在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识。

那么如何实现全局唯一id呢?有以下几种方案。

(1)方案一:独立数据库自增id

这个方案就是说你的系统每次要生成一个id,都是往一个独立库的一个独立表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个id。拿到这个id之后再往对应的分库分表里去写入。

比如说你有一个auto_id库,里面就一个表,叫做auto_id表,有一个id是自增长的。

那么你每次要获取一个全局唯一id,直接往这个表里插入一条记录,获取一个全局唯一id即可,然后这个全局唯一id就可以插入订单的分库分表中。

这个方案的好处就是方便简单,谁都会用。缺点就是单库生成自增id,要是高并发的话,就会有瓶颈的,因为auto_id库要是承载个每秒几万并发,肯定是不现实的了。

(2)方案二:uuid

这个每个人都应该知道吧,就是用UUID生成一个全局唯一的id。

好处就是每个系统本地生成,不要基于数据库来了

不好之处就是,uuid太长了,作为主键性能太差了,不适合用于主键。

如果你是要随机生成个什么文件名了,编号之类的,你可以用uuid,但是作为主键是不能用uuid的。

(3)方案三:获取系统当前时间

这个方案的意思就是获取当前时间作为全局唯一的id。

但是问题是,并发很高的时候,比如一秒并发几千,会有重复的情况,这个是肯定不合适的。

一般如果用这个方案,是将当前时间跟很多其他的业务字段拼接起来,作为一个id,如果业务上你觉得可以接受,那么也是可以的。

你可以将别的业务字段值跟当前时间拼接起来,组成一个全局唯一的编号,比如说订单编号:时间戳 + 用户id + 业务含义编码

(4)方案四:snowflake算法的思想分析

snowflake算法,是twitter开源的分布式id生成算法。

其核心思想就是:使用一个64 bit的long型的数字作为全局唯一id,这64个bit中,其中1个bit是不用的,然后用其中的41 bit作为毫秒数,用10 bit作为工作机器id,12 bit作为序列号。

给大家举个例子吧,比如下面那个64 bit的long型数字,大家看看

上面第一个部分,是1个bit:0,这个是无意义的

上面第二个部分是41个bit:表示的是时间戳

上面第三个部分是5个bit:表示的是机房id,10001

上面第四个部分是5个bit:表示的是机器id,1 1001

上面第五个部分是12个bit:表示的序号,就是某个机房某台机器上这一毫秒内同时生成的id的序号,0000 00000000

  • 1 bit:是不用的,为啥呢?

 因为二进制里第一个bit为如果是1,那么都是负数,但是我们生成的id都是正数,所以第一个bit统一都是0

  • 41 bit:表示的是时间戳,单位是毫秒。

 41 bit可以表示的数字多达2^41 - 1,也就是可以标识2 ^ 41 - 1个毫秒值,换算成年就是表示69年的时间。

  • 10 bit:记录工作机器id,代表的是这个服务最多可以部署在2^10台机器上,也就是1024台机器。

  但是10 bit里5个bit代表机房id,5个bit代表机器id。意思就是最多代表2 ^ 5个机房(32个机房),每个机房里可以代表2 ^ 5个机器(32台机器)。

  • 12 bit:这个是用来记录同一个毫秒内产生的不同id。

  12 bit可以代表的最大正整数是2 ^ 12 - 1 = 4096,也就是说可以用这个12bit代表的数字来区分同一个毫秒内的4096个不同的id

简单来说,你的某个服务假设要生成一个全局唯一id,那么就可以发送一个请求给部署了snowflake算法的系统,由这个snowflake算法系统来生成唯一id。

这个snowflake算法系统首先肯定是知道自己所在的机房和机器的,比如机房id = 17,机器id = 12。

接着snowflake算法系统接收到这个请求之后,首先就会用二进制位运算的方式生成一个64 bit的long型id,64个bit中的第一个bit是无意义的。

接着41个bit,就可以用当前时间戳(单位到毫秒),然后接着5个bit设置上这个机房id,还有5个bit设置上机器id。

最后再判断一下,当前这台机房的这台机器上这一毫秒内,这是第几个请求,给这次生成id的请求累加一个序号,作为最后的12个bit。

最终一个64个bit的id就出来了,类似于:

