1.数据索引结构

一个数据库在最基础的层次上需要完成两件事情:当你把数据交给数据库时,它应当把数据存储起来;而后当你向数据库要数据时,它应当把数据返回给你。世界上最简单的数据库可以用两个Bash函数实现:

#!/bin/bash
db_set () {echo "$1,$2" >> database
}db_get () {grep "^$1," database | sed -e "s/^$1,//" | tail -n 1
}这两个函数实现了键值存储的功能。执行 db_set key value ,会将 键(key)和值(value) 存储在数据库中:
$ db_set 123456 '{"name":"London","attractions":["Big Ben","London Eye"]}' $ $ db_set 42 '{"name":"San Francisco","attractions":["Golden Gate Bridge"]}'$ db_get 42
{"name":"San Francisco","attractions":["Golden Gate Bridge"]}

底层的存储格式非常简单:一个文本文件,每行包含一条逗号分隔的键值对(忽略转义问题的话,大致与CSV文件类似)。每次对 db_set 的调用都会向文件末尾追加记录,所以更新键的时候旧版本的值不会被覆盖 —— 因而查找最新值的时候,需要找到文件中键最后一次出现的位置(因此 db_get 中使用了 tail -n 1 。)

如果这个数据库中有着大量记录,则这个db_get 函数的性能会非常糟糕。每次你想查找一个键时,db_get 必须从头到尾扫描整个数据库文件来查找键的出现。用算法的语言来说,查找的开销是 O(n) :如果数据库记录数量 n 翻了一倍,查找时间也要翻一倍。

为了高效查找数据库中特定键的值,我们需要一个数据结构:索引(index)。索引背后的大致思想是,保存一些额外的元数据作为路标,帮助你找到想要的数据。

索引是从主数据衍生的附加(additional)结构。许多数据库允许添加与删除索引,这不会影响数据的内容,它只影响查询的性能。维护额外的结构会产生开销,特别是在写入时。写入性能很难超过简单地追加写入文件,因为追加写入是最简单的写入操作。任何类型的索引通常都会减慢写入速度,因为每次写入数据时都需要更新索引。

这是存储系统中一个重要的权衡:精心选择的索引加快了读查询的速度,但是每个索引都会拖慢写入速度。因为这个原因,数据库默认并不会索引所有的内容,而需要你(程序员或DBA)通过对应用查询模式的了解来手动选择索引。你可以选择能为应用带来最大收益,同时又不会引入超出必要开销的索引。

1.1.哈希

键值存储与在大多数编程语言中可以找到的字典(dictionary)类型非常相似,通常字典都是用散列映射(hash map)(或哈希表(hash table))实现的。
既然我们已经有内存中数据结构 —— 哈希映射,为什么不使用它来索引在磁盘上的数据呢?
假设我们的数据存储只是一个追加写入的文件,就像前面的例子一样。那么最简单的索引策略就是:保留一个内存中的哈希映射,其中每个键都映射到一个数据文件中的字节偏移量,指明了可以找到对应值的位置:


我们只是追加写入一个文件 —— 所以如何避免最终用完磁盘空间?一种好的解决方案是,将日志分为特定大小的段,当日志增长到特定尺寸时关闭当前段文件,并开始写入一个新的段文件。然后,我们就可以对这些段进行压缩(compaction),压缩意味着在日志中丢弃重复的键,只保留每个键的最近更新。

每个段现在都有自己的内存散列表,将键映射到文件偏移量。为了找到一个键的值,我们首先检查最近段的哈希映射;如果键不存在,我们检查第二个最近的段,依此类推。合并过程保持细分的数量,所以查找不需要检查许多哈希映射。

哈希表索引的优点是对于单个KV的直接查询速度快,但是也有缺点:

  • 散列表必须能放进内存
  • 范围查询效率不高

1.2.SSTable及LSM树

使用哈希表来存储文件时无法按键值对的顺序排列,键值对的序列按键排序的格式称为排序字符串表(Sorted String Table),简称SSTable。在磁盘上维护有序结构是可能的,但在内存保存则要容易得多。有许多可以使用的众所周知的树形数据结构,例如红黑树或AVL树。使用这些数据结构,您可以按任何顺序插入键,并按排序顺序读取它们:

