预备知识

  • 1.1数域
  • 1.2连加号
  • 1.3数学归纳法
  • 1.4一元多项式的概念
  • 1.5整除
  • 1.6最大公因式
  • 1.7韦达定理
  • 1.8等价关系

1.1数域

  • 数的发展:
    1.自然数 Natural Number
    2.整数 Integer (自然数+负整数)
    3.有理数 Rational Number (整数+分数)
    4.实数 Real Number (有理数+无理数)
    5.复数 Complex Number (实数+虚数)
    6.四元数 Quaternion
    ……
  • 棣莫夫定理:
    z z ′ = ∣ z ∣ ∣ z ′ ∣ ( cos ⁡ ( θ + θ ′ ) + i sin ⁡ ( θ + θ ′ ) ) zz'=|z||z'|(\cos(\theta+\theta')+i\sin(\theta+\theta')) zz′=∣z∣∣z′∣(cos(θ+θ′)+isin(θ+θ′))
    由此可得:
    z n = ∣ z ∣ n ( cos ⁡ z^n=|z|^n(\cos zn=∣z∣n(cosn θ \theta θ+i sin ⁡ \sin sinn θ ) \theta) θ)
    z z ′ = ∣ z ∣ ∣ z ′ ∣ ( cos ⁡ ( θ − θ ′ ) + i sin ⁡ ( θ − θ ′ ) ) \frac{z}{z'}=\frac{|z|}{|z'|}(\cos(\theta-\theta')+i\sin(\theta-\theta')) z′z​=∣z′∣∣z∣​(cos(θ−θ′)+isin(θ−θ′))
  1. 定义1:
    方程 x n − 1 = 0 x^n-1=0 xn−1=0 的根称为n次单位根
    几何意义:单位元进行 n n n次等分

    命题1.1.1
    在复数域中,方程 x n − 1 = 0 x^n-1=0 xn−1=0 的根共有n个,他们可表示为 w k = cos ⁡ 2 k π n + i sin ⁡ 2 k π n w_k=\cos\frac{2k\pi}{n}+i\sin\frac{2k\pi}{n} wk​=cosn2kπ​+isinn2kπ​,
    k = 0 , 1 , 2 , … … n − 1 k=0,1,2,……n-1 k=0,1,2,……n−1

  2. 定义2:
    设 F F F是复数域 C \mathbb{C} C的一个子集,且 0 , 1 ∈ F 0,1\in F 0,1∈F,如果 F F F中任意两个数对于四则运算封闭(除数非零),则称 F F F是一个数域

    封闭性:
    若非空集合 A A A中有运算" ∘ \circ ∘", ∀ a , b ∈ A \forall a,b\in A ∀a,b∈A,都有 a ∘ b ∈ A a\circ b\in A a∘b∈A,则称集合 A A A关于运算" ∘ \circ ∘"是封闭

    命题
    有理数域 Q \mathbb{Q} Q是最小的数域

  3. 定义3:
    设 R R R是复数域 C \mathbb{C} C的一个子集,且 0 , 1 ∈ R 0,1\in R 0,1∈R.如果R关于运算加减乘封闭,则称 R R R是一个数环

    整数环
    高斯(Guass)数环 Z ( − 1 ) = { a + b − 1 ∣ a , b ∈ Z } \mathbb{Z}(\sqrt{-1})=\{a+b\sqrt{-1}|a,b\in \mathbb{Z}\} Z(−1 ​)={a+b−1 ​∣a,b∈Z}
    艾森斯坦因(Eisenstein) Z ( ω ) = { a + b ω ∣ a , b ∈ Z } \mathbb{Z}(\omega)=\{a+b\omega|a,b\in \mathbb{Z}\} Z(ω)={a+bω∣a,b∈Z}


1.2连加号

  • ∑ i = 1 n a i = a 1 + a 2 + … … + a n \sum_{i=1}^{n}{a_i}=a_1+a_2+……+a_n i=1∑n​ai​=a1​+a2​+……+an​

