md5的全称是message-digest algorithm 5(信息-摘要算法),在90年代初由mit laboratory for computer science和rsa data security inc的ronald l. rivest开发出来,经md2、md3和md4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密匙前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是md2、md4还是md5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些算法的结构或多或少有些相似,但md2的设计与md4和md5完全不同,那是因为md2是为8位机器做过设计优化的,而md4和md5却是面向32位的电脑。这三个算法的描述和c语言源代码在internet rfcs 1321中有详细的描述(http://www.ietf.org/rfc/rfc1321.txt),这是一份最权威的文档,由ronald l. rivest在1992年8月向ieft提交。

  rivest在1989年开发出md2算法。在这个算法中,首先对信息进行数据补位,使信息的字节长度是16的倍数。然后,以一个16位的检验和追加到信息末尾。并且根据这个新产生的信息计算出散列值。后来,rogier和chauvaud发现如果忽略了检验和将产生md2冲突。md2算法的加密后结果是唯一的--既没有重复。

  为了加强算法的安全性,rivest在1990年又开发出md4算法。md4算法同样需要填补信息以确保信息的字节长度加上448后能被512整除(信息字节长度mod 512 = 448)。然后,一个以64位二进制表示的信息的最初长度被添加进来。信息被处理成512位damg?rd/merkle迭代结构的区块,而且每个区块要通过三个不同步骤的处理。den boer和bosselaers以及其他人很快的发现了攻击md4版本中第一步和第三步的漏洞。dobbertin向大家演示了如何利用一部普通的个人电脑在几分钟内找到md4完整版本中的冲突(这个冲突实际上是一种漏洞,它将导致对不同的内容进行加密却可能得到相同的加密后结果)。毫无疑问,md4就此被淘汰掉了。

  尽管md4算法在安全上有个这么大的漏洞,但它对在其后才被开发出来的好几种信息安全加密算法的出现却有着不可忽视的引导作用。除了md5以外,其中比较有名的还有sha-1、ripe-md以及haval等。

  一年以后,即1991年,rivest开发出技术上更为趋近成熟的md5算法。它在md4的基础上增加了"安全-带子"(safety-belts)的概念。虽然md5比md4稍微慢一些,但却更为安全。这个算法很明显的由四个和md4设计有少许不同的步骤组成。在md5算法中,信息-摘要的大小和填充的必要条件与md4完全相同。den boer和bosselaers曾发现md5算法中的假冲突(pseudo-collisions),但除此之外就没有其他被发现的加密后结果了。

  van oorschot和wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(brute-force hash function),而且他们猜测一个被设计专门用来搜索md5冲突的机器(这台机器在1994年的制造成本大约是一百万美元)可以平均每24天就找到一个冲突。但单从1991年到2001年这10年间,竟没有出现替代md5算法的md6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有太多的影响md5的安全性。上面所有这些都不足以成为md5的在实际应用中的问题。并且,由于md5算法的使用不需要支付任何版权费用的,所以在一般的情况下(非绝密应用领域。但即便是应用在绝密领域内,md5也不失为一种非常优秀的中间技术),md5怎么都应该算得上是非常安全的了。

  算法的应用

  md5的典型应用是对一段信息(message)产生信息摘要(message-digest),以防止被篡改。比如,在unix下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如:

   md5 (tanajiya.tar.gz) = 0ca175b9c0f726a831d895e269332461

  这就是tanajiya.tar.gz文件的数字签名。md5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的md5信息摘要。如果在以后传播这个文件的过程中,无论文件的内容发生了任何形式的改变(包括人为修改或者下载过程中线路不稳定引起的传输错误等),只要你对这个文件重新计算md5时就会发现信息摘要不相同,由此可以确定你得到的只是一个不正确的文件。如果再有一个第三方的认证机构,用md5还可以防止文件作者的"抵赖",这就是所谓的数字签名应用。

  md5还广泛用于加密和解密技术上。比如在unix系统中用户的密码就是以md5(或其它类似的算法)经加密后存储在文件系统中。当用户登录的时候,系统把用户输入的密码计算成md5值,然后再去和保存在文件系统中的md5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这不但可以避免用户的密码被具有系统管理员权限的用户知道,而且还在一定程度上增加了密码被破解的难度。