  • 写入时,将其添加到内存中的平衡树数据结构(例如,红黑树)。这个内存树有时被称为内存表(memtable)。
  • 当内存表大于某个阈值(通常为几兆字节)时,将其作为SSTable文件写入磁盘。这可以高效地完成,因为树已经维护了按键排序的键值对。新的SSTable文件成为数据库的最新部分。当SSTable被写入磁盘时,写入可以继续到一个新的内存表实例。
  • 为了提供读取请求,首先尝试在内存表中找到关键字,然后在最近的磁盘段中,然后在下一个较旧的段中找到该关键字。
  • 有时会在后台运行合并和压缩过程以组合段文件并丢弃覆盖或删除的值。

这个方案效果很好。它只会遇到一个问题:如果数据库崩溃,则最近的写入(在内存表中,但尚未写入磁盘)将丢失。为了避免这个问题,我们可以在磁盘上保存一个单独的日志,每个写入都会立即被附加到磁盘上,就像在前一节中一样。该日志不是按排序顺序,但这并不重要,因为它的唯一目的是在崩溃后恢复内存表。每当内存表写出到SSTable时,相应的日志都可以被丢弃。

这里描述的算法本质上是LevelDB 和RocksDB 中使用的关键值存储引擎库,被设计嵌入到其他应用程序中。在日志结构合并树(或LSM树)的基础上,建立在以前的工作上日志结构的文件系统。基于这种合并和压缩排序文件原理的存储引擎通常被称为LSM存储引擎。

Lucene是Elasticsearch和Solr使用的一种全文搜索的索引引擎,它使用类似的方法来存储它的词典。全文索引比键值索引复杂得多,但是基于类似的想法:在搜索查询中给出一个单词,找到提及单词的所有文档(网页,产品描述等)。这是通过键值结构实现的,其中键是单词(关键词(term)),值是包含单词(文章列表)的所有文档的ID的列表。在Lucene中,从术语到发布列表的这种映射保存在SSTable类的有序文件中,根据需要在后台合并。

1.3.B树

像SSTables一样,B树保持按键排序的键值对,这允许高效的键值查找和范围查询。但这就是相似之处的结尾:B树有着非常不同的设计理念。
我们前面看到的日志结构索引将数据库分解为可变大小的段,通常是几兆字节或更大的大小,并且总是按顺序编写段。相比之下,B树将数据库分解成固定大小的块或页面,传统上大小为4KB(有时会更大),并且一次只能读取或写入一个页面。这种设计更接近于底层硬件,因为磁盘也被安排在固定大小的块中。
每个页面都可以使用地址或位置来标识,这允许一个页面引用另一个页面 —— 类似于指针,但在磁盘而不是在内存中。我们可以使用这些页面引用来构建一个页面树:

例如在MySQL中,一次读取16KB的页中的B+树节点到内存中,而B+树中的节点也存储在页中。

1.3.1.相关操作原理

在B树的一个页面中对子页面的引用的数量称为分支因子 。在实践中,分支因子取决于存储页面参考和范围边界所需的空间量,但通常是几百个。

  • 搜索
    一个页面会被指定为B树的根;在索引中查找一个键时,就从这里开始。该页面包含几个键和对子页面的引用。每个子页面负责一段连续范围的键,引用之间的键,指明了引用子页面的键范围。

  • 更新
    如果要更新B树中现有键的值,则搜索包含该键的叶页,更改该页中的值,并将该页写回到磁盘(对该页的任何引用保持有效)

  • 新增
    需要找到其范围包含新键的页面,并将其添加到该页面。如果页面中没有足够的可用空间容纳新键,则将其分成两个半满页面,并更新父页面以解释键范围的新分区

  • 删除
    删除一个键(同时保持树平衡)就会牵扯很多其他东西,所以一般的做法(如InnoDB引擎)会将删除的键设置为删除标志,只进行逻辑删除。

1.3.2.预写日志

一些操作需要覆盖几个不同的页面。例如,如果因为插入导致页面过度而拆分页面,则需要编写已拆分的两个页面,并覆盖其父页面以更新对两个子页面的引用。这是一个危险的操作,因为如果数据库在仅有一些页面被写入后崩溃,那么最终将导致一个损坏的索引。

为了使数据库对崩溃具有韧性,B树实现通常会带有一个额外的磁盘数据结构:预写式日志(WAL, write-ahead-log)(也称为重做日志(redo log))。这是一个仅追加的文件,每个B树修改都可以应用到树本身的页面上。当数据库在崩溃后恢复时,这个日志被用来使B树恢复到一致的状态。