命题1.2.1
证明: ∑ i = 1 m ∑ j = 1 n a i j = ∑ j = 1 n ∑ i = 1 m a i j \sum_{i=1}^{m}\sum_{j=1}^{n}a_{ij}=\sum_{j=1}^{n}\sum_{i=1}^{m}a_{ij} i=1∑m​j=1∑n​aij​=j=1∑n​i=1∑m​aij​

  • ∏ i = 1 n a i = a 1 a 2 … … a n \prod_{i=1}^{n}a_i=a_1a_2……a_n i=1∏n​ai​=a1​a2​……an​

1.3数学归纳法

  • 最小数公理(良序公理):
    自然数集 N \mathbb{N} N的任意一个非空子集 S S S比必含有一个最小数,即 ∃ a ∈ S , s . t . ∀ c ∈ S , c ≥ a . \exists a\in S,s.t.\forall c\in S,c\geq a. ∃a∈S,s.t.∀c∈S,c≥a.
  1. 定理1(第一数学归纳法):
    设有一个与自然数 n n n有关的命题,如果
    (1)当 n = 0 n=0 n=0时,命题成立;
    (2)假设 n = k n=k n=k时成立,则 n = k + 1 n=k+1 n=k+1时也成立;
    则命题对所有自然数成立

  2. 定理2(第二数学归纳法):
    设有一个与自然数 n n n有关的命题,如果
    (1)当 n = 0 n=0 n=0时,命题成立;
    (2)假设命题对所有小于 k k k的自然数成立,则命题对 n = k n=k n=k也成立;
    则命题对所有自然数成立


1.4一元多项式的概念

  1. 次数:记作 d e g ( f ( x ) ) deg(f(x)) deg(f(x))或 ∂ ( f ( x ) ) \partial(f(x)) ∂(f(x))

  2. 定义1
    设多项式 f ( x ) = ∑ i = 0 n a i x i f(x)=\sum_{i=0}^{n}{a_ix^i} f(x)=∑i=0n​ai​xi和 g ( x ) = ∑ j = 0 m b j x j , n ≥ m g(x)=\sum_{j=0}^{m}{b_jx^j},n\geq m g(x)=∑j=0m​bj​xj,n≥m,则多项式的加法减法定义如下 f ( x ) + g ( x ) = ∑ i = 0 n ( a i + b i ) x i f(x)+g(x)=\sum_{i=0}^{n}{(a_i+b_i)x^i} f(x)+g(x)=i=0∑n​(ai​+bi​)xi f ( x ) g ( x ) = ∑ s = 0 n + m ( ∑ i + j = s a i b j ) x s f(x)g(x)=\sum_{s=0}^{n+m}{(\sum_{i+j=s}a_ib_j)x^s} f(x)g(x)=s=0∑n+m​(i+j=s∑​ai​bj​)xs

    • 多项式的加法满足:交换律,结合律,零元率,负元率
    • 多项式的乘法满足:交换律,结合律,分配律,消去律

    命题1.4.1
    设 f ( x ) f(x) f(x)和 g ( x ) g(x) g(x)是数域 F F F上的任意两个多项式,则 ∂ ( f ( x ) + g ( x ) ) ≤ m a x { ∂ ( f ( x ) ) , ∂ ( g ( x ) ) } \partial(f(x)+g(x))\leq max\{\partial(f(x)),\partial(g(x))\} ∂(f(x)+g(x))≤max{∂(f(x)),∂(g(x))} ∂ ( f ( x ) g ( x ) ) = ∂ ( f ( x ) ) + ∂ ( g ( x ) ) \partial(f(x)g(x))=\partial(f(x))+\partial(g(x)) ∂(f(x)g(x))=∂(f(x))+∂(g(x))

  3. 定义2
    数域 F F F上的一元多项式的全体,连同定义1.4.3中定义的加法和乘法运算,称为数域 F F F上的一元多项式环,记作 F [ x ] F[x] F[x].


