https://www.jianshu.com/p/74becd7ffcf6

https://www.cnblogs.com/keyyang/p/4128424.html

两个问题

  1. 假设现在是 20018-12-03 12:00:00.000,如果我调用一下 Thread.Sleep(1000) ,在 20018-12-03 12:00:01.000 的时候,这个线程会不会被唤醒?
  2. 某人的代码中用了一句看似莫明其妙的话:Thread.Sleep(0) 。既然是 Sleep 0 毫秒,那么他跟去掉这句代码相比,有啥区别么?

对于第一个问题,答案是:不一定。因为你只是告诉操作系统:在未来的1000毫秒内我不想再参与到CPU竞争。那么1000毫秒过去之后,这时候也许另外一个线程正在使用CPU,那么这时候操作系统是不会重新分配CPU的,直到那个线程挂起或结束;况且,即使这个时候恰巧轮到操作系统进行CPU 分配,那么当前线程也不一定就是总优先级最高的那个,CPU还是可能被其他线程抢占去。
Thread.Sleep(0)的作用,就是“让出cpu,会触发操作系统立刻重新进行一次CPU竞争”。竞争的结果也许是当前线程仍然获得CPU控制权,也许会换成别的线程获得CPU控制权。

sleep的底层实现

sleep():进程、线程或任务(Linux中不区分进程与线程,都称为task)可以sleep,这会导致它们暂停执行一段时间,直到等待的时间结束才恢复执行或在这段时间内被中断。
sleep()在OS中的实现的大概流程:

  • 挂起进程(或线程)并修改其运行状态
  • 用sleep()提供的参数来设置一个定时器。
  • 当时间结束,定时器会触发,内核收到中断后修改进程(或线程)的运行状态。例如线程会被标志为就绪而进入就绪队列等待调度。

可变定时器(variable timer)一般在硬件层面是通过一个固定的时钟和计数器来实现的,每经过一个时钟周期将计数器递减,当计数器的值为0时产生中断。内核注册一个定时器后可以在一段时间后收到中断。

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>
///时钟编程 alarm()
void wakeUp()
{printf("please wakeup!!\n");
}
int main(void)
{printf("you have 4 s sleep!\n");signal(SIGALRM,wakeUp);alarm(4);//将进程挂起pause();printf("good morning!\n");return EXIT_SUCCESS;
}

alarm(time);执行之后告诉内核,让内核在time秒时间之后向该进程发送一个定时信号,然后该进程捕获该信号并处理;
pause()函数使该进程暂停让出CPU,但是该函数的暂停是可被中断的睡眠,也就是说收到了中断信号之后处理完毕,再重新执行该进程的时候就直接执行pause()函数之后的语句;注意的是一个进程只能有一个闹钟时间,如果调用alarm()之前已经设置了闹钟时间,那么任何以前的闹钟时间都会被新值所代替。
综上所述,内核的sleep()函数是在挂起原语的基础上利用定时器实现的。

Thread.sleep(0)的意义& 多线程详解

我们可能经常会用到 Thread.Sleep 函数来使线程挂起一段时间。那么你有没有正确的理解这个函数的用法呢?思考下面这两个问题:

假设现在是 2008-4-7 12:00:00.000,如果我调用一下 Thread.Sleep(1000) ,在 2008-4-7 12:00:01.000 的时候,这个线程会 不会被唤醒?
某人的代码中用了一句看似莫明其妙的话:Thread.Sleep(0) 。既然是 Sleep 0 毫秒,那么他跟去掉这句代码相比,有啥区别么?
我们先回顾一下操作系统原理。

操作系统中,CPU竞争有很多种策略。Unix系统使用的是时间片算法,而Windows则属于抢占式的。

在时间片算法中,所有的进程排成一个队列。操作系统按照他们的顺序,给每个进程分配一段时间,即该进程允许运行的时间。如果在 时间片结束时进程还在运行,则CPU将被剥夺并分配给另一个进程。如果进程在时间片结束前阻塞或结束,则CPU当即进行切换。调度程 序所要做的就是维护一张就绪进程列表,,当进程用完它的时间片后,它被移到队列的末尾。

