神经网络(深度学习)的几个基础概念

从广义上说深度学习的网络结构也是多层神经网络的一种。传统意义上的多层神经网络是只有输入层、隐藏层、输出层。其中隐藏层的层数根据需要而定,没有明确的理论推导来说明到底多少层合适。

而深度学习中最著名的卷积神经网络CNN,在原来多层神经网络的基础上,加入了特征学习部分,这部分是模仿人脑对信号处理上的分级的。

具体操作就是在原来的全连接的层前面加入了部分连接的卷积层与降维层,而且加入的是一个层级。

输入层 - 卷积层 -降维层 -卷积层 - 降维层 -- .... -- 隐藏层 -输出层简单来说,原来多层神经网络做的步骤是:特征映射到值。特征是人工挑选。深度学习做的步骤是 信号->特征->值。

特征是由网络自己选择。

谷歌人工智能写作项目:神经网络伪原创

神经网络是什么?

神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络文案狗。生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。

人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。

这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。

在工程与学术界也常直接简称为“神经网络”或类神经网络。

什么叫神经网络?

南搞小孩给出基本的概念: 一.一些基本常识和原理 [什么叫神经网络?] 人的思维有逻辑性和直观性两种不同的基本方式。

逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。

然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。

这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。 人工神经网络就是模拟人思维的第二种方式。

这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

[人工神经网络的工作原理] 人工神经网络首先要以一定的学习准则进行学习,然后才能工作。

现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。

所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。

首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。

在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。

如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。

如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。

这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。

一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。

南搞小孩一个小程序: 关于一个神经网络模拟程序的下载 人工神经网络实验系统(BP网络) V1.0 Beta 作者:沈琦 作者关于此程序的说明: 从输出结果可以看到,前3条"学习"指令,使"输出"神经元收敛到了值 0.515974。

而后3条"学习"指令,其收敛到了值0.520051。再看看处理4和11的指令结果 P *Out1: 0.520051看到了吗? "大脑"识别出了4和11是属于第二类的!

怎么样?很神奇吧?再打show指令看看吧!"神经网络"已经形成了!你可以自己任意的设"模式"让这个"大脑"学习分辩哦!只要样本数据量充分(可含有误差的样本),如果能够在out数据上收敛地话,那它就能分辨地很准哦!有时不是绝对精确,因为它具有"模糊处理"的特性.看Process输出的值接近哪个Learning的值就是"大脑"作出的"模糊性"判别! 南搞小孩神经网络研究社区: 人工神经网络论坛 (旧版,枫舞推荐) 国际神经网络学会(INNS)(英文) 欧洲神经网络学会(ENNS)(英文) 亚太神经网络学会(APNNA)(英文) 日本神经网络学会(JNNS)(日文) 国际电气工程师协会神经网络分会 研学论坛神经网络 ;sty=1&age=0 人工智能研究者俱乐部 2nsoft人工神经网络中文站 =南搞小孩推荐部分书籍: 人工神经网络技术入门讲稿(PDF) 神经网络FAQ(英文) 数字神经网络系统(电子图书) 神经网络导论(英文) =南搞小孩还找到一份很有参考价值的讲座 是Powerpoint文件,比较大,如果网速不够最好用鼠标右键下载另存. 南搞小孩添言:很久之前,枫舞梦想智能机器人从自己手中诞生,SO在学专业的时候也有往这方面发展...考研的时候亦是朝着人工智能的方向发展..但是很不幸的是枫舞考研失败 只好放弃这个美好的愿望,为生活奔波.希望你能够成为一个好的智能计算机工程师..枫舞已经努力的在给你提供条件资源哦~~。

什么叫神经网络?

枫舞给出基本的概念:一.一些基本常识和原理[什么叫神经网络?]人的思维有逻辑性和直观性两种不同的基本方式。

逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。

然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。

这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。人工神经网络就是模拟人思维的第二种方式。

这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

[人工神经网络的工作原理]人工神经网络首先要以一定的学习准则进行学习,然后才能工作。

现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。

所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。

首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。

在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。

如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。

如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。

这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。

一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。

=================================================枫舞推荐一个小程序:关于一个神经网络模拟程序的下载人工神经网络实验系统(BP网络) V1.0 Beta 作者:沈琦作者关于此程序的说明:从输出结果可以看到,前3条"学习"指令,使"输出"神经元收敛到了值 0.515974。

而后3条"学习"指令,其收敛到了值0.520051。再看看处理4和11的指令结果 P *Out1: 0.520051看到了吗? "大脑"识别出了4和11是属于第二类的!

