17. The Pursuit of Happyness 当幸福来敲门(励志电影推荐)
  18. 编写程序,用户输入一个列表和2个整数作为下标,然后输出列表中介于2个下标之间的元素组成的子列表。考试题库7
  19. Display port
  20. VxWorks下 canOpen移植心得 stm32 - ppc

热门文章

  1. 智能客服搭建(4) - 语音流的分贝计算
  2. 计算机网络详细笔记【湖科大教书匠,内含B站链接】
  3. Scintilla的使用c++ build
  4. 百度影音盒插入论坛帖子自动播放代码及方法
  5. PCB板制造工艺讲解,动图揭秘PCB板生产流程
  6. PCB设计的工艺流程
  7. raw文件格式 Android,手机摄影知识讲堂:关于RAW格式的那些事
  8. 德清租房软件测试,门头沟实习生出租房
  9. JavaScript - 屏蔽鼠标右键菜单
  10. 2018 年寒假/春节,来蓝鲸玩吧!