1.4.LSM对比B树

通常LSM树的写入速度更快,而B树的读取速度更快。 LSM树上的读取通常比较慢,因为它们必须在压缩的不同阶段检查几个不同的数据结构和SSTables。

  • B树以“数据页”为单位来对数据进行写入。B树索引必须至少两次写入每一段数据:一次写入预写日志,一次写入树页面本身(也许再次分页)。即使在该页面中只有几个字节发生了变化,也需要一次编写整个页面的开销。
  • LSM树通常能够比B树支持更高的写入吞吐量,部分原因是它们有时具有较低的写放大。因为它们顺序地写入紧凑的SSTable文件而不是必须覆盖树中的几个页面,顺序写入比随机写入快得多。
  • LSM树可以被压缩得更好,因此经常比B树在磁盘上产生更小的文件。 B树存储引擎会由于分割而留下一些未使用的磁盘空间:当页面被拆分或某行不能放入现有页面时,页面中的某些空间仍未被使用。由于LSM树不是面向页面的,并且定期重写SSTables以去除碎片,所以它们具有较低的存储开销。
  • 日志结构存储的缺点是压缩过程有时会干扰正在进行的读写操作。

2.OLTP及OLAP

在业务数据处理的早期,对数据库的写入通常对应于正在进行的商业交易:进行销售,向供应商下订单,支付员工工资等等。现在数据库开始被用于许多不同类型的博客文章,游戏中的动作,地址簿中的联系人等等,基本访问模式仍然类似于处理业务事务。应用程序通常使用索引通过某个键查找少量记录。根据用户的输入插入或更新记录。由于这些应用程序是交互式的,因此访问模式被称为 在线事务处理(OLTP, OnLine Transaction Processing) 。

但是,数据库也开始越来越多地用于数据分析,这些数据分析具有非常不同的访问模式。通常,分析查询需要扫描大量记录,每个记录只读取几列,并计算汇总统计信息(如计数,总和或平均值),而不是将原始数据返回给用户。这些查询通常由业务分析师编写,并提供给帮助公司管理层做出更好决策(商业智能)的报告。为了区分这种使用数据库的事务处理模式,它被称为在线分析处理(OLAP, OnLine Analytice Processing)。

比较OLTP及OLAP:

2.1.数据仓库

起初,相同的数据库用于事务处理和分析查询。 SQL在这方面证明是非常灵活的:对于OLTP类型的查询以及OLAP类型的查询来说效果很好。尽管如此,在二十世纪八十年代末和九十年代初期,公司有停止使用OLTP系统进行分析的趋势,而是在单独的数据库上运行分析。这个单独的数据库被称为数据仓库(data warehouse)。
一个企业可能有几十个不同的交易处理系统:面向终端客户的网站,控制实体商店的收银系统,跟踪仓库库存,规划车辆路线,供应链管理,员工管理等。这些系统中每一个都很复杂,需要专人维护,所以系统最终都是自动运行的。
这些OLTP系统往往对业务运作至关重要,因而通常会要求 高可用 与 低延迟。所以DBA会密切关注他们的OLTP数据库,他们通常不愿意让业务分析人员在OLTP数据库上运行临时分析查询,因为这些查询通常开销巨大,会扫描大部分数据集,这会损害同时执行的事务的性能。
相比之下,数据仓库是一个独立的数据库,分析人员可以查询他们想要的内容而不影响OLTP操作【48】。数据仓库包含公司各种OLTP系统中所有的只读数据副本。从OLTP数据库中提取数据(使用定期的数据转储或连续的更新流),转换成适合分析的模式,清理并加载到数据仓库中。将数据存入仓库的过程称为“抽取-转换-加载(ETL)。

2.2.OLTP数据库与数据仓库分歧

数据仓库的数据模型通常是关系型的,因为SQL通常很适合分析查询。有许多图形数据分析工具可以生成SQL查询,可视化结果,并允许分析人员探索数据(通过下钻,切片和切块等操作)。
表面上,一个数据仓库和一个关系OLTP数据库看起来很相似,因为它们都有一个SQL查询接口。然而,系统的内部看起来可能完全不同,因为它们针对非常不同的查询模式进行了优化。

2.3.事实表和纬度表

示例模式显示了可能在食品零售商处找到的数据仓库。在模式的中心是一个所谓的事实表(在这个例子中,它被称为 fact_sales)。事实表的每一行代表在特定时间发生的事件(这里,每一行代表客户购买的产品)。如果我们分析的是网站流量而不是零售量,则每行可能代表一个用户的页面浏览量或点击量。


通常情况下,事实被视为单独的事件,因为这样可以在以后分析中获得最大的灵活性。但是,这意味着事实表可以变得非常大。像苹果,沃尔玛或eBay这样的大企业在其数据仓库中可能有几十PB的交易历史,其中大部分实际上是事实表。