怎么样?很神奇吧?再打show指令看看吧!"神经网络"已经形成了!你可以自己任意的设"模式"让这个"大脑"学习分辩哦!只要样本数据量充分(可含有误差的样本),如果能够在out数据上收敛地话,那它就能分辨地很准哦!有时不是绝对精确,因为它具有"模糊处理"的特性.看Process输出的值接近哪个Learning的值就是"大脑"作出的"模糊性"判别!=================================================枫舞推荐神经网络研究社区:人工神经网络论坛 (旧版,枫舞推荐)国际神经网络学会(INNS)(英文) 欧洲神经网络学会(ENNS)(英文) 亚太神经网络学会(APNNA)(英文) 日本神经网络学会(JNNS)(日文) 国际电气工程师协会神经网络分会研学论坛神经网络 ;sty=1&age=0人工智能研究者俱乐部 2nsoft人工神经网络中文站=================================================枫舞推荐部分书籍:人工神经网络技术入门讲稿(PDF) 神经网络FAQ(英文) 数字神经网络系统(电子图书) 神经网络导论(英文) ===============================================枫舞还找到一份很有参考价值的讲座是Powerpoint文件,比较大,如果网速不够最好用鼠标右键下载另存.=========================================================枫舞添言:很久之前,枫舞梦想智能机器人从自己手中诞生,SO在学专业的时候也有往这方面发展...考研的时候亦是朝着人工智能的方向发展..但是很不幸的是枫舞考研失败 只好放弃这个美好的愿望,为生活奔波.希望你能够成为一个好的智能计算机工程师..枫舞已经努力的在给你提供条件资源哦~~。

什么是神经网络,举例说明神经网络的应用

我想这可能是你想要的神经网络吧!

什么是神经网络:人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。

这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。

神经网络的应用:应用在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人、复杂系统控制等等。

纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。

神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。

主要的研究工作集中在以下几个方面:生物原型从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。

建立模型根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。

算法在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。

神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。

有人可以介绍一下什么是"神经网络"吗?

由于神经网络是多学科交叉的产物,各个相关的学科领域对神经网络都有各自的看法,因此,关于神经网络的定义,在科学界存在许多不同的见解。

目前使用得最广泛的是T.Koholen的定义,即"神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。

"如果我们将人脑神经信息活动的特点与现行冯·诺依曼计算机的工作方式进行比较,就可以看出人脑具有以下鲜明特征:1. 巨量并行性。

在冯·诺依曼机中,信息处理的方式是集中、串行的,即所有的程序指令都必须调到CPU中后再一条一条地执行。而人在识别一幅图像或作出一项决策时,存在于脑中的多方面的知识和经验会同时并发作用以迅速作出解答。

据研究,人脑中约有多达10^(10)~10^(11)数量级的神经元,每一个神经元具有103数量级的连接,这就提供了巨大的存储容量,在需要时能以很高的反应速度作出判断。

2. 信息处理和存储单元结合在一起。 在冯·诺依曼机中,存储内容和存储地址是分开的,必须先找出存储器的地址,然后才能查出所存储的内容。一旦存储器发生了硬件故障,存储器中存储的所有信息就都将受到毁坏。

而人脑神经元既有信息处理能力又有存储功能,所以它在进行回忆时不仅不用先找存储地址再调出所存内容,而且可以由一部分内容恢复全部内容。

当发生"硬件"故障(例如头部受伤)时,并不是所有存储的信息都失效,而是仅有被损坏得最严重的那部分信息丢失。3. 自组织自学习功能。

冯·诺依曼机没有主动学习能力和自适应能力,它只能不折不扣地按照人们已经编制好的程序步骤来进行相应的数值计算或逻辑计算。

而人脑能够通过内部自组织、自学习的能力,不断地适应外界环境,从而可以有效地处理各种模拟的、模糊的或随机的问题。 神经网络研究的主要发展过程大致可分为四个阶段:1. 第一阶段是在五十年代中期之前。