1.5整除

  1. 定理1(欧式除法)
    对任意的 f ( x ) , g ( x ) ∈ F [ x ] f(x),g(x)\in F[x] f(x),g(x)∈F[x],且 g ( x ) ≠ 0 g(x)\neq 0 g(x)=0,存在唯一的 q ( x ) , r ( x ) q(x),r(x) q(x),r(x),使得 f ( x ) = q ( x ) g ( x ) + r ( x ) f(x)=q(x)g(x)+r(x) f(x)=q(x)g(x)+r(x)其中 ∂ ( r ( x ) ) < ∂ ( g ( x ) ) \partial(r(x))<\partial(g(x)) ∂(r(x))<∂(g(x)),或者 r ( x ) = 0 r(x)=0 r(x)=0

  2. 定理2(判定定理)
    对任意的 f ( x ) , g ( x ) ∈ F [ x ] , g ( x ) ≠ 0 f(x),g(x)\in F[x],g(x)\neq0 f(x),g(x)∈F[x],g(x)=0,则 g ( x ) ∣ f ( x ) g(x)\mid f(x) g(x)∣f(x)的充要条件是余式 r ( x ) = 0 r(x)=0 r(x)=0

  3. 定理3(性质定理)
    任意的 f ( x ) , g ( x ) , h ( x ) ∈ F [ x ] f(x),g(x),h(x)\in F[x] f(x),g(x),h(x)∈F[x],我们有

    • 若 f ( x ) ∣ g ( x ) f(x)\mid g(x) f(x)∣g(x)且 g ( x ) ∣ f ( x ) g(x)\mid f(x) g(x)∣f(x),则 f ( x ) = c g ( x ) f(x)=cg(x) f(x)=cg(x),其中 0 ≠ c ∈ F 0\neq c\in F 0=c∈F;
    • 若 f ( x ) ∣ g ( x ) , g ( x ) ∣ h ( x ) f(x)\mid g(x),g(x)\mid h(x) f(x)∣g(x),g(x)∣h(x),则 f ( x ) ∣ h ( x ) f(x)\mid h(x) f(x)∣h(x);
    • 若 f ( x ) ∣ g i ( x ) , i = 1 , 2 , … , s f(x)\mid g_i(x),i=1,2,…,s f(x)∣gi​(x),i=1,2,…,s,则 f ( x ) ∣ ∑ i = 1 s u i ( x ) g i ( x ) , ∀ u i ∈ F [ x ] f(x)\mid \sum_{i=1}^{s}{u_i(x)g_i(x)},\forall u_i\in F[x] f(x)∣i=1∑s​ui​(x)gi​(x),∀ui​∈F[x]

    例1.5.3
    证明: ( x d − 1 ) ∣ ( x n − 1 ) (x^d-1)\mid (x^n-1) (xd−1)∣(xn−1)的充要条件是 d ∣ n d\mid n d∣n


1.6最大公因式

  1. 定义1
    设 f ( x ) , g ( x ) ∈ F [ x ] f(x),g(x)\in F[x] f(x),g(x)∈F[x],则 d ( x ) ∈ F [ x ] d(x)\in F[x] d(x)∈F[x]称为 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)的一个最大公因式,如果:

    • d ( x ) d(x) d(x)是 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)的公因式
    • 若 c ( x ) c(x) c(x)是 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)的任一公因式,则 c ( x ) ∣ d ( x ) c(x)\mid d(x) c(x)∣d(x)
  2. 引理1
    若 f ( x ) = g ( x ) q ( x ) + r ( x ) f(x)=g(x)q(x)+r(x) f(x)=g(x)q(x)+r(x)成立,则 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)和 g ( x ) , r ( x ) g(x),r(x) g(x),r(x)有相同的公因式

    我们常把首项系数位1的最大公因式,即首一多项式
    记为 g c d ( f ( x ) , g ( x ) ) 或( f ( x ) , g ( x ) ) gcd(f(x),g(x))或(f(x),g(x)) gcd(f(x),g(x))或(f(x),g(x))

  3. 定理1
    对 ∀ f ( x ) , g ( x ) ∈ F [ x ] \forall f(x),g(x)\in F[x] ∀f(x),g(x)∈F[x], f ( x ) f(x) f(x)和 g ( x ) g(x) g(x)的最大公因式存在

