我们的生活中,总有各种场合需要证明自己。

内心不够坚定的时候,总是活在不断证明自己的循环中。新人刚入职,会努力证明自己是有能力的;遇到心动的男神,会努力证明自己值得被爱;受到质疑否定,会努力证明我行我能我最棒。

你在他人的评价体系中,努力活成别人的样子;而真正内心强大的人,会把工作做成自己的样子,而非把自己做成工作的样子,会慢慢活出自己的风格,到那时候,你可以自成标准,不必去迎合谁。

                                                                                                            ☚   

接触智能驾驶有段时间了~

除了mobileye纯视觉方案的特立独行,其他厂商无一例外的都在谈传感器融合,尤其是在2018年各大公司在争相落地的关键时期~

显然,无论是出于落地成本的考虑、还是交通政策的部分ADAS功能强制要求,传感器融合是一个必然的趋势~

下面简单介绍下自动驾驶常用的传感器:

1.视觉类摄像机(包括单目、双目立体视觉、全景视觉及红外相机)

2.雷达类测距传感器(激光雷达、毫米波雷达、超声波雷达等)

其中呢,单目相机主要用于特征类符号的检测与识别,如车道线检测、交通标志识别、交通灯识别、行人和车辆检测等,尽管目前来说视觉检测可靠性并不是很高,但是基于机器学习的视觉计算在自动驾驶普及之日一定会是必不可少的部分;双目视觉应用于室外场景的确实不多,毕竟双目的同步和标定是个大问题,目前比较通用的双目标定做法是采用张正友标定法,利用Camera Calibration Toolbox进行标定;毫米波雷达可能是当前最受欢迎的传感器了,毫米波,是工作在毫米波波段(millimeter wave),工作频率在 30~100GHz,波长在1~10mm之间的电磁波,通过向障碍物发射电磁波并接收回波来精确探测目标的方向和距离,其全天候全天时以及准确的测速测距深受开发者的喜爱;当然,激光雷达也是一个在自动驾驶领域非常重要的传感器了,Lidar利用激光来进行对目标进行探测,通过每分钟600转或1200转的进行扫射,它能非常详细的获得一个实时的三维点云数据,包括目标的三维坐标、距离、方位角、反射激光的强度、激光编码、时间等等,常用的有单线、4线、16线、32线、64线、128线束的,是一个高精度的传感器,而且其稳定性好、鲁棒性高,然而,它的成本却让众多厂商在落地的路上望而却步,另外,激光受大气及气象影响大,大气衰减和恶劣天气使作用距离降低,大气湍流会降低激光雷达的测量精度,激光束窄的情况难以搜索目标和捕获目标。一般先有其他设备实施大空域、快速粗捕目标,然后交由激光雷达对目标进行精密跟踪测量。

接下来就来说一说如何实现AEB:

目前,实现AEB的技术主要有三类,分别是基于视觉传感器、毫米波雷达和激光雷达。由于成本限制因素,国内主要使用前两种方式。视觉传感器和毫米波雷达实现对车辆的AEB功能的原理不同:毫米波雷达主要是通过对目标物发送电磁波并接收回波来获得目标物体的距离、速度和角度。视觉方案稍复杂,以单目视觉方案为例,它需要先进行目标识别,然后根据目标在图像中的像素大小来估算目标的距离。

这两类技术各有优劣。总体来讲,摄像头方案成本低,可以识别不同的物体,在物体高度与宽度测量精度、车道线识别、行人识别准确度等方面有优势,是实现车道偏离预警、交通标志识别等功能不可缺少的传感器,但作用距离和测距精度不如毫米波雷达,并且容易受光照、天气等因素的影响。毫米波雷达受光照和天气因素影响较小,测距精度高,但难以识别车道线、交通标志等元素。另外,毫米波雷达通过多普勒偏移的原理能够实现更高精度的目标速度探测。

于是就有了第三种方案,将摄像头和雷达进行融合,相互配合共同构成汽车的感知系统,取长补短,实现更稳定可靠的AEB功能。

传感器融合的思路与方法:

基于多传感器信息融合的车辆主动防碰撞控制系统,就是根据多传感器接收到的车辆前方目标信息和本车的状态信息,利用多源信息融合技术,识别出本车前方车辆的距离和速度等状态信息,并进行碰撞危险估计的。显然,基于多传感信息融合的车辆主动防碰撞控制系统是一种主动式的防撞、防抱死的汽车安全系统,它使反应时间、距离、速度三个方面都能得到优化控制,可减少驾驶员的负担和判断错误,对于提高交通安全性将起到重要作用,是实现汽车自动化驾驶的基础。

