ActivityManager在操作系统中有重要的作用,本文利用操作系统源码,逐步理清ActivityManager的框架,并从静态类结构图和动态序列图两个角度分别进行剖析,从而帮助开发人员加强对系统框架及进程通信机制的理解。

ActivityManager的作用

参照SDK的说明,可见ActivityManager的功能是与系统中所有运行着的Activity交互提供了接口,主要的接口围绕着运行中的进程信息,任务信息,服务信息等。比如函数getRunningServices()的源码是:

public List<RunningServiceInfo> getRunningServices(int maxNum)

throws SecurityException {

try {

return (List<RunningServiceInfo>)ActivityManagerNative.getDefault()

.getServices(maxNum, 0);

} catch (RemoteException e) {

// System dead, we will be dead too soon!

return null;

}

}

从中可以看到,ActivityManager的大多数功能都是调用了ActivityManagerNative类接口来完成的,因此,我们寻迹来看ActivityManagerNative的代码,并以此揭示ActivityManager的整体框架。

ActivityManager的静态类图

通过源吗,可以发现ActivityManagerNative类的继承关系如下:

public abstract class ActivityManagerNative extends Binder implements IActivityManager

继承自Binder类,同时实现了IActivityManager接口。

同样的,我们继续沿Binder和IActivityManager上溯,整理出如下图所示的类结构图。

在这张图中,绿色的部分是在SDK中开放给应用程序开发人员的接口,蓝色的部分是一个典型的Proxy模式,红色的部分是底层的服务实现,是真正的动作执行者。这里的一个核心思想是Proxy模式,我们接下来对此模式加以介绍。

Proxy模式

Proxy模式,也称代理模式,是经典设计模式中的一种结构型模式,其定义是为其他对象提供一种代理以控制对这个对象的访问,简单的说就是在访问和被访问对象中间加上的一个间接层,以隔离访问者和被访问者的实现细节。

结合上面的类结构图,其中ActivityManager是一个客户端,为了隔离它与ActivityManagerService,有效降低甚至消除二者的耦合度,在这中间使用了ActivityManagerProxy代理类,所有对ActivityManagerService的访问都转换成对代理类的访问,这样ActivityManager就与ActivityManagerService解耦了。这就是代理模式的典型应用场景。

为了让代理类与被代理类保持一致的接口,从而实现更加灵活的类结构,或者说完美的屏蔽实现细节,通常的作法是让代理类与被代理类实现一个公共的接口,这样对调用者来说,无法知道被调用的是代理类还是直接是被代理类,因为二者的接口是相同的。

这个思路在上面的类结构图里也有落实,IActivityManager接口类就是起的这个作用。

以上就是代理模式的思路,有时我们也称代理类为本地代理(Local Proxy),被代理类为远端代理(Remote Proxy)。

本地代理与远端代理的Binder

我们再来看一下Binder类的作用,Binder的含义可能译为粘合剂更为贴切,即将两侧的东西粘贴起来。在操作系统中,Binder的一大作用就是连接本地代理和远端代理。Binder中最重要的一个函数是:

public final boolean transact(int code, Parcel data, Parcel reply,

int flags) throws RemoteException {

……

boolean r = onTransact(code, data, reply, flags);

if (reply != null) {

reply.setDataPosition(0);

}

return r;

}

它的作用就在于通过code来表示请求的命令标识,通过data和reply进行数据传递,只要远端代理能实现onTransact()函数,即可做出正确的动作,远端的执行接口被完全屏蔽了。

当然,Binder的实现还是很复杂的,不仅是类型转换,还要透过Binder驱动进入KERNEL层来完成进程通信,这些内容不在本文的范围之内,故此处不再深入解析相应的机制。此处我们只要知道Binder的transact()函数实现就可以了。

到此为止,我们对ActivityManager的静态类结构就分析完了,但这还不足以搞清在系统运行中的调用过程,因此,我们以下图的序列图为基础,结合源码探索一下ActivityManager运行时的机制。

动态序列图

我们以ActivityManager的getRunningServices()函数为例,对上述序列图进行解析。

public List<RunningServiceInfo> getRunningServices(int maxNum)

throws SecurityException {

try {

return (List<RunningServiceInfo>)ActivityManagerNative.getDefault()

.getServices(maxNum, 0);

} catch (RemoteException e) {

// System dead, we will be dead too soon!