  4. 定理2
    设 f ( x ) , g ( x ) ∈ F [ x ] f(x),g(x)\in F[x] f(x),g(x)∈F[x],则 d ( x ) d(x) d(x) f ( x ) , g ( x ) f(x),g(x) f(x),g(x) d ( x ) d(x) d(x) f ( x ) , g ( x ) f(x),g(x) f(x),g(x) μ ( x ) , ν ( x ) ∈ F [ x ] \mu(x),\nu(x)\in F[x] μ(x),ν(x)∈F[x],使得 d ( x ) = μ ( x ) f ( x ) + ν ( x ) g ( x ) d(x)=\mu(x)f(x)+\nu(x)g(x) d(x)=μ(x)f(x)+ν(x)g(x)

  5. 定义2:
    设 f ( x ) , g ( x ) ∈ F [ x ] f(x),g(x)\in F[x] f(x),g(x)∈F[x]是数域 F F F上的两个多项式,如果 ( f ( x ) , g ( x ) ) = 1 (f(x),g(x))=1 (f(x),g(x))=1,则称 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)互素

  6. 定理3(判定定理)
    设 f ( x ) , g ( x ) ∈ F [ x ] f(x),g(x)\in F[x] f(x),g(x)∈F[x],则 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)互素的充要条件是 ∃ μ ( x ) , ν ( x ) ∈ F [ x ] \exists\mu(x),\nu(x)\in F[x] ∃μ(x),ν(x)∈F[x],使得: μ ( x ) f ( x ) + ν ( x ) g ( x ) = 1 \mu(x)f(x)+\nu(x)g(x)=1 μ(x)f(x)+ν(x)g(x)=1.

  7. 定理1.6.4(性质定理)
    设 f ( x ) , g ( x ) , h ( x ) , f 1 ( x ) , g 1 ( x ) ∈ F [ x ] f(x),g(x),h(x),f_1(x),g_1(x)\in F[x] f(x),g(x),h(x),f1​(x),g1​(x)∈F[x],我们有

    • 若 ( f ( x ) , g ( x ) ) = d ( x ) ≠ 0 (f(x),g(x))=d(x)\neq0 (f(x),g(x))=d(x)=0,设 f ( x ) = f 1 ( x ) d ( x ) , g ( x ) = g 1 ( x ) d ( x ) f(x)=f_1(x)d(x),g(x)=g_1(x)d(x) f(x)=f1​(x)d(x),g(x)=g1​(x)d(x),则 ( f 1 ( x ) , g 1 ( x ) ) = 1 (f_1(x),g_1(x))=1 (f1​(x),g1​(x))=1
    • 若 ( f 1 ( x ) , g ( x ) ) = 1 , ( f 2 ( x ) , g ( x ) ) = 1 (f_1(x),g(x))=1,(f_2(x),g(x))=1 (f1​(x),g(x))=1,(f2​(x),g(x))=1,则 ( f 1 ( x ) f 2 ( x ) , g ( x ) ) = 1 (f_1(x)f_2(x),g(x))=1 (f1​(x)f2​(x),g(x))=1
    • 若 ( f ( x ) , g ( x ) ) = 1 (f(x),g(x))=1 (f(x),g(x))=1且 f ( x ) ∣ g ( x ) h ( x ) f(x)\mid g(x)h(x) f(x)∣g(x)h(x),则 f ( x ) ∣ h ( x ) f(x)\mid h(x) f(x)∣h(x)
    • 若 f 1 ( x ) ∣ g ( x ) , f 2 ( x ) ∣ g ( x ) f_1(x)\mid g(x),f_2(x)\mid g(x) f1​(x)∣g(x),f2​(x)∣g(x),且 ( f 1 ( x ) f 2 ( x ) ) = 1 (f_1(x)f_2(x))=1 (f1​(x)f2​(x))=1,则 f 1 ( x ) f 2 ( x ) ∣ g ( x ) f_1(x)f_2(x)\mid g(x) f1​(x)f2​(x)∣g(x)