西班牙解剖学家Cajal于十九世纪末创立了神经元学说,该学说认为神经元的形状呈两极,其细胞体和树突从其他神经元接受冲动,而轴索则将信号向远离细胞体的方向传递。

在他之后发明的各种染色技术和微电极技术不断提供了有关神经元的主要特征及其电学性质。

1943年,美国的心理学家W.S.McCulloch和数学家W.A.Pitts在论文《神经活动中所蕴含思想的逻辑活动》中,提出了一个非常简单的神经元模型,即M-P模型。

该模型将神经元当作一个功能逻辑器件来对待,从而开创了神经网络模型的理论研究。

1949年,心理学家D.O. Hebb写了一本题为《行为的组织》的书,在这本书中他提出了神经元之间连接强度变化的规则,即后来所谓的Hebb学习法则。

Hebb写道:"当神经细胞A的轴突足够靠近细胞B并能使之兴奋时,如果A重复或持续地激发B,那么这两个细胞或其中一个细胞上必然有某种生长或代 谢过程上的变化,这种变化使A激活B的效率有所增加。

"简单地说,就是 如果两个神经元都处于兴奋状态,那么它们之间的突触连接强度将会得到增强。

五十年代初,生理学家Hodykin和数学家Huxley在研究神经细胞膜等效电路时,将膜上离子的迁移变化分别等效为可变的Na+电阻和K+电阻,从而建立了著名的Hodykin-Huxley方程。

这些先驱者的工作激发了许多学者从事这一领域的研究,从而为神经计算的出现打下了基础。 2. 第二阶段从五十年代中期到六十年代末。

1958年,F.Rosenblatt等人研制出了历史上第一个具有学习型神经网络特点的模式识别装置,即代号为Mark I的感知机(Perceptron),这一重大事件是神经网络研究进入第二阶段的标志。

对于最简单的没有中间层的感知机,Rosenblatt证明了一种学习算法的收敛性,这种学习算法通过迭代地改变连接权来使网络执行预期的计算。

稍后于Rosenblatt,B.Widrow等人创造出了一种不同类型的会学习的神经网络处理单元,即自适应线性元件Adaline,并且还为Adaline找出了一种有力的学习规则,这个规则至今仍被广泛应用。

Widrow还建立了第一家神经计算机硬件公司,并在六十年代中期实际生产商用神经计算机和神经计算机软件。

除Rosenblatt和Widrow外,在这个阶段还有许多人在神经计算的结构和实现思想方面作出了很大的贡献。例如,K.Steinbuch研究了称为学习矩阵的一种二进制联想网络结构及其硬件实现。

N.Nilsson于1965年出版的《机器学习》一书对这一时期的活动作了总结。 3. 第三阶段从六十年代末到八十年代初。

第三阶段开始的标志是1969年M.Minsky和S.Papert所著的《感知机》一书的出版。

该书对单层神经网络进行了深入分析,并且从数学上证明了这种网络功能有限,甚至不能解决象"异或"这样的简单逻辑运算问题。同时,他们还发现有许多模式是不能用单层网络训练的,而多层网络是否可行还很值得怀疑。

由于M.Minsky在人工智能领域中的巨大威望,他在论著中作出的悲观结论给当时神经网络沿感知机方向的研究泼了一盆冷水。

在《感知机》一书出版后,美国联邦基金有15年之久没有资助神经网络方面的研究工作,前苏联也取消了几项有前途的研究计划。

但是,即使在这个低潮期里,仍有一些研究者继续从事神经网络的研究工作,如美国波士顿大学的S.Grossberg、芬兰赫尔辛基技术大学的T.Kohonen以及日本东京大学的甘利俊一等人。

他们坚持不懈的工作为神经网络研究的复兴开辟了道路。 4. 第四阶段从八十年代初至今。

1982年,美国加州理工学院的生物物理学家J.J.Hopfield采用全互连型神经网络模型,利用所定义的计算能量函数,成功地求解了计算复杂度为NP完全型的旅行商问题(Travelling Salesman Problem,简称TSP)。

