一.为啥要分库分表?

假如我们现在是一个小创业公司(或者是一个 BAT 公司刚兴起的一个新部门),现在注册用户就 20 万,每天活跃用户就 1 万,每天单表数据量就 1000,然后高峰期每秒钟并发请求最多就 10。天,就这种系统,随便找一个有几年工作经验的,然后带几个刚培训出来的,随便干干都可以。

结果没想到我们运气居然这么好,碰上个 CEO 带着我们走上了康庄大道,业务发展迅猛,过了几个月,注册用户数达到了 2000 万!每天活跃用户数 100 万!每天单表数据量 10 万条!高峰期每秒最大请求达到 1000!同时公司还顺带着融资了两轮,进账了几个亿人民币啊!公司估值达到了惊人的几亿美金!这是小独角兽的节奏!

好吧,没事,现在大家感觉压力已经有点大了,为啥呢?因为每天多 10 万条数据,一个月就多 300 万条数据,现在咱们单表已经几百万数据了,马上就破千万了。但是勉强还能撑着。高峰期请求现在是 1000,咱们线上部署了几台机器,负载均衡搞了一下,数据库撑 1000QPS 也还凑合。但是大家现在开始感觉有点担心了,接下来咋整呢......

再接下来几个月,我的天,CEO 太牛逼了,公司用户数已经达到 1 亿,公司继续融资几十亿人民币啊!公司估值达到了惊人的几十亿美金,成为了国内今年最牛逼的明星创业公司!天,我们太幸运了。

但是我们同时也是不幸的,因为此时每天活跃用户数上千万,每天单表新增数据多达 50 万,目前一个表总数据量都已经达到了两三千万了!扛不住啊!数据库磁盘容量不断消耗掉!高峰期并发达到惊人的 5000~8000!别开玩笑了,哥。我跟你保证,你的系统支撑不到现在,已经挂掉了!好吧,所以你看到这里差不多就理解分库分表是怎么回事儿了,实际上这是跟着你的公司业务发展走的,你公司业务发展越好,用户就越多,数据量越大,请求量越大,那你单个数据库一定扛不住。

分表:

比如你单表都几千万数据了,你确定你能扛住么?绝对不行,单表数据量太大,会极大影响你的 sql 执行的性能,到了后面你的 sql 可能就跑的很慢了。一般来说,就以我的经验来看,单表到几百万的时候,性能就会相对差一些了,你就得分表了。分表是啥意思?就是把一个表的数据放到多个表中,然后查询的时候你就查一个表。比如按照用户 id 来分表,将一个用户的数据就放在一个表中。然后操作的时候你对一个用户就操作那个表就好了。这样可以控制每个表的数据量在可控的范围内,比如每个表就固定在 200 万以内。

分库:

分库是啥意思?就是你一个库一般我们经验而言,最多支撑到并发 2000,一定要扩容了,而且一个健康的单库并发值你最好保持在每秒 1000 左右,不要太大。那么你可以将一个库的数据拆分到多个库中,访问的时候就访问一个库好了。

  分库分表前 分库分表后
并发支撑情况 MySQL 单机部署,扛不住高并发 MySQL从单机到多机,能承受的并发增加了多倍
磁盘使用情况 MySQL 单机磁盘容量几乎撑满 拆分为多个库,数据库服务器磁盘使用率大大降低
SQL 执行性能 单表数据量太大,SQL 越跑越慢 单表数据量减少,SQL 执行效率明显提升

二.用过哪些分库分表中间件?不同的分库分表中间件都有什么优点和缺点?

  • cobar:阿里 b2b 团队开发和开源的,属于 proxy 层方案。早些年还可以用,但是最近几年都没更新了,基本没啥人用,差不多算是被抛弃的状态吧。而且不支持读写分离、存储过程、跨库 join 和分页等操作。
  • atlas:360 开源的,属于 proxy 层方案,以前是有一些公司在用的,但是确实有一个很大的问题就是社区最新的维护都在 5 年前了。所以,现在用的公司基本也很少了。
  • sharding-jdbc:当当开源的,属于 client 层方案。确实之前用的还比较多一些,因为 SQL 语法支持也比较多,没有太多限制,而且目前推出到了 2.0 版本,支持分库分表、读写分离、分布式 id 生成、柔性事务(最大努力通知型事务、TCC 事务)。而且确实之前使用的公司会比较多一些(这个在官网有登记使用的公司,可以看到从 2017 年一直到现在,是有不少公司在用的),目前社区也还一直在开发和维护,还算是比较活跃,算是一个现在也可以选择的方案。
  • mycat:基于 cobar 改造的,属于 proxy 层方案,支持的功能非常完善,而且目前应该是非常火的而且不断流行的数据库中间件,社区很活跃,也有一些公司开始在用了。但是确实相比于 sharding jdbc 来说,年轻一些,经历的锤炼少一些。

