周教授物联网开发 - 干货汇总!

一、为什么需要加上下拉电阻?

1.当485总线差分电压大于+200mV时,485收发器输出高电平;

2.当485总线差分电压小于-200mV时,485收发器输出低电平;

3.当485总线上的电压在-200mV~+200mV时,485收发器可能输出高电平也可能输出低电平。但一般总处于一种电平状态,若485收发器的输出低电平,这对于UART通信来说是一个起始位,此时通信会不正常。

当485总线处于开路(485收发器与总线断开)或者空闲状态(485收发器全部处于接收状态,总线没有收发器进行驱动)时,485总线的差分电压基本为0,此时总线就处于一个不确定的状态。同时由于目前485芯片为了提高总线上的节点数,输入阻抗设计的比较高,例如输入阻抗为1/4单位阻抗或者1/8单位阻抗(单位阻抗为12kΩ,1/4单位阻抗为48kΩ),在管脚悬空时容易受到电磁干扰。

因此为了防止485总线出现上述情况,通常在485总线上增加上下拉电阻(通常A接上拉电阻,B总线下拉电阻)。若使用隔离RS-485收发模块(例如RSM485PCHT),由于模块内部具有上下拉电阻(对于RSM485PCHT,内部上下拉电阻为24kΩ),因此在模块外部一般不需要增加上下拉电阻。

二、什么情况下需要加上下拉电阻?

当遇到信号反射问题时,通常会通过增加匹配电阻来避免信号反射,以1对1通信为例,如图1所示。由于485总线通常使用特性阻抗为120Ω的双绞线,因此在485总线的首尾两端增加120Ω终端电阻来避免信号反射问题。

图1:两个RSM485PCHT模块通信电路

根据RSM485PCHT的具体参数(如表1)可以得到如图2所示等效电路,其中RPU、RPD为模块内部在485总线上加的上下拉电阻,RIN为模块的输入阻抗。

表1 RSM485PCHT参数

图2:RSM485PCHT通信等效示意图

当两个模块都处于接收状态时,可以根据基尔霍夫电流定律对节点A和节点B列出下列公式:

根据上述公式可以计算AB之间的差分电压为:

此时模块已处于不确定状态,模块接收器可能输出为高电平,也可能输出为低电平,这时就需要在模块外部增加上下拉电阻保证模块在空闲时不处于不确定状态。

三、上下拉电阻如何取?

假设模块的输出电源电压V¬O相同,由于RGND接在一起,因此可以认为模块内部的上拉电阻是并联在一起的,为了方便解释,对图2的电路进行整理,如图3所示,在模块外部增加上下拉电阻可以选择只增加一组,也可以选择在每个模块都增加上下拉电阻,为了解释方便,我们在485总线上增加一组上下拉电阻。

图3 :RSM485PCHT通信等效电路图

其中:

RPU为模块内部上拉电阻,RPD为模块内部的下拉电阻,本例中为24kΩ;

RIN为模块接收器输入阻抗,本例取最小值为120kΩ;

RT为终端电阻,本例取120Ω;

RPU_EX为模块外部所加的上拉电阻,RPD_EX为模块外部所加的下拉电阻;

由于RSM485PCHT的门限电平为-200mV~+200mV,一般留有100mV或200mV的电压裕量,本例留有100mV的电压裕量,根据前面所推导的差分电压公式,可以得到下面计算公式:

由于RSM485PCHT在供电电压范围为4.75V~5.25V,取VO=4.75V(最低输入电压VCC=4.75V情况下),可得:

由RPU=24kΩ,可得RPU_EX=RPD_EX=461.9Ω,由于计算出的电阻值为最大值,因此可以选择在485总线上仅加一组410Ω或390Ω的上下拉电阻,或者加两组910Ω上下拉电阻。

四、如何验证上下拉电阻取值?

