作者: Dr. Bob Mroczkowski ,编译:深圳市连接器行业协会李亦平

连接器退化机理对连接器性能非常重要,对相关产品的性能保证至关重要。退化机理是什么?哪些因数导致连接器失效呢?我们将持续探讨这个问题。

连接器用于两个分离系统之间的连接。可分离性是必要原因有很多,从制造的便利性到性能的提升等。然而,当匹配时,连接器不应增加系统之间任何不必要的电阻值。增加电阻值可能使信号失真或功率损失而引起系统故障。连接器退化机理之所以重要,是因为它们是电阻增加的潜在来源,因此,随着时间的推移,导致功能失效。

让我们先简要回顾一下连接器的电阻。图1展示出了通用信号连接器的横截面。图1中的等式表示连接器内的各种电阻源。Ro是连接器的整体电阻,是导体尾端点和PCB连接器脚位焊接点之间的电阻。两个永久连接电阻Rp.c是指压接连接点和相应脚位之间的电阻。同样,两个本体电阻(Rbulk)是指后触点体电阻和连接器两柱之间的并联体电阻;还有一个接口或分离处的接触电阻Rc。整体连接器电阻是各个不变连接电阻、后触点和腔体连接体电阻和可分离处接触电阻之和,因为所有这些电阻都是串联的。

图1,连接器电阻的示意图。

为了便于讨论,让我们假设测量到的总电阻值Ro为15毫欧。考虑到这一假设,我们猜测下永久连接电阻、体电阻和可分离处接触电阻对整个连接器电阻的相对影响。

在这个例子中,这些值是典型的软壳式连接器的电阻值,体电阻将占总电阻的大部分,接近14毫欧。永久连接电阻为几百微欧姆,其它为可分离处的接触电阻。

虽然连接器触点的体电阻是连接器电阻的最大贡献者,但它也是最稳定的。单个触点的体电阻是由触点的制造材料及其整体几何形状决定的。在这个简单的例子中,考虑导体长度的电阻,可以由以下公司计算:Rcond. = r  l/a.

在该方程中,r是导体的电阻率(也可以是连接器中弹簧材料),“l”是导体的长度,而“a”是导体的横截面积(或连接器中弹簧的几何形状)。对于给定的材料,例如磷青铜和接触几何形状,这些参数是常数,因此连接器的整体电阻是恒定的。

永久连接电阻和接口或可分离连接电阻是可变的。这些电阻易受多种退化机理的影响,这将在后面的文章中讨论。需要指出的是,连接器受到的影响很多,比如恶劣环境、热、寿命、振动等。并且总的连接器电阻可能从原来的15毫欧变化到例如100毫欧,电阻的变化主要出现在可分离和永久连接电阻中。可分离的界面电阻是最容易退化的,因为在可分离处产生力和变形等。

简单地说,两个主要的可分离的界面要求产生一定的力和变形。连接器的咬合力是第一种也是最明显的要求。对于高PIN数连接器,必须控制单个PIN位的咬合力,而接触法向力是受此要求制约的主要参数之一。例如,可分离的连接接触力是几十到几百克,而绝缘压接连接,或称IDC,力的数量级是几千克,相应的压入连接中的力也是这样。这种永久连接中高的力提供了更大的机械稳定性和更低的电阻值,比可分离连接的电阻值要低得多。

同样的情形,相对于可分离连接,较高的永久连接力允许接触表面更大的变形。压接连接是最明显的例子,比如压接端子的显著变形,以及单个导体的明显变形等。压接连接的力和相应的PIN脚都允许更大的变形接触表面。与较高的力一样,与可分离的接触电阻相比,永久连接的较大表面变形降低了它们的电阻。

可分离连接面的变形也受到另一种可分离界面要求的限制:配合耐久性。高的表面变形通常导致高的表面磨损,这反过来可能导致接触涂层的损失,例如在接触表面上的金或锡。这种涂层的损失将增加接触表面的腐蚀敏感性,这将在以后的文章中讨论。

与永久连接相比,可分离的接口咬合力和咬合耐久性的结合限制了可分离界面的变形和机械稳定性,也是可分离界面的较低电稳定性的原因。

一般来说,两个表面之间的接触面积越大,界面的电阻就越低。实际上,对于导体长度的电阻,两个表面之间的接触面积类似于方程Rcond. = r l/a。由于可分离连接的接触面积比永久连接低,所以它们具有较高的电阻。

