现代战争中,无人机、无人车及无人艇等无人系统已逐渐在战场部署,但是无人系统单体存在负载和任务能力有限、作战能力单一等不足。为了弥补单体能力不足,同时提高其对作战任务的适应能力,无人系统可以以集群方式进行作战。集群方式能充分发挥其监控范围广、抗毁重构性强的优势,具备独立完成复杂任务的能力,可以实现跨域集群作战。

无人系统的集群智能协同是指由遂行同一任务、受统一指挥并保持视距联系或战术联系的若干无人系统编队。多智能体协同技术通过协同感知、协同决策规划和协同编队控制,实现集群内各个节点高效配合,提高复杂环境下多任务的适应能力。

NOKOV度量实现多无人系统亚毫米级实时定位

为了验证多智能体协同系统置信度问题,通常会设计无人机、无人车、无人艇编队等效验证平台,系统性地验证协同感知、协同决策、时变编队控制等技术。平台通常由网络通信子系统、多智能体子系统、组合定位子系统构成,动作捕捉系统为组合定位子系统中的主要定位方式。

进行协同决策、编队控制验证时,首先要实现单体自动控制,为了简化实验,可以利用NOKOV度量动作捕捉系统同时对多无人系统进行定位,获取的位置、速度、加速度数据作为控制系统的输入信号。以无人机为例,无人机的轨迹跟踪控制包括位置控制、姿态解算与姿态控制三个部分。典型的位置控制采用位置-线速度串级控制器,控制器的输出为NOKOV度量动作捕捉系统坐标系下的加速度;姿态解算模块将NOKOV度量动作捕捉系统坐标系下的加速度转换为大地坐标系下的加速度,再转换成机体坐标系下的参考加速度;姿态控制最后通过加速度的分解,解算出参考姿态角,并作为姿态控制的输入,控制无人机到达指定位置。

动作捕捉系统对无人机轨迹追踪

多智能体分布式协同编队控制中,需要完成领航者的轨迹规划,跟随者跟踪领航者的实际位置,与领航者维持相对位置不变进而保持编队队形。在此过程中,无人系统单体只需与相邻的单体之间进行信息交换,领航者需要完成参考轨迹生成以及位置控制,精确跟踪期望轨迹,其实时位置及姿态可以直接通过 NOKOV度量动作捕捉系统获取后传送给队形保持器,其他单体根据相对位置解算出控制力,保持集群编队队形。

模型受限于其载量时,无人系统验证实验(以无人艇为例)的编队控制和运动控制算法可以直接在上位机上实现,NOKOV度量动作捕捉系统获取的数据传输到上位机,解算后作为控制命令传输到无人艇,无人艇主要功能是接收工作站的控制量,并驱动两个螺旋桨达到相应的转速。虽然各模型艇的自主化程度较低,完全分布式的编队较难实现,但这一集中化的平台有利于分布式编队算法和运动控制算法的快速实施,利用NOKOV度量动作捕捉工作站向外广播数据,不用考虑通信时延、通信丢包等带来的影响。也可以直接利用平台模拟通信丢包和通信时延等问题。

无人系统验证实验(以无人艇为例)

除此之外,对于使用机载传感器进行定位、编队的无人系统,验证集群智能协同技术有效性时,要分析无人机、无人车和无人艇所估计的运动轨迹与真实运动轨迹的误差,通常需要获得多个无人系统的高精度的真实轨迹,一般称为“ground truth”。因为动捕系统得到的轨迹误差低至亚毫米级,且可以同步获取多个无人系统轨迹,而SLAM系统等机载定位传感器的轨迹误差通常至少是厘米级的,因此使用动捕系统作为“ground truth”是可靠的。

NOKOV度量动作捕捉用于多智能体集群智能协同案例

NOKOV度量动作捕捉在多智能体集群智能协同技术等效验证平台开发方向与多所高校、科研院所展开合作,作为其系统中的室内定位解决方案。

北京理工大学无人机/无人车异构集群协同

多智能体集群智能协同控制系统基于一致性算法完成空地协同巡逻任务,运用无人车的灵活性完成以敌方目标为中心,卫星环绕式的围捕任务。以无人机的广阔视野和无人车的高机动性为基础,完成无人机将搜索到的目标及时传给无人车,无人车接收到信息后对敌方目标展开围捕的探测围捕任务。

系统中组合定位系统是以外部NOKOV度量光学动作捕捉系统为主要定位校正方式,机载惯性器件辅助构成的多智能体组合定位系统。其中无人机位置定位可以采用外部光学动作捕捉系统+惯性导航+视觉导航的组合导航方式;无人车以光学定位数据为主,在光学定位系统数据丢失时,启用惯性器件的“备份”位姿信息,保持无人车继续运行。

北京理工大学无人机/无人车异构集群协同

中科院自动化所无人车协同避障 

中科院自动化研究所蒲志强老师团队研究开发出智能无人集群系统。该无人集群系统分为三个子系统,即定位子系统、通信子系统与控制子系统。其中的定位系统融合使用NOKOV度量光学动作捕捉系统与车载的惯性单元进行定位。考虑到捕捉范围,一共架设了24台Mars2H光学定位相机,包括在5m高度平面布置8台相机,在8.5m高度平面布置16台相机,覆盖12m*12m*8.5m的空间。

实验过程在各个无人车及障碍物上放置反光标志点,不同标志点排布形式用于区分机器人个体的ID,通过捕捉无人车障碍物上反光标志点,得到标志点的三维坐标,并利用SDK向外实时广播。单个无人车可以接收到本体、邻近无人车以及障碍物位置信息,坐标信息精度达到亚毫米级。

中科院自动化所无人车协同避障

NOKOV度量动作捕捉用于多智能体协同系统等效验证实验相关推荐

  1. 动作捕捉用于验证芭蕾舞动作对脑瘫儿童的作用

    下肢杠杆力臂功能障碍(Lever Arm Dysfunction,LAD)是常见的导致脑瘫儿童步态异常的原因,如髋内旋.股骨和胫骨之间的旋转畸形以及足的内外翻畸形等,且都与年龄的增长呈正相关. 图1 ...