  正是因为这个原因,现在被黑客使用最多的一种破译密码的方法就是一种被称为"跑字典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用md5程序计算出这些字典项的md5值,然后再用目标的md5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 bytes),同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是p(62,1)+p(62,2)….+p(62,8),那也已经是一个很天文的数字了,存储这个字典就需要tb级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码md5值的情况下才可以。这种加密技术被广泛的应用于unix系统中,这也是为什么unix系统比一般操作系统更为坚固一个重要原因。

  算法描述

  对md5算法简要的叙述可以为:md5以512位分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,算法的输出由四个32位分组组成,将这四个32位分组级联后将生成一个128位散列值。

  在md5算法中,首先需要对信息进行填充,使其字节长度对512求余的结果等于448。因此,信息的字节长度(bits length)将被扩展至n*512+448,即n*64+56个字节(bytes),n为一个正整数。填充的方法如下,在信息的后面填充一个1和无数个0,直到满足上面的条件时才停止用0对信息的填充。然后,在在这个结果后面附加一个以64位二进制表示的填充前信息长度。经过这两步的处理,现在的信息字节长度=n*512+448+64=(n+1)*512,即长度恰好是512的整数倍。这样做的原因是为满足后面处理中对信息长度的要求。

  md5中有四个32位被称作链接变量(chaining variable)的整数参数,他们分别为:a=0x01234567,b=0x89abcdef,c=0xfedcba98,d=0x76543210。

  当设置好这四个链接变量后,就开始进入算法的四轮循环运算。循环的次数是信息中512位信息分组的数目。

  将上面四个链接变量复制到另外四个变量中:a到a,b到b,c到c,d到d。

  主循环有四轮(md4只有三轮),每轮循环都很相似。第一轮进行16次操作。每次操作对a、b、c和d中的其中三个作一次非线性函数运算,然后将所得结果加上第四个变量,文本的一个子分组和一个常数。再将所得结果向右环移一个不定的数,并加上a、b、c或d中之一。最后用该结果取代a、b、c或d中之一。
以一下是每次操作中用到的四个非线性函数(每轮一个)。

   f(x,y,z) =(x&y)|((~x)&z)
   g(x,y,z) =(x&z)|(y&(~z))
   h(x,y,z) =x^y^z
   i(x,y,z)=y^(x|(~z))
   (&是与,|是或,~是非,^是异或)

  这四个函数的说明:如果x、y和z的对应位是独立和均匀的,那么结果的每一位也应是独立和均匀的。
f是一个逐位运算的函数。即,如果x,那么y,否则z。函数h是逐位奇偶操作符。

  假设mj表示消息的第j个子分组(从0到15),<<
   ff(a,b,c,d,mj,s,ti)表示a=b+((a+(f(b,c,d)+mj+ti)<<    gg(a,b,c,d,mj,s,ti)表示a=b+((a+(g(b,c,d)+mj+ti)<<    hh(a,b,c,d,mj,s,ti)表示a=b+((a+(h(b,c,d)+mj+ti)<<    ii(a,b,c,d,mj,s,ti)表示a=b+((a+(i(b,c,d)+mj+ti)<<
  这四轮(64步)是:

  第一轮

   ff(a,b,c,d,m0,7,0xd76aa478)
   ff(d,a,b,c,m1,12,0xe8c7b756)
   ff(c,d,a,b,m2,17,0x242070db) 
         ff(b,c,d,a,m3,22,0xc1bdceee)
   ff(a,b,c,d,m4,7,0xf57c0faf)
   ff(d,a,b,c,m5,12,0x4787c62a)
   ff(c,d,a,b,m6,17,0xa8304613)
   ff(b,c,d,a,m7,22,0xfd469501)
   ff(a,b,c,d,m8,7,0x698098d8)
   ff(d,a,b,c,m9,12,0x8b44f7af)
   ff(c,d,a,b,m10,17,0xffff5bb1)
   ff(b,c,d,a,m11,22,0x895cd7be)
   ff(a,b,c,d,m12,7,0x6b901122)
   ff(d,a,b,c,m13,12,0xfd987193)
   ff(c,d,a,b,m14,17,0xa679438e)
   ff(b,c,d,a,m15,22,0x49b40821)

  第二轮

   gg(a,b,c,d,m1,5,0xf61e2562)
   gg(d,a,b,c,m6,9,0xc040b340)
   gg(c,d,a,b,m11,14,0x265e5a51)
   gg(b,c,d,a,m0,20,0xe9b6c7aa)
   gg(a,b,c,d,m5,5,0xd62f105d)
   gg(d,a,b,c,m10,9,0x02441453)
   gg(c,d,a,b,m15,14,0xd8a1e681)
   gg(b,c,d,a,m4,20,0xe7d3fbc8)
   gg(a,b,c,d,m9,5,0x21e1cde6)
   gg(d,a,b,c,m14,9,0xc33707d6)
   gg(c,d,a,b,m3,14,0xf4d50d87)
   gg(b,c,d,a,m8,20,0x455a14ed)
   gg(a,b,c,d,m13,5,0xa9e3e905)
   gg(d,a,b,c,m2,9,0xfcefa3f8)
   gg(c,d,a,b,m7,14,0x676f02d9)
   gg(b,c,d,a,m12,20,0x8d2a4c8a)

  第三轮

   hh(a,b,c,d,m5,4,0xfffa3942)
   hh(d,a,b,c,m8,11,0x8771f681)
   hh(c,d,a,b,m11,16,0x6d9d6122)
   hh(b,c,d,a,m14,23,0xfde5380c)
   hh(a,b,c,d,m1,4,0xa4beea44)
   hh(d,a,b,c,m4,11,0x4bdecfa9)
   hh(c,d,a,b,m7,16,0xf6bb4b60)
   hh(b,c,d,a,m10,23,0xbebfbc70)
   hh(a,b,c,d,m13,4,0x289b7ec6)
   hh(d,a,b,c,m0,11,0xeaa127fa)
   hh(c,d,a,b,m3,16,0xd4ef3085)
   hh(b,c,d,a,m6,23,0x04881d05)
   hh(a,b,c,d,m9,4,0xd9d4d039)
   hh(d,a,b,c,m12,11,0xe6db99e5)
   hh(c,d,a,b,m15,16,0x1fa27cf8)
   hh(b,c,d,a,m2,23,0xc4ac5665)

  第四轮

   ii(a,b,c,d,m0,6,0xf4292244)
   ii(d,a,b,c,m7,10,0x432aff97)
   ii(c,d,a,b,m14,15,0xab9423a7)
   ii(b,c,d,a,m5,21,0xfc93a039)
   ii(a,b,c,d,m12,6,0x655b59c3)
   ii(d,a,b,c,m3,10,0x8f0ccc92)
   ii(c,d,a,b,m10,15,0xffeff47d)
   ii(b,c,d,a,m1,21,0x85845dd1)
   ii(a,b,c,d,m8,6,0x6fa87e4f)
   ii(d,a,b,c,m15,10,0xfe2ce6e0)
   ii(c,d,a,b,m6,15,0xa3014314)
   ii(b,c,d,a,m13,21,0x4e0811a1)
   ii(a,b,c,d,m4,6,0xf7537e82)
   ii(d,a,b,c,m11,10,0xbd3af235)
   ii(c,d,a,b,m2,15,0x2ad7d2bb)
   ii(b,c,d,a,m9,21,0xeb86d391)

  常数ti可以如下选择:

  在第i步中,ti是4294967296*abs(sin(i))的整数部分,i的单位是弧度。(4294967296等于2的32次方)
所有这些完成之后,将a、b、c、d分别加上a、b、c、d。然后用下一分组数据继续运行算法,最后的输出是a、b、c和d的级联。

  当你按照我上面所说的方法实现md5算法以后,你可以用以下几个信息对你做出来的程序作一个简单的测试,看看程序有没有错误。

   md5 ("") = d41d8cd98f00b204e9800998ecf8427e
   md5 ("a") = 0cc175b9c0f1b6a831c399e269772661
   md5 ("abc") = 900150983cd24fb0d6963f7d28e17f72
   md5 ("message digest") = f96b697d7cb7938d525a2f31aaf161d0
   md5 ("abcdefghijklmnopqrstuvwxyz") = c3fcd3d76192e4007dfb496cca67e13b
   md5 ("abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz0123456789") =
d174ab98d277d9f5a5611c2c9f419d9f
   md5 ("123456789012345678901234567890123456789012345678901234567890123456789
01234567890") = 57edf4a22be3c955ac49da2e2107b67a

  如果你用上面的信息分别对你做的md5算法实例做测试,最后得出的结论和标准答案完全一样,那我就要在这里象你道一声祝贺了。要知道,我的程序在第一次编译成功的时候是没有得出和上面相同的结果的。

  md5的安全性

  md5相对md4所作的改进:

   1. 增加了第四轮;

   2. 每一步均有唯一的加法常数;

   3. 为减弱第二轮中函数g的对称性从(x&y)|(x&z)|(y&z)变为(x&z)|(y&(~z));

   4. 第一步加上了上一步的结果,这将引起更快的雪崩效应;

   5. 改变了第二轮和第三轮中访问消息子分组的次序,使其更不相似;

   6. 近似优化了每一轮中的循环左移位移量以实现更快的雪崩效应。各轮的位移量互不相同。

2004年8月17日的美国加州圣巴巴拉,正在召开的国际密码学会议(Crypto’2004)安排了三场关于杂凑函数的特别报告。在国际著名密码学家Eli Biham和Antoine Joux相继做了对SHA-1的分析与给出SHA-0的一个碰撞之后,来自山东大学的王小云教授做了破译MD5、HAVAL-128、 MD4和RIPEMD算法的报告。在会场上,当她公布了MD系列算法的破解结果之后,报告被激动的掌声打断。王小云教授的报告轰动了全场,得到了与会专家的赞叹。报告结束时,与会者长时间热烈鼓掌,部分学者起立鼓掌致敬,这在密码学会议上是少见的盛况。王小云教授的报告缘何引起如此大的反响?因为她的研究成果作为密码学领域的重大发现宣告了固若金汤的世界通行密码标准MD5的堡垒轰然倒塌,引发了密码学界的轩然大波。会议总结报告这样写道:“我们该怎么办?MD5被重创了;它即将从应用中淘汰。SHA-1仍然活着,但也见到了它的末日。现在就得开始更换SHA-1了。”