这个算法可以保证说,一个机房的一台机器上,在同一毫秒内,生成了一个唯一的id。可能一个毫秒内会生成多个id,但是有最后12个bit的序号来区分开来。

下面我们简单看看这个snowflake算法的一个代码实现,这就是个示例,大家如果理解了这个意思之后,以后可以自己尝试改造这个算法。

总之就是用一个64bit的数字中各个bit位来设置不同的标志位,区分每一个id。

(5)snowflake算法的代码实现

public class IdWorker {   private long workerId; // 这个就是代表了机器id   private long datacenterId; // 这个就是代表了机房id   private long sequence; // 这个就是代表了一毫秒内生成的多个id的最新序号   public IdWorker(long workerId, long datacenterId, long sequence) {       // sanity check for workerId       // 这儿不就检查了一下,要求就是你传递进来的机房id和机器id不能超过32,不能小于0       if (workerId > maxWorkerId || workerId < 0) {                      throw new IllegalArgumentException(               String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));       }              if (datacenterId > maxDatacenterId || datacenterId < 0) {                  throw new IllegalArgumentException(               String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));       }       this.workerId = workerId;       this.datacenterId = datacenterId;       this.sequence = sequence;   }   private long twepoch = 1288834974657L;   private long workerIdBits = 5L;   private long datacenterIdBits = 5L;      // 这个是二进制运算,就是5 bit最多只能有31个数字,也就是说机器id最多只能是32以内   private long maxWorkerId = -1L ^ (-1L << workerIdBits);   // 这个是一个意思,就是5 bit最多只能有31个数字,机房id最多只能是32以内   private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);   private long sequenceBits = 12L;   private long workerIdShift = sequenceBits;   private long datacenterIdShift = sequenceBits + workerIdBits;   private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;   private long sequenceMask = -1L ^ (-1L << sequenceBits);   private long lastTimestamp = -1L;   public long getWorkerId(){       return workerId;   }   public long getDatacenterId() {       return datacenterId;   }   public long getTimestamp() {       return System.currentTimeMillis();   }   // 这个是核心方法,通过调用nextId()方法,让当前这台机器上的snowflake算法程序生成一个全局唯一的id   public synchronized long nextId() {       // 这儿就是获取当前时间戳,单位是毫秒       long timestamp = timeGen();       if (timestamp < lastTimestamp) {           System.err.printf(               "clock is moving backwards. Rejecting requests until %d.", lastTimestamp);           throw new RuntimeException(               String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",                             lastTimestamp - timestamp));       }              // 下面是说假设在同一个毫秒内,又发送了一个请求生成一个id       // 这个时候就得把seqence序号给递增1,最多就是4096       if (lastTimestamp == timestamp) {                  // 这个意思是说一个毫秒内最多只能有4096个数字,无论你传递多少进来,           //这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围           sequence = (sequence + 1) & sequenceMask;           if (sequence == 0) {               timestamp = tilNextMillis(lastTimestamp);           }              } else {           sequence = 0;       }       // 这儿记录一下最近一次生成id的时间戳,单位是毫秒       lastTimestamp = timestamp;       // 这儿就是最核心的二进制位运算操作,生成一个64bit的id       // 先将当前时间戳左移,放到41 bit那儿;将机房id左移放到5 bit那儿;将机器id左移放到5 bit那儿;将序号放最后12 bit       // 最后拼接起来成一个64 bit的二进制数字,转换成10进制就是个long型       return ((timestamp - twepoch) << timestampLeftShift) |               (datacenterId << datacenterIdShift) |               (workerId << workerIdShift) | sequence;   }   private long tilNextMillis(long lastTimestamp) {              long timestamp = timeGen();              while (timestamp <= lastTimestamp) {           timestamp = timeGen();       }       return timestamp;   }   private long timeGen(){       return System.currentTimeMillis();   }   //---------------测试---------------   public static void main(String[] args) {              IdWorker worker = new IdWorker(1,1,1);              for (int i = 0; i < 30; i++) {           System.out.println(worker.nextId());       }   }}

(6)snowflake算法一个小小的改进思路

其实在实际的开发中,这个snowflake算法可以做一点点改进。

因为大家可以考虑一下,我们在生成唯一id的时候,一般都需要指定一个表名,比如说订单表的唯一id。

所以上面那64个bit中,代表机房的那5个bit,可以使用业务表名称来替代,比如用00001代表的是订单表。

因为其实很多时候,机房并没有那么多,所以那5个bit用做机房id可能意义不是太大。

这样就可以做到,snowflake算法系统的每一台机器,对一个业务表,在某一毫秒内,可以生成一个唯一的id,一毫秒内生成很多id,用最后12个bit来区分序号对待。

根据时间戳生成编号_分布式系统的唯一ID生成算法对比相关推荐

  1. 微信用户全局唯一标识_分布式系统的唯一ID生成算法对比

    在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识. 那么如何实现全局唯一id呢?有以下几种方案. (1)方案一:独立数据库自增id 这个方案就是说你的系统每次要生成一个id,都是往一个独立库 ...