综上,现在其实建议考量的,就是 sharding-jdbc 和 mycat,这两个都可以去考虑使用。sharding-jdbc 这种 client 层方案的优点在于不用部署,运维成本低,不需要代理层的二次转发请求,性能很高,但是如果遇到升级啥的需要各个系统都重新升级版本再发布,各个系统都需要耦合 sharding-jdbc 的依赖;mycat 这种 proxy 层方案的缺点在于需要部署,自己运维一套中间件,运维成本高,但是好处在于对于各个项目是透明的,如果遇到升级之类的都是自己中间件那里搞就行了。通常来说,这两个方案其实都可以选用,建议中小型公司选用 sharding-jdbc,client 层方案轻便,而且维护成本低,不需要额外增派人手,而且中小型公司系统复杂度会低一些,项目也没那么多;但是中大型公司最好还是选用 mycat 这类 proxy 层方案,因为可能大公司系统和项目非常多,团队很大,人员充足,那么最好是专门弄个人来研究和维护 mycat,然后大量项目直接透明使用即可。

三:如何对数据库进行垂直拆分或水平拆分的?

1.垂直拆分

就是把一个有很多字段的表给拆分成多个表,或者是多个库上去。每个库表的结构都不一样,每个库表都包含部分字段。一般来说,会将较少的访问频率很高的字段放到一个表里去,然后将较多的访问频率很低的字段放到另外一个表里去。因为数据库是有缓存的,你访问频率高的行字段越少,就可以在缓存里缓存更多的行,性能就越好。这个一般在表层面做的较多一些。

2.水平拆分

就是把一个表的数据给弄到多个库的多个表里去,但是每个库的表结构都一样,只不过每个库表放的数据是不同的,所有库表的数据加起来就是全部数据。水平拆分的意义,就是将数据均匀放更多的库里,然后用多个库来抗更高的并发,还有就是用多个库的存储容量来进行扩容。

还有表层面的拆分,就是分表,将一个表变成 N 个表,就是让每个表的数据量控制在一定范围内,保证 SQL 的性能。否则单表数据量越大,SQL 性能就越差。一般是 200 万行左右,不要太多,但是也得看具体你怎么操作,也可能是 500 万,或者是 100 万。你的SQL越复杂,就最好让单表行数越少。

好了,无论分库还是分表,上面说的那些数据库中间件都是可以支持的。就是基本上那些中间件可以做到你分库分表之后,中间件可以根据你指定的某个字段值,比如说 userid,自动路由到对应的库上去,然后再自动路由到对应的表里去

你就得考虑一下,你的项目里该如何分库分表?一般来说,垂直拆分,你可以在表层面来做,对一些字段特别多的表做一下拆分;水平拆分,你可以说是并发承载不了,或者是数据量太大,容量承载不了,你给拆了,按什么字段来拆,你自己想好;分表,你考虑一下,你如果哪怕是拆到每个库里去,并发和容量都ok了,但是每个库的表还是太大了,那么你就分表,将这个表分开,保证每个表的数据量并不是很大。

而且这儿还有两种分库分表的方式:

  • 一种是按照 range范围来分,就是每个库一段连续的数据,这个一般是按比如时间范围来的,但是这种一般较少用,因为很容易产生热点问题,大量的流量都打在最新的数据上了。
  • 或者是按照某个字段hash一下均匀分散,这个较为常用。

range 来分,好处是扩容的时候很简单,因为你只要预备好,给每个月都准备一个库就可以了,到了一个新的月份的时候,自然而然,就会写新的库了;缺点,但是大部分的请求,都是访问最新的数据。实际生产用 range,要看场景。hash 分发,好处在于说,可以平均分配每个库的数据量和请求压力;坏处在于说扩容起来比较麻烦,会有一个数据迁移的过程,之前的数据需要重新计算 hash 值重新分配到不同的库或表。

四:现在有一个未分库分表的系统,未来要分库分表,如何设计才可以让系统从未分库分表动态切换到分库分表上?