return null;

}

}

可以看到,调用被委托到了ActivatyManagerNative.getDefault()。

static public IActivityManager asInterface(IBinder obj)

{

……

return new ActivityManagerProxy(obj);

}

static public IActivityManager getDefault()

{

……

IBinder b = ServiceManager.getService("activity");

gDefault = asInterface(b);

return gDefault;

}

从上述简化后的源码可以看到,getDefault()函数返回的是一个ActivityManagerProxy对象的引用,也就是说,ActivityManager得到了一个本地代理。

因为在IActivityManager接口中已经定义了getServices()函数,所以我们来看这个本地代理对该函数的实现。

public List getServices(int maxNum, int flags) throws RemoteException {

Parcel data = Parcel.obtain();

Parcel reply = Parcel.obtain();

……

mRemote.transact(GET_SERVICES_TRANSACTION, data, reply, 0);

……

}

从这个代码版段我们看到,调用远端代理的transact()函数,而这个mRemote就是ActivityManagerNative的Binder接口。

接下来我们看一下ActivityManagerNative的代码,因为该类是继承于Binder类的,所以transact的机制此前我们已经展示了代码,对于该类而言,重要的是对onTransact()函数的实现。

public boolean onTransact(int code, Parcel data, Parcel reply, int flags)

throws RemoteException {

switch (code) {

case GET_SERVICES_TRANSACTION: {

……

List list = getServices(maxNum, fl);

……

return true;

}

……

}

return super.onTransact(code, data, reply, flags);

}

在onTrasact()函数内,虽然代码特别多,但就是一个switch语句,根据不同的code命令进行不同的处理,比如对于GET_SERVICES_TRANSACTION命令,只是调用了getServices()函数。而该函数的实现是在ActivityManagerService类中,它是ActivityManagerNative的子类,对于该函数的实现细节,不在本文中详细分析。

Activity启动

在经过前文的学习以后,我们一起来整理一下Activity的启动机制。就从Activity的startActivity()函数开始吧。

startActivity()函数调用了startActivityForResult()函数,该函数有源码如下:

public void startActivityForResult(Intent intent, int requestCode) {

……

Instrumentation.ActivityResult ar =

mInstrumentation.execStartActivity(

this, mMainThread.getApplicationThread(), mToken, this,

intent, requestCode);

……

}

可见,功能被委托给Instrumentation对象来执行了。这个类的功能是辅助Activity的监控和测试,在此我们不详细描述,我们来看它的execStartActivity()函数。

public ActivityResult execStartActivity(

Context who, IBinder contextThread, IBinder token, Activity target,

Intent intent, int requestCode) {

……

try {

int result = ActivityManagerNative.getDefault()

.startActivity(whoThread, intent,

intent.resolveTypeIfNeeded(who.getContentResolver()),

null, 0, token, target != null ? target.mEmbeddedID : null,

requestCode, false, false);

checkStartActivityResult(result, intent);

} catch (RemoteException e) {

}

return null;

}

在这个函数里,我们看到了前文熟悉的ActivityManagerNative.getDefault(),没错,利用了ActivityManagerService。通过前文的线索,利用Proxy模式,我们可以透过ActivityManagerProxy,通过Binder的transact机制,找到真正的动作执行者,即ActivityManagerService类的startActivity()函数,并沿此线索继续追踪源码,在startActivityLocked()函数里边看到了mWindowManager.setAppStartingWindow的语句调用,mWindowManager是WindowManagerService对象,用于负责界面上的具体窗口调试。

通过这样的源码追踪,我们了解到了Activity启动的底层实现机制,也加深了对Proxy模式和Binder机制的理解。从而为学习其他框架打下了基础。

总结

本文从静态类结构和动态类结构两个角度分析了ActivityManager的框架,兼顾了Binder机制和代理模式在进程间通信的机理,对帮助开发人员深化操作系统的结构和框架具有一定的指导作用。

ActivityManager的作用相关推荐

  1. Android之ActivityManager与Proxy模式的运用

    二 Android中ActivityManager 从官方文档的介绍可以看到ActivityManager的作用: 是与系统所有正在运行着的Acitivity进行交互,对系统所有运行中的Activit ...

  2. Android组件框架:Android组件管理者ActivityManager

    关于作者 郭孝星,程序员,吉他手,主要从事Android平台基础架构方面的工作,欢迎交流技术方面的问题,可以去我的Github提issue或者发邮件至guoxiaoxingse@163.com与我交流 ...