  2. id长度 雪花算法_分布式系统中唯一ID算法之雪花算法

    背景 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有些时候我们希望能使用一种 ...

  3. [转]【分布式系统】唯一ID生成策略总结

    文章目录 全局唯一id介绍 全局唯一id特点: 常见全局唯一id生成策略 1.数据库自增长序列或字段生成id 2.UUID 3.Redis生成ID 4.zookeeper生成ID 5.Twitter的 ...

  4. 【分布式系统】唯一ID生成策略总结

    文章目录 全局唯一id介绍 全局唯一id特点: 常见全局唯一id生成策略 1.数据库自增长序列或字段生成id 2.UUID 3.Redis生成ID 4.zookeeper生成ID 5.Twitter的 ...

  5. java 唯一id生成算法_分布式全局唯一ID生成方案之snowflake算法

    已有的方案: 可大致分为: 完全依赖关系/非关系型数据库递增的方案 完全不依赖数据源作为生成因子的UUID 半依赖数据源作为生成因子的snowflake 为什么推荐snowflake? 这个问题,可以 ...

  6. 分布式系统唯一ID生成方案汇总【转】

    转自:http://www.cnblogs.com/haoxinyue/p/5208136.html 系统唯一ID是我们在设计一个系统的时候常常会遇见的问题,也常常为这个问题而纠结.生成ID的方法有很 ...

  7. c#随机数生成编号_忘掉 Snowflake,感受一下性能高出587倍的全局唯一ID生成算法...

    今天我们来拆解 Snowflake 算法,同时领略百度.美团.腾讯等大厂在全局唯一 ID 服务方面做的设计,接着根据具体需求设计一款全新的全局唯一 ID 生成算法.这还不够,我们会讨论到全局唯一 ID ...

  8. android唯一机器码生成方案_分布式系统唯一ID生成方案汇总

    系统唯一ID是我们在设计一个系统的时候常常会遇见的问题,也常常为这个问题而纠结.生成ID的方法有很多,适应不同的场景.需求以及性能要求.所以有些比较复杂的系统会有多个ID生成的策略.下面就介绍一些常见 ...

  9. 微信用户全局唯一标识_忘掉 Snowflake,感受一下性能高出587倍的全局唯一ID生成算法...

    今天我们来拆解 Snowflake 算法,同时领略百度.美团.腾讯等大厂在全局唯一 ID 服务方面做的设计,接着根据具体需求设计一款全新的全局唯一 ID 生成算法.这还不够,我们会讨论到全局唯一 ID ...

最新文章

  1. Leangoo看板工具做敏捷故事地图看板示例
  2. 3月31日华为鸿蒙,华为鸿蒙OS Beta 3将从3月31日起推送
  3. win10设置默认打开方式
  4. webservice用完关闭连接_解决调用WebService报基础连接已经关闭: 服务器关闭了本应保持活动状态的连接的错误的方法...
  5. Nginx七层负载均衡配置
  6. 控件设置相对位置_惊人的Divi转换控件!
  7. crossin的编程教室python入门_简单三步,用 Python 发邮件
  8. python字典和JSON格式的转换
  9. tdk怎么设置_网站tdk如何正确的设置
  10. Linux服务器---xopps
  11. ASP.NET AJAX1.0尝鲜试用:Web Service调用
  12. clion中自定义消息msg消息时定义的msg文件有类型提示
  13. centos6.6 x86_64 install virtualbox 增强功能和ulipad
  14. 计算机发展史 文档,计算机发展史课件
  15. 计算机网络三种模型(OSI模型、TCP/IP模型、五层通用模型)、各层作用
  16. 【FXP】连接站点并上传包文件:
  17. TypeScript学习总结
  18. linux命令指南之三
  19. 桂电计算机系入学怎么分班,桂电研究生-()学期课程总表
  20. S32K1XX系列单片机 ——MCAL 的CAN模块配置

热门文章

  1. 我理解的invoke和begininvoke
  2. java jsp 传递参数的方法,jsp传参方法小结
  3. linux 一行代码,一行代码终结你的Linux~
  4. Android 自定义软键盘实现
  5. Android 设置view透明度,广告标题透明背景
  6. js 根据时间生成唯一订单号
  7. lodash 常用的方法总结(持续更新)
  8. 在保护继承中基类的共有成员_C#初学者教程系列11:继承
  9. rails4 ajax 例子,Ajax和Rails 4:创建实例变量并更新视图而不刷新
  10. R语言安装;Rstudio安装