PXC简介:

galera产品是以galera cluster方式为MySQL提高高可用集群解决方案的。galera cluster就是集成了galera插件的mysql集群。galera replication是codership提供的mysql数据同步方案,具有高可用性,方便扩展,并且可以实现多个mysql节点间的数据同步复制与读写,可保障数据库的服务高可用及数据强一致性。

PXC属于一套近乎完美的mysql高可用集群解决方案,相比那些比较传统的基于主从复制模式的集群架构MHA和MM+keepalived,galera cluster最突出特点就是解决了诟病已久的数据复制延迟问题,基本上可以达到实时同步。而且节点与节点之间,他们相互的关系是对等的。本身galera cluster也是一种多主架构。galera cluster最关注的是数据的一致性,对待事物的行为时,要么在所有节点上执行,要么都不执行,它的实现机制决定了它对待一致性的行为非常严格,这也能非常完美的保证MySQL集群的数据一致性;

对galera cluster的封装有两个,虽然名称不同,但实质都是一样的,使用的都是galera cluster。一个MySQL的创始人在自己全新的MariaDB上实现的MAriaDB cluster;一个是著名的MySQL服务和工具提供商percona实现的percona xtradb cluster,简称PXC

要搭建PXC架构至少需要3个mysql实例来组成一个集群,三个实例之间不是主从模式,而是各自为主,所以三者是对等关系,不分从属,这就叫multi-master架构。客户端写入和读取数据时,连接哪个实例都是一样的。读取到的数据时相同的,写入任意一个实例之后,集群自己会将新写入的数据同步到其他实例上,这种架构不共享任何数据,是一种高冗余架构。

--:galera cluster的功能有7点,如下:

①:多主架构:真正的多点读写集群,在任何时候读写的数据都是最新的;

②:同步复制:集群不同节点之间的数据同步,没有延迟,在数据库挂掉之后,数据不会丢失;

③:并发复制:从节点在apply数据时,支持并行执行,有更好的性能表现

④:故障切换:因为支持多点写入,所以在出现数据库故障时可以很容易的进行故障切换

⑤:热插拔:在服务期间,如果数据库挂了,只要监控程序发现的够快,不可服务时间就会非常少,在节点故障期间,节点本身对集群的影响非常小;

⑥:自动节点克隆:在新增节点或停机维护时,增量数据或基础数据不需要人工手动备份提供,galera cluster会自动拉取在线节点数据,集群最终会变为一致;

⑦:对应用透明:集群的维护,对应用程序是透明的,几乎感觉不到;

--PXC原理:

PXC最常使用以下4个端口号:

3306-数据库对外服务的端口号。

4444-请求SST的端口(SST是指数据库一个备份全量文件的传输。)

4567-组成员之间进行沟通的一个端口号

4568-用于传输IST(相对于SST来说的一个增量)

PXC的操作流程:

首先客户端先发起一个事务,该事务先在本地执行,执行完成之后就要发起对事务的提交操作了。在提交之前需要将产生的复制写集广播出去,然后获取到一个全局的事务ID号,一并传送到另一个节点上面。通过合并数据之后,发现没有冲突数据,执行apply_cd和commit_cb动作,否则就需要取消此次事务的操作。而当前server节点通过验证之后,执行提交操作,并返回OK,如果验证没通过,则执行回滚。当然在生产中至少要有3个节点的集群环境,如果其中一个节点没有验证通过,出现了数据冲突,那么此时采取的方式就是讲出现不一致的节点踢出集群环境,而且它自己会执行shutdown命令,自动关机。

PXC的优点:

①:实现mysql数据库集群架构的高可用性和数据的 强一致性。

②:完成了真正的多节点读写的集群方案。

③:改善了传统意义上的主从复制延迟问题,基本上达到了实时同步。

④:新加入的节点可以自动部署,无须提供手动备份,维护起来很方便。

⑤:由于是多节点写入,所以数据库故障切换很容易。

PXC的缺点:

①:新加入的节点开销大,需要复制完整的数据。采用SST传输开销太大。

②:任何更新事务都需要全局验证通过,才会在每个节点库上执行。集群性能受限于性能最差的节点,也就是经常说的短板效应。

③:因为需要保证数据的一致性,所以在多节点并发写时,锁冲突问题比较严重。

④:存在写扩大问题,所有的节点上都会发生些操作。

⑤:只支持innodb存储引擎的表。

⑥:没有表级别的锁定,执行DDL语句操作会把整个集群锁住,而且也 kill 不了(建议使用Osc操作,即在线DDL)

⑦:所有的表必须含有主键,不然操作数据时会报错。

PXC搭建的注意点:

首先要规范集群中节点的数量,整个集群中节点数控制在最少3个、最多8个范围内。最少3个节点是为了防止出现脑裂现象,因为只有在两个节点下才会出现此现象。脑裂现象的标志就是输入任何命令、返回结果都是unkown command,节点在集群中,会因为新节点的加入或者故障,同步失效等而发生状态的切换。