  3. html5 可以用adb 调试,ADB常用命令及作用

    这是第「32篇」分享 DemoYang(ID:Demo_YangBJ),专注于Android领域的开发者. ADB ADB全称Android Debug Bridge. ADB是一种功能多样的命令行工 ...

  4. Android FrameWork——ActivityManager框架

    1.ActivityManager是android框架的一个重要部分,它负责一新ActivityThread进程创建,Activity生命周期的维护,本blog就是着手对ActivityManager ...

  5. 腾讯、网易云、字节跳动面试点总结—AMS在Android起到什么作用?

    本专栏专注分享大型Bat面试知识,后续会持续更新,喜欢的话麻烦点击一个关注 面试官: AMS在Android起到什么作用,简单的分析下Android的源码 心理分析:这道题在发生在大多数场景下.面对这 ...

  6. Application的作用

    导言 我们都知道,每个应用都会有一个Application类,这个类很常用,但大家真的了解Application的作用吗? 下面我将从Application的定义,作用,和一些重要方法来展开介绍. A ...

  7. Object的finalize()方法的作用是否与C++的析构函数作用相同

    Object的finalize()方法的作用是否与C++的析构函数作用相同 public class Finalization {private static Finalization finaliz ...

  8. 浅显易懂 Makefile 入门 (02)— 普通变量和自动变量定义、使用($@、$^、$< 作用)、变量覆盖 override、变量的来源 origin

    1. 变量的定义 Makefile 文件中定义变量的基本语法如下: 变量的名称=值列表 变量的名称可以由大小写字母.阿拉伯数字和下划线构成.等号左右的空白符没有明确的要求,因为在执行 make 的时候 ...

  9. 【B/S实践】解决:vs中修改样式表后不起作用的问题

    缓存,有好多,cpu和内存之间的三级缓存,浏览器内的缓存! 缓存是因为速率不对等,通过缓存来加速内容的显示! 今天我在敲牛腩的时候遇到一个问题,找了半小时,才发现是缓存导致的问题! 试着运行aspx文 ...

  10. 卷积神经网络之卷积计算、作用与思想 深度学习

    博客:blog.shinelee.me | 博客园 | CSDN 卷积运算与相关运算 在计算机视觉领域,卷积核.滤波器通常为较小尺寸的矩阵,比如3×33×3.从这个角度看,多层卷积是在进行逐层映射,整 ...

最新文章

  1. zookeeper 和 dubbo 配置
  2. 零基础参加java培训哪家机构好
  3. sqlalchemy根据表名动态创建model类
  4. [linux]在使用rsync时需要注意的小细节
  5. ”该证书已被签发机构吊销“错误解决方案
  6. spring logback mysql_logback 日志输出格式
  7. SAP CDS view里如何定义association
  8. C++ setprecision()用法
  9. tensor判断是否相等_PyTorch的Tensor(中)
  10. 有关编译嵌入式android的swap空间不够导致的编译错误和解决办法
  11. 静态变量(static)
  12. 鸿蒙轻内核源码分析:虚拟文件系统 VFS
  13. 【读书笔记】2_增强学习中的Q-Learning
  14. python语法糖怎么用_程序中的奇技淫巧之语法糖-释然
  15. cat more正常 vim显示中文乱码问题
  16. Tensorflow从指定链接下载文件
  17. win7共享wifi自动获取不到ip地址的解决办法
  18. 记一次 ClickHouse 性能测试
  19. Linux配置访问服务器图片路径(防止踩坑)
  20. nginx -rtmp多码率,动态码率二级m3u8适应

热门文章

  1. 删除远程桌面登录的记录(mstsc)
  2. 电商平台拼多多详情接口API数据获取示例
  3. 用java写图形验证码,超级简单
  4. 电动机正反转继电器控制系统
  5. thinkphp前端显示被反编译详解
  6. [转帖]生成QQ/MSN/旺旺/SKYPE等在线状态图标(官方提供)
  7. Drools规则引擎实践直白总结,Java开发教程入门
  8. htlm5实习报告_Wa zhu ti网站html5搭建设计毕业论文+html源码+实习报告+答辩问题
  9. 电商系统开发之产品订单分拆设计技术思路
  10. Keil安装(带安装软件)