上述计算仅考虑了485总线空闲状态时不处于不确定状态,并没有考虑485收发器的驱动能力和所用元器件的功耗等问题。外部所加上下拉电阻越小,可以将485总线空闲状态差分电压保持的越高,但与此同时,终端电阻和上下拉电阻的功耗也越大,对485收发器的驱动能力要求也越高,当超过485收发器的驱动能力时,也会导致通信失败。

根据RS-485标准,当接收器的输入阻抗为单位阻抗时(最小为12k),总线上最多可以接32个节点,485的差分负载最大为54Ω,此时差分输出电压最小为1.5V。

图4 :485总线连接32个节点等效示意图

如图4所示,我们可以看到当485总线上接有32个节点时,总线A或B的共模负载为:

由此可见,对于RS-485的标准来说,A总线或B总线的最大共模负载为375Ω。

图5 :485总线增加终端电阻等效示意图

当增加终端电阻后,可以发现485总线的共模负载没有发生变化,但差模负载急剧减小,差模负载为:

因此当485总线的节点数达到最多以及增加终端电阻后,485总线的差模负载仍大于54Ω,根据RS-485的标准,差分输出电压最小为1.5V。

图6 :RSM485PCHT 64个节点等效示意图

以RSM485PCHT为例说明增加上下拉电阻的情况,如图6所示,总线A或B的共模负载为:

实际测试上述情况,驱动输出的最小差分电压3.02V,这个电压远大于RS-485标准规定的最小差分输出电压1.5V。

图7 :RSM485PCHT 64个节点增加终端电阻示意图

当在485总线上增加终端电阻时,可以看出总线A或B的共模负载并没有发生变化,而差分阻抗有了较大的变化,此时差模负载为:

计算出的差模负载要略大于RS-485标准规定的最大负载为54Ω,我们对RSM485PCHT进行实际测试,其输出差分电压1.58V,略大于标准规定的最小电压。

当差模负载为54Ω(485总线接两个120Ω终端电阻并且上拉电阻(下拉电阻)与收发器内阻的并联值为270Ω)时,RSM485PCHT的差分输出电压为1.52V(实测值),基本和RS-485标准相同。当差模负载为41.54Ω(485总线接两个120Ω终端电阻并且上拉电阻(下拉电阻)与收发器内阻的并联值为135Ω)时,RSM485PCHT的差分输出电压在1.17V左右(实测值),在这种情况下可以通信。但485收发芯片手册中规定的最大差模负载通常为54Ω,即在485总线上增加两个120Ω后,上拉电阻(下拉电阻)与收发器输入阻抗的并联值应大于270Ω。同时为了保证稳定可靠通信,一般485总线的上拉电阻(下拉电阻)与收发器输入阻抗的并联值应大于375Ω。

五、总结

1.通信线应选用屏蔽双绞线,屏蔽层应单点接大地;

2.当我们没有遇到信号反射问题时,尽量不要使用终端电阻;

3.如果使用终端电阻,我们可以通过上下拉电阻调节485总线在空闲状态的电压值,保证不处于门限电平(-200mV~+200mV或-200mV~-40mV)范围内;

4.当我们增加上下拉电阻时,上拉电阻(下拉电阻)与收发器输入阻抗的并联值应大于375Ω。

原文来自: ZLG立功科技一致远电子

rs485接口上下拉_RS-485总线为什么要加上拉下拉电阻?如何选择RS485的上下拉电阻?...相关推荐

  1. rs485接口上下拉_RS485接口EMC电路设计方案

    一.原理图1.  RS485接口6KV防雷电路设计方案 图1  RS485接口防雷电路接口电路设计概述:RS485用于设备与计算机或其它设备之间通讯,在产品应用中其走线多与电源.功率信号等混合在一起, ...

  2. rs485如何使用_12个经典问答:带你全面了解RS485接口知识

    RS485接口组成的半双工网络,一般是两线制,多采用屏蔽双绞线传输,这种接线方式为总线式拓扑结构在同一总线上最多可以挂接32个结点.我们知道,最初数据是模拟信号输出简单过程量,后来仪表接口是RS232 ...

  3. 差分线传输的两台设备需要共地吗?RS485接口为什么要接地

    误区一 认为差分信号不需要地平面作为回流路径,或者认为差分走线彼此为对方提供回流途径.造成这种误区的原因是被表面现象迷惑,或者对高速信号传输的机理认识还不够深入.差分电路对于类似地弹以及其它可能存在于 ...