事实表中的一些列是属性,例如产品销售的价格和从供应商那里购买的成本(允许计算利润余额)。事实表中的其他列是对其他表(称为维表)的外键引用。由于事实表中的每一行都表示一个事件,因此这些维度代表事件的发生地点,时间,方式和原因。
dim_product 表中的每一行代表一种待售产品,包括库存单位(SKU),说明,品牌名称,类别,脂肪含量,包装尺寸等。fact_sales 表中的每一行都使用外部表明在特定交易中销售了哪些产品。

在典型的数据仓库中,表格通常非常宽泛:事实表格通常有100列以上,有时甚至有数百列。维度表也可以是非常宽的,因为它们包括可能与分析相关的所有元数据——例如,dim_store 表可以包括在每个商店提供哪些服务的细节,它是否具有店内面包房,方形镜头,商店第一次开幕的日期,最后一次改造的时间,离最近的高速公路的距离等等。

2.4.列存储

如果事实表中有万亿行和数PB的数据,那么高效地存储和查询它们就成为一个具有挑战性的问题。维度表通常要小得多(数百万行),所以在本节中我们将主要关注事实的存储。

尽管事实表通常超过100列,但典型的数据仓库查询一次只能访问4个或5个查询( “ SELECT * ” 查询很少用于分析)它访问了大量的行(在2013日历年中每次都有人购买水果或糖果),但只需访问fact_sales表的三列:date_key, product_sk, quantity。查询忽略所有其他列:

SELECTdim_date.weekday,dim_product.category,SUM(fact_sales.quantity) AS quantity_sold
FROM fact_salesJOIN dim_date ON fact_sales.date_key = dim_date.date_keyJOIN dim_product ON fact_sales.product_sk = dim_product.product_sk
WHEREdim_date.year = 2013 ANDdim_product.category IN ('Fresh fruit', 'Candy')
GROUP BYdim_date.weekday, dim_product.category;

在大多数OLTP数据库中,存储都是以面向行的方式进行布局的:表格的一行中的所有值都相邻存储。文档数据库是相似的:整个文档通常存储为一个连续的字节序列。

为了处理这样的查询,可能在 fact_sales.date_key, fact_sales.product_sk上有索引,它们告诉存储引擎在哪里查找特定日期或特定产品的所有销售情况。但是,面向行的存储引擎仍然需要将所有这些行(每个包含超过100个属性)从磁盘加载到内存中,解析它们,并过滤掉那些不符合要求的条件。这可能需要很长时间。

面向列的存储背后的想法很简单:不要将所有来自一行的值存储在一起,而是将来自每一列的所有值存储在一起。如果每个列存储在一个单独的文件中,查询只需要读取和解析查询中使用的那些列,这可以节省大量的工作和内存。

面向列的存储布局依赖于包含相同顺序行的每个列文件。 因此,如果您需要重新组装整行,您可以从每个单独的列文件中获取第23项,并将它们放在一起形成表的第23行。

3.小结

存储引擎分为两大类:优化 事务处理(OLTP) 或 在线分析(OLAP) 。这些用例的访问模式之间有很大的区别:

  • OLTP系统通常面向用户,这意味着系统可能会收到大量的请求。为了处理负载,应用程序通常只访问每个查询中的少部分记录。应用程序使用某种键来请求记录,存储引擎使用索引来查找所请求的键的数据。磁盘寻道时间往往是这里的瓶颈。
  • 数据仓库和类似的分析系统会低调一些,因为它们主要由业务分析人员使用,而不是由最终用户使用。它们的查询量要比OLTP系统少得多,但通常每个查询开销高昂,需要在短时间内扫描数百万条记录。磁盘带宽(而不是查找时间)往往是瓶颈,列式存储是这种工作负载越来越流行的解决方案。

在OLTP方面,我们能看到两派主流的存储引擎:
日志结构学派
只允许附加到文件和删除过时的文件,但不会更新已经写入的文件。 Bitcask,SSTables,LSM树,LevelDB,Cassandra,HBase,Lucene等都属于这个类别。
就地更新学派
将磁盘视为一组可以覆写的固定大小的页面。 B树是这种哲学的典范,用在所有主要的关系数据库中和许多非关系型数据库。
日志结构的存储引擎是相对较新的发展。他们的主要想法是,他们系统地将随机访问写入顺序写入磁盘,由于硬盘驱动器和固态硬盘的性能特点,可以实现更高的写入吞吐量。在完成OLTP方面,我们通过一些更复杂的索引结构和为保留所有数据而优化的数据库做了一个简短的介绍。

数据密集型系统设计:索引及存储(B树、LSM树、OLTP及OLAP)相关推荐

  1. 数据密集型系统设计:可靠性、可拓展性及可维护性

    1.数据密集型应用 现今很多应用程序都是 数据密集型(data-intensive) 的,而非 计算密集型(compute-intensive) 的.因此CPU很少成为这类应用的瓶颈,更大的问题通常来 ...