这项突破性进展标志着神经网络方面的研究进入了第四阶段,也是蓬勃发展的阶段。Hopfield模型提出后,许多研究者力图扩展该模型,使之更接近人脑的功能特性。

1983年,T.Sejnowski和G.Hinton提出了"隐单元"的概念,并且研制出了Boltzmann机。

日本的福岛邦房在Rosenblatt的感知机的基础上,增加隐层单元,构造出了可以实现联想学习的"认知机"。Kohonen应用3000个阈器件构造神经网络实现了二维网络的联想式学习功能。

1986年,D.Rumelhart和J.McClelland出版了具有轰动性的著作《并行分布处理-认知微结构的探索》,该书的问世宣告神经网络的研究进入了高潮。

1987年,首届国际神经网络大会在圣地亚哥召开,国际神经网络联合会(INNS)成立。

随后INNS创办了刊物《Journal Neural Networks》,其他 专业杂志如《Neural Computation》,《IEEE Transactions on NeuralNetworks》,《International Journal of Neural Systems》等也纷纷问世。

世界上许多著名大学相继宣布成立神经计算研究所并制订有关教育计划,许多国家也陆续成立了神经网络学会,并召开了多种地区性、国际性会议,优秀论著、重大成果不断涌现。

今天,在经过多年的准备与探索之后,神经网络的研究工作已进入了决定性的阶段。日本、美国及西欧各国均制订了有关的研究规划。日本制订了一个"人类前沿科学计划"。

这项计划为期15-20年,仅初期投资就超过了1万亿日元。在该计划中,神经网络和脑功能的研究占有重要地位,因为所谓"人类前沿科学"首先指的就是有关人类大脑以及通过借鉴人脑而研制新一代计算机的科学领域。

在美国,神经网络的研究得到了军方的强有力的支持。美国国防部投资4亿美元,由国防部高级研究计划局(DAPRA)制订了一个8年研究计划,并成立了相应的组织和指导委员会。

同时,海军研究办公室(ONR)、空军科研办公室(AFOSR)等也纷纷投入巨额资金进行神经网络的研究。DARPA认为神经网络"看来是解决机器智能的唯一希望",并认为"这是一项比原子弹工程更重要的技术"。

美国国家科学基金会(NSF)、国家航空航天局(NASA)等政府机构对神经网络的发展也都非常重视,它们以不同的形式支持了众多的研究课题。 欧共体也制订了相应的研究计划。

在其ESPRIT计划中,就有一个项目是"神经网络在欧洲工业中的应用",除了英、德两国的原子能机构外,还有多个欧洲大公司卷进这个研究项目,如英国航天航空公司、德国西门子公司等。

此外,西欧一些国家还有自己的研究计划,如德国从1988年就开始进行一个叫作"神经信息论"的研究计划。我国从1986年开始,先后召开了多次非正式的神经网络研讨会。

1990年12月,由中国计算机学会、电子学会、人工智能学会、自动化学会、通信学会、物理学会、生物物理学会和心理学会等八个学会联合在北京召开了"中国神经网络首届学术会议",从而开创了我国神经网络研究的新纪元。

人工神经网络,人工神经网络是什么意思

一、 人工神经网络的概念人工神经网络(Artificial Neural Network,ANN)简称神经网络(NN),是基于生物学中神经网络的基本原理,在理解和抽象了人脑结构和外界刺激响应机制后,以网络拓扑知识为理论基础,模拟人脑的神经系统对复杂信息的处理机制的一种数学模型。

该模型以并行分布的处理能力、高容错性、智能化和自学习等能力为特征,将信息的加工和存储结合在一起,以其独特的知识表示方式和智能化的自适应学习能力,引起各学科领域的关注。

它实际上是一个有大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。

每个节点代表一种特定的输出函数,称为激活函数(activation function)。

每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),神经网络就是通过这种方式来模拟人类的记忆。网络的输出则取决于网络的结构、网络的连接方式、权重和激活函数。

而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。神经网络的构筑理念是受到生物的神经网络运作启发而产生的。