  4. RS232和RS485接口的问答

    什么是RS-232-C接口?采用RS-232-C接口有何特点?传输电缆长度如何考虑? 答: 计算机与计算机或计算机与终端之间的数据传送可以采用串行通讯和并行通讯二种方式.由于串行通讯方式具有使用线路少 ...

  5. RS485接口(1)

    目前,rs485接口定义在当代的应用可谓是越来越广泛,rs485接口定义是值得我们好好学习的,现在我们就深入了解rs485接口定义. rs485接口定义 智能仪表是随着80年代初单片机技术的成熟而发展 ...

  6. rs485接口上下拉_详解RS-485上下拉电阻的选择

    RS-485总线广泛应用于通信.工业自动化等领域,在实际应中,通常会遇到是否需要加上下拉电阻以及加多大的电阻合适的问题,下面我们将对这些问题进行详细的分析. 为什么需要加上下拉电阻? 根据RS-485 ...

  7. rs485接口上下拉_关于RS485上拉下拉电阻的说明

    关于 RS485 上拉下拉电阻的说明 一.上拉下拉电阻作用: 接电阻就是为了防止输入端悬空 减弱外部电流对芯片产生的干扰 保护 cmos 内的保护二极管 , 一般电流不大于 10mA 上拉和下拉.限流 ...

  8. rs485接口上下拉_RS-485上拉电阻下拉电阻

    RS - 485 上拉电阻下拉电阻 A :如下图的两个 Bias Resaitor 电阻就是上拉电阻和下拉电阻.图中,上部的 一个 Bias Resaitor 电阻因为是接地,因而叫做下拉电阻,意思是 ...

  9. 简记_硬件工程师解读RS-422/RS-485接口

    目录 1. RS-485的关键技术特征 2. 应用场合 3. 标准 4. 使用差分信号传输的优点 5. RS-422与RS-485的共同点及差异 5.1 总线架构差异 5.2 共模电压范围差异 5.3 ...

最新文章

  1. Linux 下安装cnpm淘宝镜像命令npm
  2. 计算机组成原理重要知识,计算机组成原理重要知识点解析
  3. oracle 10g视频教程
  4. mysql秒级平滑_DDM实践:数据库秒级平滑扩容方案
  5. android hide方法 末班,android 如何引用@hide(隐藏)的类,方法和常量?
  6. 为对象分配内存TLAB
  7. mysql-外键-随堂
  8. 【ENVI二次开发】关于批处理(Batch)模式与ENVI_DOIT的使用
  9. 实例对象的索引的方法
  10. opencv复杂变换cvPyrDown [6]
  11. UI设计超干货素材!小图标里的大学问!
  12. 数学建模 图论最短路径问题
  13. csv去重 python_python去重函数是什么
  14. 计算机系统结构 网易云课堂,网易大布局教育事业:网易公开课、网易云课堂和MOOC分析...
  15. 【整理】PYTHON代码审查工具
  16. stardic字典文件
  17. 高三计算机教学计划,精选高三教学计划三篇
  18. 五星大饭店完整剧情,五星大饭店(完整集数)在线观看
  19. 计算机与交换机基础配置入门,新手入门篇:交换机配置窍门深入学习 -电脑资料...
  20. 芯准TSN系统的测试与验证(1)——测试环境配置

热门文章

  1. idr帧 i帧 p帧_GOP、IDR帧、I帧周期的关系
  2. matlab 图像处理 histogram shifting 基于直方图平移的信息隐藏
  3. 【渝粤教育】国家开放大学2019年春季 0553-22T色彩 参考试题
  4. python代码设计测试用例_《带你装B,带你飞》pytest成神之路2- 执行用例规则和pycharm运行的三种姿态...
  5. 京东云主机挂载云硬盘、分区、格式化
  6. 报错:Unable to check if JNs are ready for formatting
  7. 带你认识SSD的SATA、mSATA 、PCIe和M.2四种主流接口。联想g31t-lm2主板接线图
  8. PAT 1058 选择题 python
  9. Vue中:error ‘XXXXX‘ is not defined no-undef解决办法
  10. eclipse neno中tomcat配置servers locations地址的文件