关键词:碰撞=漏洞=别人可以伪造和冒用数字签名。
Hash函数与数字签名(数字手印)
HASH函数,又称杂凑函数,是在信息安全领域有广泛和重要应用的密码算法,它有一种类似于指纹的应用。在网络安全协议中,杂凑函数用来处理电子签名,将冗长的签名文件压缩为一段独特的数字信息,像指纹鉴别身份一样保证原来数字签名文件的合法性和安全性。在前面提到的SHA-1和MD5都是目前最常用的杂凑函数。经过这些算法的处理,原始信息即使只更动一个字母,对应的压缩信息也会变为截然不同的“指纹”,这就保证了经过处理信息的唯一性。为电子商务等提供了数字认证的可能性。
安全的杂凑函数在设计时必须满足两个要求:其一是寻找两个输入得到相同的输出值在计算上是不可行的,这就是我们通常所说的抗碰撞的;其二是找一个输入,能得到给定的输出在计算上是不可行的,即不可从结果推导出它的初始状态。现在使用的重要计算机安全协议,如SSL,PGP都用杂凑函数来进行签名,一旦找到两个文件可以产生相同的压缩值,就可以伪造签名,给网络安全领域带来巨大隐患。
MD5就是这样一个在国内外有着广泛的应用的杂凑函数算法,它曾一度被认为是非常安全的。然而,王小云教授发现,可以很快的找到MD5的“碰撞”,就是两个文件可以产生相同的“指纹”。这意味着,当你在网络上使用电子签名签署一份合同后,还可能找到另外一份具有相同签名但内容迥异的合同,这样两份合同的真伪性便无从辨别。王小云教授的研究成果证实了利用MD5算法的碰撞可以严重威胁信息系统安全,这一发现使目前电子签名的法律效力和技术体系受到挑战。因此,业界专家普林斯顿计算机教授Edward Felten等强烈呼吁信息系统的设计者尽快更换签名算法,而且他们强调这是一个需要立即解决的问题。

国际讲坛 王氏发现艳惊四座
面对Hash函数领域取得的重大研究进展,Crypto 2004 会议总主席StorageTek高级研究员Jim Hughes 17 日早晨表示,此消息太重要了,因此他已筹办该会成立24年来的首次网络广播(Webcast )。Hughes在会议上宣布:“会中将提出三份探讨杂凑碰撞(hash collisions )重要的研究报告。”其中一份是王小云等几位中国研究人员的研究发现。17日晚,王小云教授在会上把他们的研究成果做了宣读。这篇由王小云、冯登国、来学嘉、于红波四人共同完成的文章,囊括了对MD5、HAVAL-128、 MD4和RIPEMD四个著名HASH算法的破译结果。在王小云教授仅公布到他们的第三个惊人成果的时候,会场上已经是掌声四起,报告不得不一度中断。报告结束后,所有与会专家对他们的突出工作报以长时的热烈掌声,有些学者甚至起立鼓掌以示他们的祝贺和敬佩。当人们掌声渐息,来学嘉教授又对文章进行了一点颇有趣味的补充说明。由于版本问题,作者在提交会议论文时使用的一组常数和先行标准不同;在会议发现这一问题之后,王小云教授立即改变了那个常数,在很短的时间内就完成了新的数据分析,这段有惊无险的小插曲倒更加证明了他们论文的信服力,攻击方法的有效性,反而凸显了研究工作的成功。
会议结束时,很多专家围拢到王小云教授身边,既有简短的探讨,又有由衷的祝贺,褒誉之词不绝。包含公钥密码的主要创始人R. L. Rivest和A. Shamir在内的世界顶级的密码学专家也上前表示他们的欣喜和祝贺。
国际密码学专家对王小云教授等人的论文给予高度评价。
MD5的设计者,同时也是国际著名的公钥加密算法标准RSA的第一设计者R.Rivest在邮件中写道:“这些结果无疑给人非常深刻的印象,她应当得到我最热烈的祝贺,当然,我并不希望看到MD5就这样倒下,但人必须尊崇真理。”
Francois Grieu这样说:“王小云、冯登国、来学嘉和于红波的最新成果表明他们已经成功破译了MD4、MD5、HAVAL-128、RIPEMD-128。并且有望以更低的复杂度完成对SHA-0的攻击。一些初步的问题已经解决。他们赢得了非常热烈的掌声。”
另一位专家Greg Rose如此评价:“我刚刚听了Joux和王小云的报告,王所使用的技术能在任何初始值下用2^40次hash运算找出SHA-0的碰撞。她在报告中对四种HASH函数都给出了碰撞,她赢得了长时间的起立喝彩,(这在我印象中还是第一次)。…… 她是当今密码学界的巾帼英雄。……(王小云教授的工作)技术虽然没有公开,但结果是无庸质疑的,这种技术确实存在。…… 我坐在Ron Rivest前面,我听到他评论道:‘我们不得不做很多的重新思考了。’”