--节点状态变化阶段:

open:节点启动成功,尝试连接到集群。

primary:节点已处于集群中,在新节点加入时,选取donor进行数据同步时会产生的状态。

joiner:节点处于等待接收同步文件时的状态。

joined:节点完成数据同步的工作,尝试保持和集群进度一致。

synced:节点正常提供服务的状态,表示已经同步完成并和集群进度保持一致。

doner:节点处于为新加入的节点提供全量数据时的状态。

注意:doner节点就是数据的贡献者,如果一个新节点加入集群,此时又需要大量数据的SST传输,就有可能因此而拖垮整个集群的性能。所以在生产环境中,如果数据量小,还可以使用SST全量传输,但如果数据量很大就不建议使用这种方式了。可以考虑先建立主从关系,在加入集群。

PXC有两种节点的数据传输方式:一种叫SST全量传输,另一种叫IST增量传输。

SST传输有:xtrabackup、mysqldump和rsync三种方法。而增量传输就一种方法就是xtrabackup。但生产环境中一般数据量不大的时候,可以使用SST全量传输,但也只实现xtrabackup方法。

在PXC中还有一个特别重要的模块就是GCache。它的核心功能就是每个节点缓存当前最新的写集。如果有新节点加入进来,就可以把新数据的增量传递给新节点,而不需要再使用SST方式了。这样可以让节点更快地加入集群中。涉及参数如下:

gcache.size:代表用来缓存写集增量信息的大小。它的默认大小是128MB,通过wsrep_provider_options参数设置。建议调整为2GB-4GB范围,足够的空间便于缓存更多的增量信息。

gcache.mem_size:代表gcache中内存缓存的大小,适度调大可以提高整个集群的性能。

gcache.page_size:可以理解为如果内存不够用(gcache不足),就直接将写集写入磁盘文件中。

--:PXC的工作模式:

galera的工作模式是——某个节点写入一个事务,它会广播到其他节点,而这个所谓的其他节点,也包括自己。也就说自己发出来的事务,自己也会收到,只是在收到并产生GTID之后,就被简单忽略了,而不会再去apply一次。

--:galera的并发控制机制:

并发控制主要是在接口galera_pre_commit中完成的,这个接口是galera最重要的接口之一,这里面实现了最重要的复制、验证逻辑。目前,这个接口中包括的并发控制有以下几点:

①:数据复制:

目前的galera版本中,写集数据的发送是通过asio的异步方式将数据广播出去。这个发送是串行的,是一个临界区,因为在每次 发送前,逻辑上还需要分片,并且每次发送完成之后,需要等待一个GTID的值,所以为了保证数据的一致性,这个发送操作需要串行;

②:写集验证:

要求所有进入处理区的GTID必须是顺序的,因为GTID是顺序产生的,所以在顺序的基础上,同一时间必须只有一个事务可以进行处理,说白了就是串行;

受这种层次并发控制管理的操作主要有验证操作,因此说验证是串行的;

③:写集apply

④:事务commit

这个层次的并发控制机制,默认是3,建议也是3,就是串行提交,这样就保证了不管在主库还是从库,所有的节点产生的binlog都是完全相同的;

3、galera 接口:

---galera_init:

这个接口的作用是初始化一个galera节点,这是一个PXC节点调用的第一个wsrep接口,在启动服务器的时候初始化,将所有需要的参数和环境变量初始化。(如:集群名字,实例地址、需要这个接口做binlog的复制等)

---galera_connect:

这个接口是第二个调用的接口。这个接口的作用是将当前节点加入集群中。加入集群前会调用函数wsrep_view_handler_cb来判断新加入节点与集群的数据是否同步;

---galera_recv:

这个接口的作用是,在这个函数里阻塞式的接收其他节点及本节点发送的数据,并且调用复制apply函数执行复制操作。(这个接口实际上是可以并行存在的。它对应的是参数wsrep_slave_threads有多少个线程,就有多少个galera_recv的调用)

---galera_pre_commit:

这个接口是galera最重要的接口之一。它的作用包括两部分,首先是将当前指定的事务写集广播给整个集群节点,然后就是验证,如果验证成功,则将处理权交给上层,继续做数据库事务的提交操作;这个接口是在数据库事务提交时调用的,调用这个接口时,必须是本地事务已经执行完成;

---galera_replay_trx:

这个接口的作用及使用,就是在验证过程中,由于数据库锁的冲突,当前操作被其他线程自治县了galera_abort_pre_com_mit,导致当前线程被强制中止,但是由于写集已经复制到其他节点,所以本节点这个事务必须要完成。通过这个接口,将这个事务的写集做一次apply,所以就叫replay;

---galera_append_key:

这个接口就是所谓的galera验证,被验证的对象实际上就是写集,而构成写集的内容,其实就是通过这个接口来完成的;

---galera_append_data:

这个接口是当前事务所生成的binlog内容,也就是说key在验证通过之后,使用data在从节点执行,即可做到数据同步;

---galera_post_commit:

这个接口是用来真正提交事务的。这个接口包括4个功能:更新状态参数wsrep_last_committed的值,表示当前事务已经真正提交了;更新参数wsrep_local_commits的值,表示本地又成功提交了一个事务;检查当前验证写集缓冲区是不是可以做purge操作;