  2. 设计数据密集型应用 第三章:存储与检索

    3. 第三章:存储与检索 建立秩序,省却搜索 --德国谚语 文章目录 3. 第三章:存储与检索 驱动数据库的数据结构 哈希索引 SSTables和LSM树 构建和维护SSTables 用SSTable ...

  3. 3层b+树索引访问磁盘次数_从B+树到LSM树,及LSM树在HBase中的应用

    点击上方蓝色字体,选择"设为星标" 回复"资源"获取更多资源 大数据技术与架构点击右侧关注,大数据开发领域最强公众号! 暴走大数据点击右侧关注,暴走大数据! 前 ...

  4. 最容易理解的LSM树--以示例讲解合并查找过程

    关于LSM树 LSM树,即日志结构合并树(Log-Structured Merge-Tree).其实它并不属于一个具体的数据结构,它更多是一种数据结构的设计思想.大多NoSQL数据库核心思想都是基于L ...

  5. 从B+树到LSM树,及LSM树在HBase中的应用

    前言 在有代表性的关系型数据库如MySQL.SQL Server.Oracle中,数据存储与索引的基本结构就是我们耳熟能详的B树和B+树.而在一些主流的NoSQL数据库如HBase.Cassandra ...

  6. 数据库关于B树、B+树、LSM树的简介

    B树 在计算机科学中,B树(英语:B-tree)是一种自平衡的树,能够保持数据有序.这种数据结构能够让查找数据.顺序访问.插入数据及删除的动作,都在对数时间内完成.B树,概括来说是一个一般化的二叉查找 ...

  7. LSM树 与B+树比较

    现在假设有 1000 个节点的key.对于磁盘,一定是将这1000个节点依次写入磁盘的速度最快.但是这样读很糟糕,因为key在磁盘中完全乱了,每次读都得扫描. 那么,为了使读取性能尽可能高,磁盘中的数 ...

  8. B+树 VS LSM树

    目录 B+树 LSM树 比较 总结 B+树 简介:为了改善数据访问特性,文件系统或数据库系统通常会对数据排序后存储,加快数据检索速度.传统关系数据库的做法是使用B+树,保证数据在不断更新.插入.删除后 ...

  9. LSM树(日志结构合并树)总结-java版

    目录 为什么要有LSM树 数据库存储引擎索引的底层结构 BTree的随机写特点 LSM树的诞生背景 简介 LSM树与B树的差异 LSM树优化 LSM树基本原理 LevelDB中的LSM HBase中的 ...

最新文章

  1. sonarqube使用教程
  2. Servlet学习-request
  3. myeclipse导入maven工程
  4. 95-50-030-java.nio.channels-NIO-NIO之拥抱Path和Files
  5. Pyhton注释符号使用方法及规范
  6. 程序员面试金典——3.6双栈排序
  7. 86相似标准形07——若尔当(Jordan)标准形
  8. 目标检测、语义分割性能指标
  9. win10分辨率不能调整_win10常规问题解决方案
  10. Atlas:Ubuntu18.04使用过程中空间爆满的处理(.cache)
  11. 统计相关国际期刊汇总
  12. RationalDMIS 2020 最大位置度误差
  13. obsidian vim模式切换输入法
  14. boox android 4.4,纷极阅读app
  15. 最新系统漏洞--Siemens Jt2go和Teamcenter Visualization越界写入漏洞
  16. VSCode 配置Java环境
  17. 基于MFC的通讯录管理系统设计与实现
  18. cesium实现二三维分屏地图同步效果
  19. 机械复试面试问题汇总 4
  20. Dirac 测度 (Dirac measure)

热门文章

  1. 阿里云ECS服务器搭建Mysql数据库
  2. 什么是 .com 域名?含义和用途又是什么?
  3. jetson nano开发使用的基础详细分享
  4. python生成模拟微信气泡图片
  5. 端云协同,打造更易用的AI计算平台
  6. SCU 4438 Censo (字符串hash)
  7. 牛客 20859 兔子的名字
  8. 腾讯课堂电脑版麦克风怎么打开
  9. 刷脸开门上班取外卖等都会无处不在
  10. C盘各个文件的简单介绍