石破惊天 MD5堡垒轰然倒塌
一石击起千层浪,MD5的破译引起了密码学界的激烈反响。专家称这是密码学界近年来“最具实质性的研究进展”,各个密码学相关网站竞相报导这一惊人突破。
MD5破解专项网站关闭
MD5破解工程权威网站http://www.md5crk.com/ 是为了公开征集专门针对MD5的攻击而设立的,网站于2004年8月17日宣布:“中国研究人员发现了完整MD5算法的碰撞;Wang, Feng, Lai与Yu公布了MD5、MD4、HAVAL-128、RIPEMD-128几个 Hash函数的碰撞。这是近年来密码学领域最具实质性的研究进展。使用他们的技术,在数个小时内就可以找到MD5碰撞。……由于这个里程碑式的发现,MD5CRK项目将在随后48小时内结束”。
对此,http://www.readyresponse.org主页专门转载了该报道http://www.aspenleaf.com/distributed/distrib-recent.html和几个其它网站也进行了报道。
权威网站相继发表评论或者报告这一重大研究成果
经过统计,在论文发布两周之内,已经有近400个网站发布、引用和评论了这一成果。国内的许多新闻网站也以“演算法安全加密功能露出破绽 密码学界一片哗然”为题报道了这一密码学界的重大事件。(报导见http://www.technewsworld.com/perl/board/mboard.pl?board=lnitalkback&thread=895&id=896&display=1&tview=expanded&mview=flat,该消息在各新闻网站上多次转载。)

东方神韵  MD5终结者来自中国
MD5破解工作的主要成员王小云教授是一个瘦弱、矜持的女子,厚厚的镜片透射出双眸中数学的灵光。她于1990年在山东大学师从著名数学家潘承洞教授攻读数论与密码学专业博士,在潘先生、于秀源、展涛等多位著名教授的悉心指导下,她成功将数论知识应用到密码学中,取得了很多突出成果,先后获得863项目资助和国家自然科学基金项目资助,并且获得部级科技进步奖一项,撰写论文二十多篇。王小云教授从上世纪90年代末开始进行HASH函数的研究,她所带领的于红波、王美琴、孙秋梅、冯骐等组成的密码研究小组,同中科院冯登国教授,上海交大来学嘉等知名学者密切协作,经过长期坚持不懈的努力,找到了破解HASH函数的关键技术,成功的破解了MD5和其它几个HASH函数。
近年来她的工作得到了山东大学和数学院领导的大力支持,特别投资建设了信息安全实验室。山东大学校长展涛教授高度重视王小云教授突出的科研成果。 2004年6月山东大学领导听取王小云教授的工作介绍后,展涛校长亲自签发邀请函邀请国内知名信息安全专家参加2004年7月在威海举办的“山东大学信息安全研究学术研讨会”,数学院院长刘建亚教授组织和主持了会议,会上王小云教授公布了MD5等算法的一系列研究成果,专家们对她的研究成果给予了充分的肯定,对其坚持不懈的科研态度大加赞扬。一位院士说,她的研究水平绝对不比国际上的差。这位院士的结论在时隔一个月之后的国际密码会上得到了验证,国外专家如此强烈的反响表明,我们的工作可以说不但不比国际上的差,而且是在破解HASH函数方面已领先一步。加拿大CertainKey公司早前宣布将给予发现MD5算法第一个碰撞人员一定的奖励,CertainKey的初衷是利用并行计算机通过生日攻击来寻找碰撞,而王小云教授等的攻击相对生日攻击需要更少的计算时间。