所谓抢占式操作系统,就是说如果一个进程得到了 CPU 时间,除非它自己放弃使用 CPU ,否则将完全霸占 CPU 。因此可以看出,在抢 占式操作系统中,操作系统假设所有的进程都是“人品很好”的,会主动退出 CPU 。

在抢占式操作系统中,假设有若干进程,操作系统会根据他们的优先级、饥饿时间(已经多长时间没有使用过 CPU 了),给他们算出一 个总的优先级来。操作系统就会把 CPU 交给总优先级最高的这个进程。当进程执行完毕或者自己主动挂起后,操作系统就会重新计算一 次所有进程的总优先级,然后再挑一个优先级最高的把 CPU 控制权交给他。

我们用分蛋糕的场景来描述这两种算法。假设有源源不断的蛋糕(源源不断的时间),一副刀叉(一个CPU),10个等待吃蛋糕的人(10 个进程)。

如果是 Unix操作系统来负责分蛋糕,那么他会这样定规矩:每个人上来吃 1 分钟,时间到了换下一个。最后一个人吃完了就再从头开始。于是,不管这10个人是不是优先级不同、饥饿程度不同、饭量不同,每个人上来的时候都可以吃 1 分钟。当然,如果有人本来不太饿,或者饭量小,吃了30秒钟之后就吃饱了,那么他可以跟操作系统说:我已经吃饱了(挂起)。于是操作系统就会让下一个人接着来。

如果是 Windows 操作系统来负责分蛋糕的,那么场面就很有意思了。他会这样定规矩:我会根据你们的优先级、饥饿程度去给你们每个人计算一个优先级。优先级最高的那个人,可以上来吃蛋糕——吃到你不想吃为止。等这个人吃完了,我再重新根据优先级、饥饿程度来计算每个人的优先级,然后再分给优先级最高的那个人。

这样看来,这个场面就有意思了——可能有些人是PPMM,因此具有高优先级,于是她就可以经常来吃蛋糕。可能另外一个人是个丑男,而去很ws,所以优先级特别低,于是好半天了才轮到他一次(因为随着时间的推移,他会越来越饥饿,因此算出来的总优先级就会越来越高,因此总有一天会轮到他的)。而且,如果一不小心让一个大胖子得到了刀叉,因为他饭量大,可能他会霸占着蛋糕连续吃很久很久,导致旁边的人在那里咽口水。。。
而且,还可能会有这种情况出现:操作系统现在计算出来的结果,5号PPMM总优先级最高,而且高出别人一大截。因此就叫5号来吃蛋糕。5号吃了一小会儿,觉得没那么饿了,于是说“我不吃了”(挂起)。因此操作系统就会重新计算所有人的优先级。因为5号刚刚吃过,因此她的饥饿程度变小了,于是总优先级变小了;而其他人因为多等了一会儿,饥饿程度都变大了,所以总优先级也变大了。不过这时候仍然有可能5号的优先级比别的都高,只不过现在只比其他的高一点点——但她仍然是总优先级最高的啊。因此操作系统就会说:5号mm上来吃蛋糕……(5号mm心里郁闷,这不刚吃过嘛……人家要减肥……谁叫你长那么漂亮,获得了那么高的优先级)。

那么,Thread.Sleep 函数是干吗的呢?还用刚才的分蛋糕的场景来描述。上面的场景里面,5号MM在吃了一次蛋糕之后,觉得已经有8分饱了,她觉得在未来的半个小时之内都不想再来吃蛋糕了,那么她就会跟操作系统说:在未来的半个小时之内不要再叫我上来吃蛋糕了。这样,操作系统在随后的半个小时里面重新计算所有人总优先级的时候,就会忽略5号mm。Sleep函数就是干这事的,他告诉操作系统“在未来的多少毫秒内我不参与CPU竞争”。