人工神经网络则是把对生物神经网络的认识与数学统计模型相结合,借助数学统计工具来实现。

另一方面在人工智能学的人工感知领域,我们通过数学统计学的方法,使神经网络能够具备类似于人的决定能力和简单的判断能力,这种方法是对传统逻辑学演算的进一步延伸。

人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。

输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。

神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。

人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。

神经网络,是一种应用类似于大脑神经突触连接结构进行信息处理的数学模型,它是在人类对自身大脑组织结合和思维机制的认识理解基础之上模拟出来的,它是根植于神经科学、数学、思维科学、人工智能、统计学、物理学、计算机科学以及工程科学的一门技术。

二、 人工神经网络的发展神经网络的发展有悠久的历史。其发展过程大致可以概括为如下4个阶段。

1. 第一阶段----启蒙时期(1)、M-P神经网络模型:20世纪40年代,人们就开始了对神经网络的研究。

1943 年,美国心理学家麦克洛奇(Mcculloch)和数学家皮兹(Pitts)提出了M-P模型,此模型比较简单,但是意义重大。

在模型中,通过把神经元看作个功能逻辑器件来实现算法,从此开创了神经网络模型的理论研究。

(2)、Hebb规则:1949 年,心理学家赫布(Hebb)出版了《The Organization of Behavior》(行为组织学),他在书中提出了突触连接强度可变的假设。

这个假设认为学习过程最终发生在神经元之间的突触部位,突触的连接强度随之突触前后神经元的活动而变化。这一假设发展成为后来神经网络中非常著名的Hebb规则。

这一法则告诉人们,神经元之间突触的联系强度是可变的,这种可变性是学习和记忆的基础。Hebb法则为构造有学习功能的神经网络模型奠定了基础。

(3)、感知器模型:1957 年,罗森勃拉特(Rosenblatt)以M-P 模型为基础,提出了感知器(Perceptron)模型。

感知器模型具有现代神经网络的基本原则,并且它的结构非常符合神经生理学。

这是一个具有连续可调权值矢量的MP神经网络模型,经过训练可以达到对一定的输入矢量模式进行分类和识别的目的,它虽然比较简单,却是第一个真正意义上的神经网络。

Rosenblatt 证明了两层感知器能够对输入进行分类,他还提出了带隐层处理元件的三层感知器这一重要的研究方向。

Rosenblatt 的神经网络模型包含了一些现代神经计算机的基本原理,从而形成神经网络方法和技术的重大突破。

(4)、ADALINE网络模型: 1959年,美国著名工程师威德罗(B.Widrow)和霍夫(M.Hoff)等人提出了自适应线性元件(Adaptive linear element,简称Adaline)和Widrow-Hoff学习规则(又称最小均方差算法或称δ规则)的神经网络训练方法,并将其应用于实际工程,成为第一个用于解决实际问题的人工神经网络,促进了神经网络的研究应用和发展。

ADALINE网络模型是一种连续取值的自适应线性神经元网络模型,可以用于自适应系统。

2. 第二阶段----低潮时期人工智能的创始人之一Minsky和Papert对以感知器为代表的网络系统的功能及局限性从数学上做了深入研究,于1969年发表了轰动一时《Perceptrons》一书,指出简单的线性感知器的功能是有限的,它无法解决线性不可分的两类样本的分类问题,如简单的线性感知器不可能实现“异或”的逻辑关系等。

这一论断给当时人工神经元网络的研究带来沉重的打击。开始了神经网络发展史上长达10年的低潮期。

(1)、自组织神经网络SOM模型:1972年,芬兰的KohonenT.教授,提出了自组织神经网络SOM(Self-Organizing feature map)。

后来的神经网络主要是根据KohonenT.的工作来实现的。SOM网络是一类无导师学习网络,主要用于模式识别﹑语音识别及分类问题。

它采用一种“胜者为王”的竞争学习算法,与先前提出的感知器有很大的不同,同时它的学习训练方式是无指导训练,是一种自组织网络。

这种学习训练方式往往是在不知道有哪些分类类型存在时,用作提取分类信息的一种训练。

(2)、自适应共振理论ART:1976年,美国Grossberg教授提出了著名的自适应共振理论ART(Adaptive Resonance Theory),其学习过程具有自组织和自稳定的特征。

3. 第三阶段----复兴时期(1)、Hopfield模型:1982年,美国物理学家霍普菲尔德(Hopfield)提出了一种离散神经网络,即离散Hopfield网络,从而有力地推动了神经网络的研究。