---galera_to_execute_start:

这个接口专门用来处理DDL语句的执行;

---galera_to_execute_end:

这个接口实际上和galera_post_commit功能一样,成对出现,是为处理不同语句而设置的,主要就是为了从commit临界区中出来,从而让其他事务继续提交;

mysql集群 clu_MySQL高可用之PXC简介相关推荐

  1. MySQL集群架构:MHA+MySQL-PROXY+LVS实现MySQL集群架构高可用/高性能-技术流ken

    MHA简介 MHA可以自动化实现主服务器故障转移,这样就可以快速将从服务器晋级为主服务器(通常在10-30s),而不影响复制的一致性,不需要花钱买更多的新服务器,不会有性能损耗,容易安装,不必更改现有 ...

  2. 蚂蚁集团万级规模 k8s 集群 etcd 高可用建设之路

    蚂蚁集团运维着可能是全球最大的 k8s 集群:k8s 官方以 5k node 作为 k8s 规模化的顶峰,而蚂蚁集团事实上运维着规模达到 10k node 规模的 k8s 集群.一个形象的比喻就是,如 ...

  3. 蚂蚁集团于雨:万级规模 K8S 集群 Etcd 高可用建设之路

    -     前言    - 蚂蚁集团运维着可能是全球最大的 k8s 集群:k8s 官方以 5k node 作为 k8s 规模化的顶峰,而蚂蚁集团事实上运维着规模达到 10k node 规模的 k8s ...

  4. 【带你重拾Redis】Redis 哨兵集群实现高可用

    Redis 哨兵集群实现高可用 哨兵的介绍 sentinel,中文名是哨兵.哨兵是 Redis 集群架构中非常重要的一个组件,主要有以下功能: 集群监控:负责监控 Redis master 和 sla ...

  5. 数据库集群和高可用解决方案

    数据库集群和高可用解决方案 参考文章: (1)数据库集群和高可用解决方案 (2)https://www.cnblogs.com/Newd/p/9049873.html 备忘一下.

  6. web应用的负载均衡、集群、高可用(HA)解决方案

    web应用的负载均衡.集群.高可用(HA)解决方案 参考文章: (1)web应用的负载均衡.集群.高可用(HA)解决方案 (2)https://www.cnblogs.com/huojg-21442/ ...

  7. ActiveMQ的集群与高可用

    ActiveMQ的集群与高可用 针对大量的消息吞吐量.对MQ可用性要求非常严格的场景.或者非常复杂的消息处理关系情况下,单个MQ实例通常已经无法满足我们的需要,这时候ActiveMQ的集群和高可用方案 ...

  8. K8S集群Master高可用实践

    本文将在前文基础上介绍k8s集群的高可用实践,一般来讲,k8s集群高可用主要包含以下几个内容: 1.etcd集群高可用 2.集群dns服务高可用 3.kube-apiserver.kube-contr ...

  9. 浅谈web应用的负载均衡、集群、高可用(HA)解决方案

    浅谈web应用的负载均衡.集群.高可用(HA)解决方案 转载于:https://www.cnblogs.com/hfultrastrong/p/7887420.html

最新文章

  1. php fastcgi配置_IIS7.5配置php(FastCGI)- 自动配置
  2. 移动端给img加上max-width:100%
  3. mysql 语句碎片
  4. enum操作--获取枚举里的最大值
  5. 关于阿拉伯数字转化成为大写汉字
  6. opencv ppt效果_opencv几何图形画法
  7. 修改MYSQL密码及权限
  8. dcmtk 3.6.0 error C1083: Cannot open include file: 'iostream.h' 解决办法
  9. 突破次元壁障,Python爬虫获取二次元女友
  10. Vmware在ubuntu虚拟机上安装Vmtools
  11. 剑指offer——面试题41-2:和为S的两个数字
  12. 记一次复杂的正则匹配——匹配但不包含
  13. python long转int_将 python long/int转换为固定大小的字节数组_others_酷徒编程知识库...
  14. 计算机基础一体化教程(习题)
  15. c语言程序用if循环,if语句的用法循环语句
  16. GeneXus中如何使用聊天机器人
  17. HTML5的input框placeholder提示文字默认为灰色,修改
  18. En-Tan-Mo(ETM)项目周报(6月14日~6月20日)
  19. Cocos Creator 一步一步实现重力球游戏
  20. 【论文笔记】:作物分类--多时相极化SAR数据的旱地作物分类研究

热门文章

  1. asp建站系统源码_ASP.NET制造业进销存管理系统源码
  2. macOS修改Homebrew镜像
  3. go语言web开发 排坑指南
  4. Python自动化办公知识点整理汇总
  5. python自制有声小说
  6. 深度学习《patchGAN》
  7. 漫步最优化二十四——二分搜索
  8. jdbc关于操作Oracle时间数据解析
  9. 和Hibernate3.6相比,Hibernate 5.x中的增删改性能降低了
  10. tensorflow越跑越慢_tensorflow sess.run()越来越慢的原因分析及其解决方法