数字认证 你的未来不是梦
由于MD5的破译,引发了关于MD5产品是否还能够使用的大辩论。在麻省理工大学Jeffrey I. Schiller教授主持的个人论坛上,许多密码学家在标题为“Bad day at the hash function factory”的辩论中发表了具有价值的意见(http://jis.mit.edu/pipermail/saag/2004q3/000913.html)。这次国际密码学会议的总主席Jimes Hughes发表评论说“我相信这(破解MD5)是真的,并且如果碰撞存在,HMAC也就不再是安全的了,…… 我认为我们应该抛开MD5了。” Hughes建议,程序设计人员最好开始舍弃MD5。他说:“既然现在这种算法的弱点已暴露出来,在有效的攻击发动之前,现在是撤离的时机。”
同样,在普林斯顿大学教授Edwards Felton的个人网站(http://www.freedom-to-tinker.com/archives/000664.html)上,也有类似的评论。他说:“留给我们的是什么呢?MD5已经受了重伤;它的应用就要淘汰。SHA-1仍然活着,但也不会很长,必须立即更换SHA-1,但是选用什么样的算法,这需要在密码研究人员达到共识。”
密码学家Markku-Juhani称“这是HASH函数分析领域激动人心的时刻。(http://www.tcs.hut.fi/~mjos/md5/)”
而著名计算机公司SUN的LINUIX专家Val Henson则说:“以前我们说"SHA-1可以放心用,其他的不是不安全就是未知", 现在我们只能这么总结了:"SHA-1不安全,其他的都完了"。
针对王小云教授等破译的以MD5为代表的Hash函数算法的报告,美国国家技术与标准局(NIST)于2004年8月24日发表专门评论,评论的主要内容为:“在最近的国际密码学会议(Crypto 2004)上,研究人员宣布他们发现了破解数种HASH算法的方法,其中包括MD4,MD5,HAVAL-128,RIPEMD还有 SHA-0。分析表明,于1994年替代SHA-0成为联邦信息处理标准的SHA-1的减弱条件的变种算法能够被破解;但完整的SHA-1并没有被破解,也没有找到SHA-1的碰撞。研究结果说明SHA-1的安全性暂时没有问题,但随着技术的发展,技术与标准局计划在2010年之前逐步淘汰SHA-1,换用其他更长更安全的算法(如SHA-224、SHA-256、SHA-384和SHA-512)来替代。”
详细评论见:http://csrc.nist.gov/hash_standards_comments.pdf
2004年8月28日,十届全国人大常委会第十一次会议表决通过了电子签名法。这部法律规定,可靠的电子签名与手写签名或者盖章具有同等的法律效力。电子签名法的通过,标志着我国首部“真正意义上的信息化法律”已正式诞生,将于2005年4月1日起施行。专家认为,这部法律将对我国电子商务、电子政务的发展起到极其重要的促进作用。王小云教授的发现无异于发现了信息化天空的一个惊人黑洞。我们期待着王小云教授和她的团队能够成就“女娲补天”的壮举,为人类的信息化之路保驾护航。

作者:不明
出处:不明

(摘录)MD5算法研究与破解相关推荐

  1. MD5算法已经被破解

    MD5算法已经被破解 发表: babyfrog 时间: 2004/09/04 19:55:19 发信人: bluemyosotis (抽筋的天使), 信区: SDU 标 题: 密码学领域重大发现:山东 ...

  2. MD5算法可以破解么?为什么?网上有在线破解是怎么回事?

    答:MD5算法不可以破解. 因为MD5是单向散列函数,输入任意长度的信息,经过处理,输出为128位的信息:不同的输入得到的不同的结果:根据128位的输出结果不可能反推出输入的信息.所以不能从密文(散列 ...

  3. 石破天惊! MD5算法被破解!

    按:MD5不安全了?SHA不安全了?HASH完了?一大早来到办公室,无意中看到这么一条新闻,继而在网上搜索了一个多小时,没有找到王教授这篇文章的原文.只看到山大几十分钟前发表的这篇新闻.期待各位IT同 ...