1.7韦达定理

定理1.7.1(韦达定理)
设 α 1 , α 2 , … , α n \alpha_1,\alpha_2,…,\alpha_n α1​,α2​,…,αn​为 f ( x ) = a n x n + a n − 1 x n − 1 + … + a 0 f(x)=a_nx^n+a_{n-1}x^{n-1}+…+a_0 f(x)=an​xn+an−1​xn−1+…+a0​的 n n n个负根,则 ( − 1 ) k a n − k a n = ∑ 1 ≤ i 1 < i 2 < … < i k ≤ n α i 1 α i 2 … α i k , k = 1 , 2 , … , n . (-1)^k\frac{a_n-k}{a_n}=\sum_{1\leq i_1<i_2<…<i_k\leq n}{\alpha_{i_1}\alpha_{i_2}…\alpha_{i_k}},k=1,2,…,n. (−1)kan​an​−k​=1≤i1​<i2​<…<ik​≤n∑​αi1​​αi2​​…αik​​,k=1,2,…,n.


1.8等价关系

定义1.8.1:
设A,B是任意两个非空集合.卡氏积 A × B A\times B A×B的每一个子集 R R R都称为一个从 A A A到 B B B的 (二元)关系.

  • 特别地,集合A上的一个二元关系指的是卡氏积 A × A = { ( a , b ) ∣ a , b ∈ A } A\times A=\{(a,b)\mid a,b\in A\} A×A={(a,b)∣a,b∈A}的一个子集R.若 ( a , b ) ∈ R (a,b)\in R (a,b)∈R,则称 a a a与 b b b符合关系 R R R,记作 a R b aRb aRb.

定义1.8.2
集合A上的一个二元关系R称为A上的等价关系(通常记作~),如果

  • 自反性 ∀ a ∈ A , ( a , a ) ∈ R \forall a\in A,(a,a)\in R ∀a∈A,(a,a)∈R
  • 对称性 若 ( a , b ) ∈ R (a,b)\in R (a,b)∈R,则 ( b , a ) ∈ R (b,a)\in R (b,a)∈R
  • 传递性 若 ( a , b ) ∈ R , ( b , c ) ∈ R (a,b)\in R,(b,c)\in R (a,b)∈R,(b,c)∈R,则 ( a , c ) ∈ R (a,c)\in R (a,c)∈R

等价类:设~是集合 A A A上的一个等价关系,记 A A A的子集 [ a ] = { b ∈ A , b ∽ a } [a]=\{b\in A,b\backsim a\} [a]={b∈A,b∽a}称为元素a的等价类
划分:将集合 A A A分成若干个子集的不交并,这些子集的全体称为集合 A A A的一个划分

定理1.8.1
集合 A A A的一个划分决定了 A A A上的一个等价关系;反之, A A A上的一个等价关系决定了 A A A的一个划分


参考书籍:高等代数(科学出版社)

【高等代数】第一章 预备知识相关推荐

  1. 「C++」C++ Primer Plus 笔记:第一章 预备知识

    第一章 预备知识 1.1 C++ 简介 1.2 C++ 简史 OOP:面向对象编程 1.2.1 C语言 编译器:将高级语言翻译成特定计算机的内部语言(底层语言),使用同一高级语言的不同平台编译器可以使 ...

  2. C++PrimerPlus 第一章 预备知识

    C++PrimerPlus 第一章 预备知识 1.1 C++简介 1.2 C++简史 1.2.1 C语言 1.2.2 C语言编程原理 1.2.3 面向对象编程 1.2.4 C++和泛型编程 1.2.5 ...

  3. linux内核源代码情景分析(第一章 预备知识)

    第一章 预备知识 1.1 linux内核简介 linux发展路线图 linux目录结构 GPL许可证 GPL条款规定GNU软件以及GNU软件的基础上加以修改而成的软件,在发布.转让.出售时必须要申明该 ...

  4. C++ Primer Plus 第一章 预备知识

    本博客纯属个人原创,如有盗版和侵犯我的权益,必究 C++三大法宝 1.继承了C语言高效.简洁.快速和可移植的传统(过程性语言) 2.C++面向对象 3.C++模板特性------泛型编程 C语言的编译 ...