在网络中,它首次将李雅普诺夫(Lyapunov)函数引入其中,后来的研究学者也将Lyapunov函数称为能量函数。证明了网络的稳定性。

1984年,Hopfield 又提出了一种连续神经网络,将网络中神经元的激活函数由离散型改为连续型。

1985 年,Hopfield和Tank利用Hopfield神经网络解决了著名的旅行推销商问题(Travelling Salesman Problem)。Hopfield神经网络是一组非线性微分方程。

Hopfield的模型不仅对人工神经网络信息存储和提取功能进行了非线性数学概括,提出了动力方程和学习方程,还对网络算法提供了重要公式和参数,使人工神经网络的构造和学习有了理论指导,在Hopfield模型的影响下,大量学者又激发起研究神经网络的热情,积极投身于这一学术领域中。

因为Hopfield 神经网络在众多方面具有巨大潜力,所以人们对神经网络的研究十分地重视,更多的人开始了研究神经网络,极大地推动了神经网络的发展。

(2)、Boltzmann机模型:1983年,Kirkpatrick等人认识到模拟退火算法可用于NP完全组合优化问题的求解,这种模拟高温物体退火过程来找寻全局最优解的方法最早由Metropli等人1953年提出的。

1984年,Hinton与年轻学者Sejnowski等合作提出了大规模并行网络学习机,并明确提出隐单元的概念,这种学习机后来被称为Boltzmann机。

Hinton和Sejnowsky利用统计物理学的感念和方法,首次提出的多层网络的学习算法,称为Boltzmann 机模型。

(3)、BP神经网络模型:1986年,儒默哈特( melhart)等人在多层神经网络模型的基础上,提出了多层神经网络权值修正的反向传播学习算法----BP算法(Error Back-Propagation),解决了多层前向神经网络的学习问题,证明了多层神经网络具有很强的学习能力,它可以完成许多学习任务,解决许多实际问题。

(4)、并行分布处理理论:1986年,由Rumelhart和McCkekkand主编的《Parallel Distributed Processing:Exploration in the Microstructures of Cognition》,该书中,他们建立了并行分布处理理论,主要致力于认知的微观研究,同时对具有非线性连续转移函数的多层前馈网络的误差反向传播算法即BP算法进行了详尽的分析,解决了长期以来没有权值调整有效算法的难题。

可以求解感知机所不能解决的问题,回答了《Perceptrons》一书中关于神经网络局限性的问题,从实践上证实了人工神经网络有很强的运算能力。

(5)、细胞神经网络模型:1988年,Chua和Yang提出了细胞神经网络(CNN)模型,它是一个细胞自动机特性的大规模非线性计算机仿真系统。

Kosko建立了双向联想存储模型(BAM),它具有非监督学习能力。(6)、Darwinism模型:Edelman提出的Darwinism模型在90年代初产生了很大的影响,他建立了一种神经网络系统理论。

(7)、1988年,Linsker对感知机网络提出了新的自组织理论,并在Shanon信息论的基础上形成了最大互信息理论,从而点燃了基于NN的信息应用理论的光芒。

(8)、1988年,Broomhead和Lowe用径向基函数(Radialbasis function, RBF)提出分层网络的设计方法,从而将NN的设计与数值分析和线性适应滤波相挂钩。

(9)、1991年,Haken把协同引入神经网络,在他的理论框架中,他认为,认知过程是自发的,并断言模式识别过程即是模式形成过程。

(10)、1994年,廖晓昕关于细胞神经网络的数学理论与基础的提出,带来了这个领域新的进展。

通过拓广神经网络的激活函数类,给出了更一般的时滞细胞神经网络(DCNN)、Hopfield神经网络(HNN)、双向联想记忆网络(BAM)模型。

(11)、90年代初,Vapnik等提出了支持向量机(Supportvector machines, SVM)和VC(Vapnik-Chervonenkis)维数的概念。

经过多年的发展,已有上百种的神经网络模型被提出。

神经网络算法原理

4.2.1 概述人工神经网络的研究与计算机的研究几乎是同步发展的。

1943年心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型,20世纪50年代末,Rosenblatt提出了感知器模型,1982年,Hopfiled引入了能量函数的概念提出了神经网络的一种数学模型,1986年,Rumelhart及LeCun等学者提出了多层感知器的反向传播算法等。