总之,与永久连接相比,可分离连接的力降低导致机械稳定性降低,接触面积减小导致更高的电阻。

这些问题,即接触力的减小和接触面积的减小,直接影响了可分离接触界面的退化敏感性。图2显示了可分离接触界面的放大示意图。图中显示说明,在这种接触界面的微观尺度上,所有表面都是粗糙的。这意味着接触界面本身将由一个称为a点或凹凸不平的接触点的分布组成,而不是一个完整的区域接触。这种凹凸不平的结构是导致接触界面电阻增大的原因。减少的接触面积,包括a点在某一几何区域上的分布,取决于接触表面的几何形状。一种称为收缩电阻的电阻,是由于电流被挤压到流过单个a点而产生的。通过各种方法增加接触面积可以降低收缩电阻,但消除不了。因此,连接器总是会给电气系统增加一些电阻值。从这个角度出发,连接器设计的首要目标是控制电阻的大小和稳定性。

图2:从微观上看接触界面的固有表面粗糙度。

如前所述,界面电阻的大小取决于当插头和插座触点相互接触时产生的接触区域。影响接触电阻稳定性的主要因素有两种:接触界面的扰动和a点的腐蚀。这些因数如何影响连接器退化机理将在以后讨论。总之,这些机理包括:

1 ,在接触界面及其周围发生腐蚀,从而减少接触面积。有两种腐蚀机理: 表面腐蚀,直接影响接触面积;诱导或微动,这可以提高接触界面对腐蚀的敏感性。

2,由于电镀不足或电镀磨损而丧失接触电镀的完整性,从而增加了腐蚀的敏感性。大多数连接器触点都是镀有贵金属的表面层,如黄金;或普通电镀表面,一般是锡。这些镀层的主要目的之一是保护接触基体(通常是铜合金)免受腐蚀。贵金属和非贵金属的腐蚀敏感性是不同的,后面将分别讨论.

3,接触力损失,导致机械稳定性降低,接触界面易受微动影响。导致连接器接触力降低的主要机理是接触应力过大和应力松弛。由于时间/温度的影响,应力松弛是指接触力随时间变化而损失.

更详细的退化机理研究请关注协会公众号后面的内容。

作者简介:

Mroczkowski博士在电子行业有30多年的经验。他在AMP公司开始了他的职业生涯,为AMP客户提供连接器的设计和性能咨询服务。1990年,他加入了AMP高级开发实验室,开发了微型电缆连接器和一种新的用于医学超声诊断设备的微同轴连接器。Mroczkowski博士于1998年从AMP领导位置退休,并创建了ConNtext Associates,这是一家专业提供连接器咨询服务的公司。他同时是 McGraw Hill电子连接器手册的作者,拥有七项专利。

完整的连接器设计手册_连接器退化机理是什么?(一)相关推荐

  1. 完整的连接器设计手册_深度解析特斯拉的电池快充连接器技术|附视频

    推荐:GSAuto联盟|三电技术专家委员会,初期仅对主机厂.Tirl1等公司新能源汽车三电研发管理制造方面人员.大学及科研机构等新能源汽车三电研究人员,现已招募480+人,主要分布在50+主机厂.50 ...

  2. 完整的连接器设计手册_Harwin连接器展示在深井探油应用中不受环境影响的价值...

    Harwin连接器展示在深井探油应用中不受环境影响的价值 2019-06-19 Harwin公司市场推广负责人Ben Green 由于油价下跌,最近三年以来石油勘探活动相对较少,但最近人们对此再次对产 ...

  3. 完整的连接器设计手册_干货 I 关于PCB设计倒角需要了解的一切

    将任意一个角落切掉,便能得到一个倒角.从儿童防护桌到泰姬陵的标志性外墙,人类通过倒角来解决与角相关的功能和美学问题由来已久. 使两个表面以90°以外的角度,尤其是45°相交时,便产生了倒角:但倒角终止 ...

  4. 完整的连接器设计手册_如何设计符合整车厂要求的CAN物理层接口电路?

    CAN是控制器局域网络(Controller Area Network,CAN)的简称,目前已经成为车载控制器的必备接口和标准协议,目前有着广泛的应用.由于CAN这个主题的涉及范围比较多,我们仅仅对物 ...