回到驾驶场景上:首先摄像头和毫米波雷达分别针对观测目标收集数据,然后对各传感器的输出数据进行特征提取与模式识别处理,并将目标按类别进行准确关联,最后利用融合算法将同一目标的所有传感器数据进行整合,从而得出关于目标威胁性的一致性结论。

数据融合也有不同的策略,比如有的方案会选择将不同传感器各自处理生成的目标数据进行融合,有些会选择将不同传感器的原始数据进行融合,避免一些原始数据的丢失。在智能驾驶场景下,视觉和毫米波雷达的数据融合大致有3种策略:图像级、目标级和信号级。

图像级融合,是以视觉为主体,将雷达输出的整体信息进行图像特征转化,然后与视觉系统的图像输出进行融合;目标级融合, 是对视觉和雷达输出进行综合可信度加权,配合精度标定信息进行自适应的搜索匹配后融合输出;信号级融合,是对视觉和雷达传感器ECU传出的数据源进行融合。其中,信号级别的融合数据损失最小,可靠性最高,但需要大量的运算。

对于视觉和毫米波雷达的融合,技术实现上的主要难点在于摄像头和雷达观测值的匹配、数据融合、多目标场景下有效目标库的维护等,需要考虑容错性、灵活性、可拓展性、可靠性、安装等多方面的因素,首先就要解决的是传感器之间的时间、空间同步问题。

●空间融合

建立精确的雷达坐标系、三维世界坐标系、摄像机坐标系、图像坐标系和像素坐标系之间的坐标转换关系,是实现多传感器数据的空间融合的关键。雷达与视觉传感器空间融合就是将不同传感器坐标系的测量值转换到同一个坐标系中。由于前向视觉系统以视觉为主,只需将雷达坐标系下的测量点通过坐标系转换到摄像机对应的像素坐标系下即可实现多传感器的空间同步。

根据以上转换关系,可以得到雷达坐标系和摄像机像素坐标系之间的转换关系,如下图所示。由此,即可完成空间上雷达检测目标匹配至视觉图像,并在此基础上,将雷达检测对应目标的运动状态信息输出。

时间融合

雷达和视觉信息在除在空间上需要进行融合,还需要传感器在时间上同步采集数据,实现时间的融合。根据毫米波雷达功能工作手册,其采样周期为50ms,即采样帧速率为 20 帧/秒,而摄像机采样帧速率为25 帧/秒。为了保证数据的可靠性,以摄像机采样速率为基准,摄像机每采一帧图像,选取毫米波雷达上一帧缓存的数据,即完成共同采样一帧雷达与视觉融合的数据,从而保证了毫米波雷达数据和摄像机数据时间上的同步。

许多情况下,在特定的已知外部条件下,仅通过一种传感器或单个系统,就能够执行ADAS功能。然而,考虑到路面上有很多不可预计的情况,这还不足实现可靠运行。传感器融合除了能实现更复杂和自主的功能外,还可以在现有功能中实现更少的误报和漏报。说服消费者和立法者,使他们相信汽车可以由“一台机器”自主驾驶,将会十分关键。

最后,传感器数据融合的核心关键还是在于采用合适的融合算法。作为一个新兴领域,数据融合目前尚无统一的理论和广义有效的融合模型和算法,需要根据具体场景来选择,但可以预见,神经网络和人工智能等新技术在传感器数据融合中将起到越来越重要的作用。这也是各行业参与者打造技术壁垒,建立核心竞争力的关键所在。

AEB落地:摄像头与毫米波雷达的融合相关推荐

  1. 单目摄像头光学图像测距_摄像头与毫米波雷达(Radar)融合解析

    01 摄像头和雷达的融合是很多做ADAS当前所关注的关键问题之一.因为单纯摄像头和雷达都无法解决测距问题.不仅在测距,今后可能所应用到的高精度地图也都是需要使用摄像头和雷达的融合才能够实现.当前寻求到 ...

  2. 摄像头与毫米波雷达(Radar)融合

    摄像头与毫米波雷达(Radar)融合 Input: (1)图像视频分辨率(整型int) (2)图像视频格式 (RGB,YUV,MP4等) (3)毫米波雷达点云信息(点云坐标位置x,y,浮点型float ...

  3. 自动驾驶激光雷达、摄像头、毫米波雷达融合算法

    无人驾驶汽车多传感器冗余下的数据融合算法研究 [论文]详见知网链接.ELSEVIER链接.IEEE链接,[开源项目]详见github链接 [编译运行]详见DWD_sensor_fusion编译运行 目 ...