神经网络技术在众多研究者的努力下,理论上日趋完善,算法种类不断增加。目前,有关神经网络的理论研究成果很多,出版了不少有关基础理论的著作,并且现在仍是全球非线性科学研究的热点之一。

神经网络是一种通过模拟人的大脑神经结构去实现人脑智能活动功能的信息处理系统,它具有人脑的基本功能,但又不是人脑的真实写照。它是人脑的一种抽象、简化和模拟模型,故称之为人工神经网络(边肇祺,2000)。

人工神经元是神经网络的节点,是神经网络的最重要组成部分之一。目前,有关神经元的模型种类繁多,最常用最简单的模型是由阈值函数、Sigmoid 函数构成的模型(图 4-3)。

图4-3 人工神经元与两种常见的输出函数神经网络学习及识别方法最初是借鉴人脑神经元的学习识别过程提出的。

输入参数好比神经元接收信号,通过一定的权值(相当于刺激神经兴奋的强度)与神经元相连,这一过程有些类似于多元线性回归,但模拟的非线性特征是通过下一步骤体现的,即通过设定一阈值(神经元兴奋极限)来确定神经元的兴奋模式,经输出运算得到输出结果。

经过大量样本进入网络系统学习训练之后,连接输入信号与神经元之间的权值达到稳定并可最大限度地符合已经经过训练的学习样本。

在被确认网络结构的合理性和学习效果的高精度之后,将待预测样本输入参数代入网络,达到参数预测的目的。

4.2.2 反向传播算法(BP法)发展到目前为止,神经网络模型不下十几种,如前馈神经网络、感知器、Hopfiled 网络、径向基函数网络、反向传播算法(BP法)等,但在储层参数反演方面,目前比较成熟比较流行的网络类型是误差反向传播神经网络(BP-ANN)。

BP网络是在前馈神经网络的基础上发展起来的,始终有一个输入层(它包含的节点对应于每个输入变量)和一个输出层(它包含的节点对应于每个输出值),以及至少有一个具有任意节点数的隐含层(又称中间层)。

在 BP-ANN中,相邻层的节点通过一个任意初始权值全部相连,但同一层内各节点间互不相连。

对于 BP-ANN,隐含层和输出层节点的基函数必须是连续的、单调递增的,当输入趋于正或负无穷大时,它应该接近于某一固定值,也就是说,基函数为“S”型(Kosko,1992)。

BP-ANN 的训练是一个监督学习过程,涉及两个数据集,即训练数据集和监督数据集。

给网络的输入层提供一组输入信息,使其通过网络而在输出层上产生逼近期望输出的过程,称之为网络的学习,或称对网络进行训练,实现这一步骤的方法则称为学习算法。

BP网络的学习过程包括两个阶段:第一个阶段是正向过程,将输入变量通过输入层经隐层逐层计算各单元的输出值;第二阶段是反向传播过程,由输出误差逐层向前算出隐层各单元的误差,并用此误差修正前层权值。

误差信息通过网络反向传播,遵循误差逐步降低的原则来调整权值,直到达到满意的输出为止。

网络经过学习以后,一组合适的、稳定的权值连接权被固定下来,将待预测样本作为输入层参数,网络经过向前传播便可以得到输出结果,这就是网络的预测。

反向传播算法主要步骤如下:首先选定权系数初始值,然后重复下述过程直至收敛(对各样本依次计算)。

(1)从前向后各层计算各单元Oj储层特征研究与预测(2)对输出层计算δj储层特征研究与预测(3)从后向前计算各隐层δj储层特征研究与预测(4)计算并保存各权值修正量储层特征研究与预测(5)修正权值储层特征研究与预测以上算法是对每个样本作权值修正,也可以对各个样本计算δj后求和,按总误差修正权值。

对神经网络的简单理解,简述什么是神经网络相关推荐

  1. 神经网络学说的主要观点,对神经网络的简单理解

    心理学中定位说和模块说的区别是?整体说和神经网络学说的区别是?模块说和神经网络学说的区别是? 简单说下,希望对你有帮助.定位说认为:大脑的具体功能是对应具体的部位.模块说认为:大脑的具体功能是由多个部 ...