  2. 【Nokov】动作捕捉系统标定与机械臂各坐标系的说明

    导语:这一周的工作先是完成了度量系统Nokov的标定,然后对机械臂自身的编码器得到的坐标值与动作捕捉系统Nokov测得的坐标值进行了比较,来观察二者之间的误差.在这个过程中我对Nokov软件Seeke ...

  3. 动作捕捉用于仿生机器人的运动规划

    随着机器人.三维动画.虚拟现实等产业的发展,关于仿生机器人的动作研究早已成为重要的热点课题.如何让机器人或虚拟人物做出合理.流畅的姿态呢?这就要涉及到逆运动学算法研究. 人体很复杂,传统算法需优化 由 ...

  4. 动作捕捉技术在四足仿生机器人研究中的应用

    轮式/履带式移动机器人可以胜任很多场景的探索.运输的任务,但是随着应用空间的拓展,需要机器人在山地.峭壁.丛林.雪地等崎岖复杂的地形的任务也逐渐增多,轮式/履带式机器人难以在这类地形中移动.自然界中动 ...

  5. 动作捕捉系统用于微创手术

    微创手术是医生通过病人体表的微小切口,将细长的手术工具探入病人体内进行手术操作.与传统的开口手术相比,这种方式可减少手术对病人造成的创伤,缩短恢复时间.但是,微创手术也给医生的操作带来了一系列困难:比 ...

  6. 动作捕捉系统用于苹果采摘机器人

    随着我国农业产业化结构调整和互联网+模式的兴起,水果种植对于农民创收起到重要作用.相比于已实现种植收割全自动化主要粮食作物(如小麦.玉米),目前苹果.梨果等表皮薄易损伤的水果仍然需要人工采摘,这极大提 ...

  7. 动作捕捉系统用于机器人关节位移与几何参数标定

    机器人在工业领域和日常生活中起到重要的作用,要完成的任务也越来越复杂,这就需要机器人动作执行时足够精准.机器人的绝对精度是评价机器人性能的一项重要指标. 要提高机器人的绝对精度,需要进行高精度标定.标 ...

  8. 动作捕捉系统用于柔性机械臂的末端定位控制

    柔性机械臂是一种新型仿生机械臂,其设计受到自然界中生物结构启发,比如象鼻.章鱼爪.蚯蚓和蛇等.与传统机械臂相比,柔性机械臂可以在材料变形范围内进行任意形状的弯曲运动,通过调整自身形态在狭小复杂的空间内 ...

  9. 多智能体协同控制实验平台的研发

    (转载自新华网)蓄势数载业初就 | 多智能体协同控制科学研究一瞥 随着工业技术的发展,多智能体协同控制平台目前已在工业操作.巡逻侦察.灾情救援.环境勘探.智能物流.智能农业,和消费娱乐等方面有了长足的 ...

最新文章

  1. STM32开发 -- STM32初识
  2. java如何写外键关联_JAVA基础:Hibernate外键关联与HQL语法
  3. 时间序列模型(ARIMA模型)
  4. git丢弃本地修改的所有文件(新增、删除、修改)
  5. 过程(栈帧结构是干货)
  6. 【数字逻辑设计】组合电路
  7. Adobe illustrator 调整画板大小 - 连载17
  8. golang执行多个linux命令,golang执行系统command
  9. 可有可无的Mysql工作技巧 3 -- 工作中用到的理论范式,工具,建模经验
  10. python获取窗口控件属性_Python——tkinter窗口视窗的功能部件
  11. TASLP | 从判别到生成:基于对比学习的生成式知识抽取方法
  12. sqlserver 备份脚本
  13. SqlServer导入Excel文件数据
  14. kiwi浏览器打开网页慢_kiwi浏览器
  15. Tomcat 中文乱码
  16. lenovo G50-80bios设置U盘启动选项及win10永久激活及win10下载
  17. HTTP 412状态码
  18. html 网页飘窗,jquery飘窗插件bay-window.js
  19. 史上最怪异的几大数据中心事故
  20. python爬取网易云音乐排行榜歌单热评(完整版)

热门文章

  1. 中庸----做人的智慧
  2. SCCB协议介绍与应用和OV7670摄像头的寄存器配置
  3. navicat连接数据报10060错误
  4. c++之头文件基本输出,输入,名字空间,引用,内联函数,函数重载,缺省参数
  5. 盘点常见的7种网络安全威胁
  6. 一键装机tomcat脚本
  7. Win7有多条隧道适配器(isatap、teredo、6to4)的原因及关闭方法(转)
  8. 连接Oracle报错 ORA-00257
  9. CRC查表法——表的由来及Java实现CRC8校验算法
  10. tensorflow学习笔记(二十六):构建TF代码