  5. (连载)边喝咖啡边学Unity——第二章 预备知识体系

    第二章 预备知识体系 --本章涉及空间数学.解析几何.线性代数.计算机图形学.算法.数据结构等众多基础学科.同上一章相比,虽然枯燥,但是绝不能称为废话之章,即使粗略的看一遍,也比直接跳过来的好,详细地 ...

  6. HttpClient 中文官方教程----第一章基础知识-只收录,未测试

    2019独角兽企业重金招聘Python工程师标准>>> 第一章基础知识 英文链接:http://hc.apache.org/httpcomponents-client-ga/tuto ...

  7. 汇编怎么从内存地址写入连续的数字_汇编语言 第一章 基础知识

    系列文章见:Neptune 第一章 基础知识 1.1 机器语言 机器语言是机器指令的集合,机器指令展开来讲就是一台机器可以正确执行的命令. 由图可见,机器语言是十分晦涩难懂和不易查错的. 1.2 汇编 ...

  8. 【Python学习笔记】第一章基础知识:格式化输出,转义字符,变量类型转换,算术运算符,运算符优先级和赋值运算符,逻辑运算符,世界杯案例题目,条件判断if语句,猜拳游戏与三目运算符

    Python学习笔记之[第一章]基础知识 前言: 一.格式化输出 1.基本格式: 2.练习代码: 二.转义字符 1.基本格式: 2.练习代码: 3.输出结果: 三.输入 1.基本格式: 2.练习代码: ...

  9. 【睿慕课点云处理】第一章-基础知识

    [睿慕课点云处理]第一章-基础知识 作业 答 ROS对齐多种传感器数据的时间戳message_filters

最新文章

  1. Java实现HashTable的基本操作
  2. JZOJ 5417. 【NOIP2017提高A组集训10.24】方阵
  3. Linux centos7 shell特殊符号、cut命令、sort_wc_uniq命令、tee_tr_split命令、shell特殊符号...
  4. python 动态加载与静态加载_python中的元类、静态方法、类方法,动态添加方法...
  5. 2017c语言考核册答案,2017年电大《C语言程序设计》形成性考核册答案.doc
  6. php 变量字节大小,PHP 变量
  7. 为什么 ofo 彻底凉了?| 畅言
  8. 推荐8个很酷很有用的 HTML5 应用程序
  9. 标准工时管理软件VIOOVI助力企业数字化转型
  10. sql语句中----删除表数据的三兄弟
  11. 第4章 手机平板要兼顾,探究碎片
  12. Towards Accurate Scene Text Recognition with Semantic Reasoning Networks
  13. OpenJ_Bailian - 2714 求平均年龄
  14. [新星计划] Python环境搭建 | 万丈高楼平地起
  15. css编辑器推荐-Stylizer 与 Stylizer破解
  16. 【kali-密码攻击】(5.1.1)密码在线破解:Hydra(图形界面)
  17. Android第三方登录——QQ
  18. vue日历,阳历, 阴历,周,年,月,下拉选择,引用element组件,
  19. 云计算迎来黄金十年,新风向标在哪里?
  20. 多模态情感识别(MER)数据集整理

热门文章

  1. java代码实现万年历
  2. 网络表示学习——异构图的分类任务
  3. 欧几里得定理、扩展欧几里德定义及中国剩余定理(数列和一些数学方面的概念)
  4. 【Python实战】2022年中国富豪榜出炉,首富竟是他......教你一键采集榜单并做可视化效果图(今天是拉仇恨的一天鸭~)
  5. 地磅称重中比较常见的问题以及它的解决方法
  6. mafft和mega_初学者基础:进度,警报,工具提示和难以捉摸的Mega Drop
  7. python语言特点可读性_python语言的特点是什么?python语言好学吗?
  8. 暗黑世界 网络游戏从0开始搭建
  9. 【Nginx】将您重定向的次数过多
  10. Promise原理详解及实现方式