  2. 用神经网络表示与逻辑,对神经网络的简单理解

    人工神经网络的知识表示形式和推理机制 神经网络有多种分类方式,例如,按网络性能可分为连续型与离散型网络,确定型与随机型网络:按网络拓扑结构可分为前向神经网络与反馈神经网络.本章土要简介前向神经网络.反 ...

  3. 神经网络适用于什么问题,对神经网络的简单理解

    神经网络包括卷积层,还包括哪些层 卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出 ...

  4. 简述神经网络的基本思想,简述什么是神经网络

    文本分类的方法 文本分类问题与其它分类问题没有本质上的区别,其方法可以归结为根据待分类数据的某些特征来进行匹配,当然完全的匹配是不太可能的,因此必须(根据某种评价标准)选择最优的匹配结果,从而完成分类 ...

  5. 人工智能:深度学习算法及应用——简单理解CNN卷积神经网络并python实现(带源码)

    深度学习算法及应用 一. 实验目的 二. 实验要求 三. 实验的硬件.软件平台 四. 实验原理 1.1. 深度学习概述 1.2. 深度学习的常见结构 1.3. 卷积神经网络(CNN) **卷积** * ...

  6. 卷积神经网络CNNs的理解与体会

    https://blog.csdn.net/shijing_0214/article/details/53143393 孔子说过,温故而知新,时隔俩月再重看CNNs,当时不太了解的地方,又有了新的理解 ...

  7. 机器学习基础(一)——人工神经网络与简单的感知器

    机器学习基础(一)--人工神经网络与简单的感知器 (2012-07-04 19:57:20) 转载▼ 标签: 杂谈 分类: machineのlearning 从最开始做数据挖掘而接触人工智能的知识开始 ...

  8. 深度学习Deep learning:四十九(RNN-RBM简单理解)

    前言: 本文主要是bengio的deep learning tutorial教程主页中最后一个sample:rnn-rbm in polyphonic music. 即用RNN-RBM来model复调 ...

  9. 深度学习Deep learning:四十一(Dropout简单理解)

    前言 训练神经网络模型时,如果训练样本较少,为了防止模型过拟合,Dropout可以作为一种trikc供选择.Dropout是hintion最近2年提出的,源于其文章Improving neural n ...

最新文章

  1. docker环境搭建
  2. vue key重复_【第2112期】 import { reactive } from #39;vue#39;
  3. 如何修改可执行文件的图标
  4. python 勒索病毒 源码_python生成的exe被360识别为勒索病毒原因及解决方法
  5. 记者“卧底”程序猿的故事
  6. mahout0.7 示例运行纪实
  7. Java反序列s ysoserial Spring
  8. 下载并安装WIN7 SP2的官方补丁包
  9. python词性标注_Python词性标注HMM+viterbi实现
  10. 疫情下的春招季:AI面试官已就位,请接招!
  11. Krpano入门,导航栏,与javascript交互!!
  12. 常见邮件服务器(接收服务器和发送邮件服务器)地址
  13. 联想拯救者15ISK更换NVEM2.0三星SSD980过程实操
  14. what is the power of self-discipline in our life?
  15. ETH区块确认数如何获取
  16. 完美解决ExtJs6上传中文文件名乱码,后端SpringMVC
  17. 那些年,在MSRA实习过的女孩,现在都怎么样了?
  18. 【python】牛顿迭代法求解多元函数的最小值--以二元函数为例
  19. 1338_龙书笔记_001_编译器的大概结构以及工作的基本流程
  20. 千里馬高中率免杀网馬賀歲版算法注册机 Code.By.HackWm[D.S.T].

热门文章

  1. 开源真的在蚕食整个世界吗
  2. 去除stackoverflow页面上关不掉的cookie弹窗
  3. 博途SCL边沿触发(上升沿/下降沿)有输入无输出
  4. 【matlab 官方刷题网站cody】题目解答积累
  5. CSP认证202209-3:防疫大数据
  6. 人脸识别数据集-Glint360K
  7. Sun推出新的开放网络系统产品
  8. (7)货币时间价值利率
  9. php中的==和===的用法及区别
  10. 【PTA】C语言 7-3 大炮打蚊子