  4. 【自动驾驶】视觉与毫米波雷达数据融合技术

    文章目录 一.相机介绍 二.毫米波雷达介绍 三.为什么要做传感器融合 四.相机与毫米波雷达的融合方式 五.雷达与相机联合标定 (1)毫米波雷达坐标系至世界坐标系 (2)世界坐标系至图像像素坐标系 六. ...

  5. 毫米波雷达视觉融合方案综述(数据级/决策级/特征级融合)

    摘要:本论文详细介绍了基于毫米波雷达和视觉融合的障碍物检测方法,从任务介绍.评估标准和数据集三方面展开. 转载自:自动驾驶之心 原文地址:毫米波雷达视觉融合方案综述(数据级/决策级/特征级融合) 自动 ...

  6. 自动驾驶之心:毫米波雷达-视觉融合感知方法(前融合/特征级融合/数据级融合)

    毫米波雷达-视觉融合感知方法(前融合/特征级融合/数据级融合) 分享一个自动驾驶之心的报告:毫米波雷达与视觉融合目标检测. 作者主页为:https://www.zhihu.com/people/nac ...

  7. 传感器仿真模型一览 | 摄像头激光雷达毫米波雷达

    作者 | 黄浴  编辑 | 汽车人 点击下方卡片,关注"自动驾驶之心"公众号 ADAS巨卷干货,即可获取 点击进入→自动驾驶之心[多传感器融合]技术交流群 后台回复[相机标定]获取 ...

  8. 车载雷达(立体摄像头,毫米波雷达,激光雷达(LiDAR))比较

    第一个主要区别是,立体摄像机是完全被动的. 毫米波雷达和LiDAR使用从测量仪器发射的电磁波或光,并从物体上反射. 它们被称为活动的,因为它们采取行动来测量距离. 只要是从物体上反射出来的距离就可以测 ...

  9. 毫米波雷达和视觉融合简记

    毫米波雷达和视觉传感器融合笔记 毫米波雷达和摄像头概述 毫米波雷达和视觉传感器融合 时间融合 空间融合 写在前面: 1.按照信息抽象的五个层次,融合可分成五个级别,即:检测级融合.位置级融合.属性(目 ...

最新文章

  1. TDD可以驱动设计吗?
  2. 创建Cocos2d-x 3.x项目以及项目结构简要说明
  3. Linux学习总结(7)——阿里云centeros服务器上安装 jdk,tomcat,mysql
  4. java 边界_Java数组边界问题
  5. halcon的算子清点:Chapter 7 :Image
  6. body区域怎么传一个数组_用户输入的虎狼之词,怎么校验之后不见了?
  7. hbase regions_使用Regions ADF 11g进行Master Detail CRUD操作
  8. 删除文件及文件夹命令
  9. tensorrt基础知识+torch版lenet转c++ trt
  10. 【Java】java YYYY-MM-DD与 yyyy的区别,有重大bug
  11. python records库_Python Records库使用举例
  12. Python 之父谈放弃 Python:我对核心成员们失望至极!
  13. 小D课堂 - 零基础入门SpringBoot2.X到实战_第8节 数据库操作之整合Mybaties和事务讲解_34、SpringBoot整合Mybatis实操和打印SQL语句...
  14. 少儿编程、软硬编程课件、创意Scratch的项目小游戏,可单独上一节课
  15. 光学动作捕捉系统构成
  16. android粘性广播删除,android 广播机制(2) 粘性广播-Go语言中文社区
  17. MAC下微信双开(一键命令)
  18. 网络安全工程师的学习路线,超级简单,收藏这一篇就够了
  19. 华为内部的关于IC验证的经验总结
  20. QT简单实验——计算器

热门文章

  1. 最近流行JS写游戏了,那我也来试试一个打砖块的游戏
  2. vue 基础 —— html版的 Vue 入门基础
  3. linux中c文件是否存在,关于linux:如何检查文件是否存在并在C ++中可读?
  4. 美媒:中国太阳能无人机补反航母短板
  5. 双系统如何设置一个优先启动系统如开机默认启动win7系统
  6. 猫途鹰公布2023年全球十大最佳旅行体验和十大顶级景点 | 美通社头条
  7. 第17周翻译:SQL Server中的事务日志管理的阶梯:第5级:在完全恢复模式下管理日志...
  8. 歼-10战机正式列装我军航空兵
  9. 在Matlab中绘制阿基米德螺线
  10. scala控制抽象之传名参数(名调用)