看完了 Thread.Sleep 的作用,我们再来想想文章开头的两个问题。

对于第一个问题,答案是:不一定。因为你只是告诉操作系统:在未来的1000毫秒内我不想再参与到CPU竞争。那么1000毫秒过去之后,这时候也许另外一个线程正在使用CPU,那么这时候操作系统是不会重新分配CPU的,直到那个线程挂起或结束;况且,即使这个时候恰巧轮到操作系统进行CPU 分配,那么当前线程也不一定就是总优先级最高的那个,CPU还是可能被其他线程抢占去。

与此相似的,Thread有个Resume函数,是用来唤醒挂起的线程的。好像上面所说的一样,这个函数只是“告诉操作系统我从现在起开始参与CPU竞争了”,这个函数的调用并不能马上使得这个线程获得CPU控制权。

对于第二个问题,答案是:有,而且区别很明显。假设我们刚才的分蛋糕场景里面,有另外一个PPMM 7号,她的优先级也非常非常高(因为非常非常漂亮),所以操作系统总是会叫道她来吃蛋糕。而且,7号也非常喜欢吃蛋糕,而且饭量也很大。不过,7号人品很好,她很善良,她没吃几口就会想:如果现在有别人比我更需要吃蛋糕,那么我就让给他。因此,她可以每吃几口就跟操作系统说:我们来重新计算一下所有人的总优先级吧。不过,操作系统不接受这个建议——因为操作系统不提供这个接口。于是7号mm就换了个说法:“在未来的0毫秒之内不要再叫我上来吃蛋糕了”。这个指令操作系统是接受的,于是此时操作系统就会重新计算大家的总优先级——注意这个时候是连7号一起计算的,因为“0毫秒已经过去了”嘛。因此如果没有比7号更需要吃蛋糕的人出现,那么下一次7号还是会被叫上来吃蛋糕。

因此,Thread.Sleep(0)的作用,就是“触发操作系统立刻重新进行一次CPU竞争”。竞争的结果也许是当前线程仍然获得CPU控制权,也许会换成别的线程获得CPU控制权。这也是我们在大循环里面经常会写一句Thread.Sleep(0) ,因为这样就给了其他线程比如Paint线程获得CPU控制权的权力,这样界面就不会假死在那里。

另外,虽然上面提到说“除非它自己放弃使用 CPU ,否则将完全霸占 CPU”,但这个行为仍然是受到制约的——操作系统会监控你霸占CPU的情况,如果发现某个线程长时间霸占CPU,会强制使这个线程挂起,因此在实际上不会出现“一个线程一直霸占着 CPU 不放”的情况。至于我们的大循环造成程序假死,并不是因为这个线程一直在霸占着CPU。实际上在这段时间操作系统已经进行过多次CPU竞争了,只不过其他线程在获得CPU控制权之后很短时间内马上就退出了,于是就又轮到了这个线程继续执行循环,于是就又用了很久才被操作系统强制挂起。。。因此反应到界面上,看起来就好像这个线程一直在霸占着CPU一样。

末了再说明一下,文中线程、进程有点混乱,其实在Windows原理层面,CPU竞争都是线程级的,本文中把这里的进程、线程看成同一个东西就好了。

JAVA Thread.sleep实现原理相关推荐

  1. java.lang.ThreadLocal实现原理和源码分析

    java.lang.ThreadLocal实现原理和源码分析 1.ThreadLocal的原理:为每一个线程维护变量的副本.某个线程修改的只是自己的副本. 2.ThreadLocal是如何做到把变量变 ...

  2. (转)性能分析之-- JAVA Thread Dump 分析综述

    原文链接:http://blog.csdn.net/rachel_luo/article/details/8920596 最近在做性能测试,需要对线程堆栈进行分析,在网上收集了一些资料,学习完后,将相 ...

  3. 【Java基础】HashMap原理详解

    [Java基础]HashMap原理详解 HashMap的实现 1. 数组 2.线性链表 3.红黑树 3.1概述 3.2性质 4.HashMap扩容死锁 5. BATJ一线大厂技术栈 HashMap的实 ...