  5. 完整的连接器设计手册_减速齿轮箱的设计 用一整套完整流程来说明(附PDF手册)...

    减速箱 减速齿轮箱设计手册获取见文章末尾图片 在通用的产品设计中,齿轮减速箱的设计是最简单成熟的一种设计,因为设计流程十分清晰,这已经是一种很成熟的产品了,下面我就来说一说如何做减速齿轮箱的设计,以及 ...

  6. 完整的连接器设计手册_CPCI高速背板设计与仿真

    引言 随着高性能计算机的发展,在许多领域对系统的带宽有着越来越高的要求.因此,为了实现高速数据传输,采用新的总线技术已经成为必然的发展趋势.2005年PICMG 提出了CPCI-E 协议,开辟了新型高 ...

  7. matlab里面连接器是什么,连接器

    连接器 连接器,即CONNECTOR.国内亦称作接插件.插头和插座.一般是指电连接器.即连接两个有源器件的器件,传输电流或信号.它广泛应用于航空.航天.国防等军用系统中.连接器是我们电子工程技术人员经 ...

  8. 深度实践嵌入式linux系,深度实践嵌入式Linux系统移植 完整pdf_操作系统教程_源雷技术空间...

    资源名称:深度实践嵌入式Linux系统移植 完整pdf 第1章嵌入式系统架构与移植环境搭建2 第2章u-boot工程与编译系统14 第3章u-boot启动流程分析41 第4章ARM9/S3C2440 ...

  9. 连接器类型vh_连接器中的类型如PH、XH、SM等都是什么意思?

    展开全部 端子参数 FH0.5mm SH1.0mm GH1.25mm ZH1.5mm PH2.0mm EH/XH2.5/2.54mm(这两个其实是一样的) VH3.96mm 连接器简介: 连接器,即C ...

  10. 如何区别FFC连接器和FPC连接器

    接器领域中,FFC连接器和FPC连接器常常让人混淆.虽然两者都是柔性电缆连接器,但是FFC连接器以及FPC连接器还是有一定程度上的区别.柔性扁平电缆(Flexible Flat Cable)连接器,F ...

最新文章

  1. python编程词汇-基本 Python 词汇
  2. win7 64+python2.7.12安装numpy+scipy+matplotlib+scikit-learn
  3. 关于Dapper - 能否不创建定义表对应类使用
  4. 英特尔AMD竞相为笔记本处理器添加图形功能
  5. react 用html插件,VSCode拓展插件推荐(HTML、Node、Vue、React开发均适用)-Go语言中文社区...
  6. 离散卷积与自相关----------信号处理系列[原创]
  7. APP_FIELD设置Item运行时行为
  8. (转)区块链创造了ICO,但是无法守护ICO
  9. 数据结构(C语言)超详细视频教程
  10. matlab深度DoF图像修复,恢复玩dnf在win10中出错client.exe损坏的图像的技巧
  11. CRM系统实现企业管理高效协同
  12. 根据日期参数查询润乾报表
  13. mysql relay log 修改_MySQL relaylog + SQL_Thread 增量恢复binlog
  14. JUnit5中@ParameterizedTest 处理 @CvsSource中的空值
  15. 初探可视化新秀PyG2Plot
  16. Java时间戳与时间互相转换(含毫秒及秒转换方式)
  17. 蓝绿发布、金丝雀发布、A/B测试
  18. No matching provisioning profile found: Your build settings specify a provisioning profile with the
  19. Mybatis Plus基础06 mapperLocations配置(指定Mapper.xml文件路径)
  20. 推出全新的交互式导航和社交导航 iGibson 挑战

热门文章

  1. Abelssoft Undeleter(数据恢复软件)v5.01免费版
  2. dell 恢复介质_Dell Backup and Recovery 1.8:出厂恢复介质
  3. Apple ID Your Account Cannot Be Created at This Time
  4. java生成图表_【JAVA】POI生成EXCEL图表(柱状图、折线等)
  5. OpenWRT设置SmartDNS+ADGuardHome
  6. 正交实验法,软件测试用例的特性,编写方法,软件缺陷的基础知识
  7. 低代码|零代码云快速开发平台测评
  8. 安卓手机投射电脑屏幕 手机投屏电脑
  9. Antd如何用Menu组件渲染二级或三级目录
  10. 样本不平衡,欠采样,过采样