  4. 彩虹表破解开机密码、MD5算法等的原理

    http://www.91ri.org/7593.html  自己发到91ri的,博客备份下. 前言 或许对于大多数人来说,实际中并不需要了解这些理论,能够使用现成的工具就行,但是我个人觉得了解了这些 ...

  5. 漫画:如何破解MD5算法

    转载自 玻璃猫 程序员小灰 在之前的漫画中,我们介绍了MD5算法的基本概念和底层原理,没看过的小伙伴们可以点击下面的链接:<漫画:什么是MD5算法?> 这一次,我们来讲解如何破解MD5算法 ...

  6. 漫画:如何破解MD5算法?

    来自:梦见(微信号:dreamsee321) 在之前的漫画中,我们介绍了MD5算法的基本概念和底层原理,没看过的小伙伴们可以点击下面的链接: 漫画:什么是MD5算法? 这一次,我们来讲解如何破解MD5 ...

  7. MD5 算法描述及实现

    MD5 算法的原理及实现 章节目录 简介 算法描述 实现 作者能力有限, 如果您在阅读过程中发现任何错误, 还请您务必联系本人,指出错误, 避免后来读者再学习错误的知识.谢谢! 简介## Wiki对其 ...

  8. 为什么MD5算法不可逆,但网上有很多网站声称能够解密MD5

    我们要明白,MD5不是加密算法,而是一种信息摘要算法,主要用于保证数据的完整性,以及数据不被篡改.既然不是加密算法,那么就不存在解密的说法,但是为什么网上有很多网站声称能够解密MD5呢? MD5算法不 ...

  9. MD5 加密已被破解

    密码学领域重大发现:山东大学王小云教授成功破解MD5 2004-09-04 09:39 [本站讯]2004年8月17日的美国加州圣巴巴拉,正在召开的国际密码学会议(Crypto'2004)安排了三场关 ...

最新文章

  1. wxWidgets:wxPanel类用法
  2. boost::mp11::mp_rotate_right相关用法的测试程序
  3. 我来说说java的NIO
  4. LeetCode 815. 公交路线(最少换乘,BFS)
  5. 最稳妥的服务器阵列方案:RAID5+热备盘
  6. mysql 5.5.42,mysql-5.1.42安装完成后,出现如下错误的解决办法
  7. dedeampz-php环境整合套件,DedeAMPZ官方下载
  8. ffmpeg源码分析_ffmpeg音视频同步的几种策略
  9. python文字识别 训练_Python3.x:pytesseract识别率提高(样本训练)
  10. python machinelearning下载_Python与机器学习系列1:Anaconda的下载与安装
  11. 第6章 vector向量容器
  12. 基于用户的协同过滤推荐算法研究
  13. U盘量产后USB鼠标和键盘都无法使用,如何解决?
  14. GAS超标,以太坊告急
  15. ESP8266 系统环境搭建
  16. flutter 开发中问题盘锦
  17. 交易结果=市场理解×(交易策略+自我认识)
  18. Day 16 购物车
  19. DMPE-PEG-Mal,Maleimide-PEG-DMPE,二肉豆蔻酰磷脂酰乙醇胺-PEG-马来酰亚胺
  20. 【第68篇】多目标跟踪:文献综述

热门文章

  1. 阿里云WINDOWS SERVER 2019服务器安装MySQL数据库及设置远程访问权限教程
  2. 金杉号:目前的农村养殖什么市场销路好?
  3. CentOS Linux 使用系统镜像搭建本地 yum 源
  4. [渝粤教育] Northwest AF University Crop Cultivation Science 参考 资料
  5. 虎牙自动弹幕刷屏脚本
  6. 12月2日-3日 | 数字化安全技术大会暨Ansys medini analyze 2021用户大会
  7. 华硕主板 ASUS P5Q 出现错误,无法正常开机的解决办法
  8. word转pdf(第二篇第二种方法)
  9. 网络威胁情报:数据的力量
  10. linux内核驱动 debian,zh_CN/NvidiaGraphicsDrivers - Debian Wiki