  4. Java 线程池的原理与实现

    最近在学习线程池.内存控制等关于提高程序运行性能方面的编程技术,在网上看到有一哥们写得不错,故和大家一起分享. [分享]Java 线程池的原理与实现 这几天主要是狂看源程序,在弥补了一些以前知识空白的 ...

  5. Java NIO使用及原理分析

    http://blog.csdn.net/wuxianglong/article/details/6604817 转载自:李会军•宁静致远 最近由于工作关系要做一些Java方面的开发,其中最重要的一块 ...

  6. java Thread sleep 和obj.wait,以及sychronized,minor源码

    sleep()方法是Thread类里面的,主要的意义就是让当前线程停止执行,让出cpu给其他的线程,但是不会释放对象锁资源以及监控的状态,当指定的时间到了之后又会自动恢复运行状态. wait()方法是 ...

  7. Java中随机数的原理,以及使用时的注意点

    转载自   Java中随机数的原理,以及使用时的注意点 1 前言 一提到 Java 中的随机数,很多人就会想到 Random,当出现生成随机数这样需求时,大多数人都会选择使用 Random 来生成随机 ...

  8. 【java】Java 动态调试技术原理及实践

    1.概述 转载:Java 动态调试技术原理及实践 一.动态调试要解决的问题 断点调试是我们最常使用的调试手段,它可以获取到方法执行过程中的变量信息,并可以观察到方法的执行路径.但断点调试会在断点位置停 ...

  9. Java执行引擎工作原理:方法调用

    Java执行引擎工作原理:方法调用 方法调用如何实现 函数指针和指针函数 CallStub源码详解 Git链接(有HotSpot源码) 1 方法调用如何实现 计算机核心三大功能:方法调用.取指.运算 ...

最新文章

  1. 这41条科研经验,让你少走很多弯路!
  2. 微型计算机显卡必须插在主板的,第一章 计算机基础知识(2)
  3. Visual Studio 2010 模板缺失
  4. weblogic自带的jdk是在工程的包部署后编译使用
  5. mysql 数据库的同步问题
  6. Python应用实战-Pandas 计算连续行为天数的几种思路
  7. 数据科学r语言_您应该为数据科学学习哪些语言?
  8. html获取此次点击的id,github项目解析(八)--Activity启动过程中获取组件宽高的三种方式...
  9. 基于matlab的图解粒度参数计算,基于MATLAB的图解粒度参数计算
  10. python数据库连接代码_python 连接各类主流数据库的实例代码
  11. 2019青海大学计算机调剂,2019青海大学招收硕士研究生调剂公告
  12. while 循环的理解
  13. 从全职高手开始的系统_全职高手8年登上巅峰荣耀,阅文做对了什么?
  14. 深度学习新星 | 图卷积神经网络(GCN)有多强大?
  15. SpringCloud知识点复习(第一次)
  16. c语言中计算熵的函数,如何用c++编程实现各种信源熵的计算
  17. pycharm运行pytest参数化运行teardown错误
  18. 使用Py-OpenCV(SIFT关键点)实现自然图像中的logo商标识别和定位
  19. mset redis_Redis MSET 命令-Redis MSET命令详解教程-Redis MSET使用案例-嗨客网
  20. 【计网】2.1.1 客户-服务器体系和P2P体系简述

热门文章

  1. 机器学习(基本图像分类)
  2. 只需图片+配音?你一定不能错过的短视频制作小技巧(内附教程)
  3. Android程式码怎么添加按钮,Android,UI 在程式中即時加上其他的UI?|?柯博文 Powen Ko...
  4. python报考软考哪个比较好_软考考哪个好?
  5. 哔哩哔哩B站视频发布软件,工具哪个好用
  6. Linux安装anaconda3,配置jupyter,在jupyter安装tensorflow环境
  7. 八大理由告诉你,微信电商为什么走不通
  8. 雅点ps光效纹理叠加扩展面板
  9. 混沌与非线性思维 课程感悟
  10. 好书推荐《R语言在定量金融中的应用》