1.停机迁移方案

大家伙儿凌晨 12 点开始运维,网站或者 app 挂个公告,说 0 点到早上 6 点进行运维,无法访问。接着到 0 点停机,系统停掉,没有流量写入了,此时老的单库单表数据库静止了。然后你之前得写好一个导数的一次性工具,此时直接跑起来,然后将单库单表的数据哗哗哗读出来,写到分库分表里面去。导数完了之后,就 ok 了,修改系统的数据库连接配置啥的,包括可能代码和 SQL 也许有修改,那你就用最新的代码,然后直接启动连到新的分库分表上去。验证一下,ok了。但是这个方案比较 low,谁都能干,我们来看看高大上一点的方案。

2.双写迁移方案

简单来说,就是在线上系统里面,之前所有写库的地方,增删改操作,除了对老库增删改,都加上对新库的增删改,这就是所谓的双写,同时写俩库,老库和新库。然后系统部署之后,新库数据差太远,用之前说的导数工具,跑起来读老库数据写新库,写的时候要根据修改时间这类字段判断这条数据最后修改的时间,除非是读出来的数据在新库里没有,或者是比新库的数据新才会写。简单来说,就是不允许用老数据覆盖新数据。导完一轮之后,有可能数据还是存在不一致,那么就程序自动做一轮校验,比对新老库每个表的每条数据,接着如果有不一样的,就针对那些不一样的,从老库读数据再次写。反复循环,直到两个库每个表的数据都完全一致为止。接着当数据完全一致了,就 ok 了,基于仅仅使用分库分表的最新代码,重新部署一次,不就仅仅基于分库分表在操作了么,还没有几个小时的停机时间,很稳。所以现在基本玩儿数据迁移之类的,都是这么干的。

五:如何设计可以动态扩容缩容的分库分表方案?

1.停机扩容(不推荐)

这个方案就跟停机迁移一样,步骤几乎一致,唯一的一点就是那个导数的工具,是把现有库表的数据抽出来慢慢导入到新的库和表里去。但是最好别这么玩儿,有点不太靠谱,因为既然分库分表就说明数据量实在是太大了,可能多达几亿条,甚至几十亿,你这么玩儿,可能会出问题。从单库单表迁移到分库分表的时候,数据量并不是很大,单表最大也就两三千万。那么你写个工具,多弄几台机器并行跑,1小时数据就导完了。这没有问题。如果 3 个库 + 12 个表,跑了一段时间了,数据量都 1~2 亿了。光是导 2 亿数据,都要导个几个小时,6 点,刚刚导完数据,还要搞后续的修改配置,重启系统,测试验证,10 点才可以搞完。所以不能这么搞。

2.扩容方案升级

一开始上来就是 32 个库,每个库 32 个表,那么总共是 1024 张表。谈分库分表的扩容,第一次分库分表,就一次性给他分个够,32 个库,1024 张表,可能对大部分的中小型互联网公司来说,已经可以支撑好几年了。起始有4台数据库服务器,每台服务器上8个数据库,每个库有32张表,如果容量不够了,在增加4台数据库服务器,从原来的服务器中每个服务器迁移出4个库(dba做数据迁移)放到现在新加的服务器上,这样就有8台服务器,每个服务器4个数据库,每个库32张表,以此类推,最多扩到32台服务器,每台服务器1个库,每个库32张表,为啥只迁移库不迁移表?因为这样一个库中的表不会变化,对于应用程序不用做迁移数据的工作,因为程序中的数据路由是基于库的。数据写入原则:根据某个 id 先根据 32 取模路由到库,再根据 32 取模路由到库里的表。

3.缩容:就是按照上面扩容的方式按倍数缩容就可以了,然后修改一下路由规则。

六:分库分表之后,id 主键如何处理?

1.数据库自增 id

每次得到一个 id,都是往一个库的一个表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个 id。拿到这个 id 之后再往对应的分库分表里去写入。这个方案的好处就是方便简单,谁都会用;缺点就是单库生成自增 id,要是高并发的话,就会有瓶颈的;如果你硬是要改进一下,那么就专门开一个服务出来,这个服务每次就拿到当前 id 最大值,然后自己递增几个 id,一次性返回一批 id,然后再把当前最大 id 值修改成递增几个 id 之后的一个值;但是无论如何都是基于单个数据库。适合的场景:你分库分表就俩原因,要不就是单库并发太高,要不就是单库数据量太大;除非是你并发不高,但是数据量太大导致的分库分表扩容,你可以用这个方案,因为可能每秒最高并发最多就几百,那么就走单独的一个库和表生成自增主键即可。

2.设置数据库 sequence 或者表自增字段步长

可以通过设置数据库 sequence 或者表的自增字段步长来进行水平伸缩。比如说,现在有 8 个服务节点,每个服务节点使用一个 sequence 功能来产生 ID,每个 sequence 的起始 ID 不同,并且依次递增,步长都是 8。适合的场景:在用户防止产生的 ID 重复时,这种方案实现起来比较简单,也能达到性能目标。但是服务节点固定,步长也固定,将来如果还要增加服务节点,就不好搞了。

3.UUID:好处就是本地生成,不要基于数据库来了;不好之处就是,UUID 太长了、占用空间大,作为主键性能太差了;

4.获取系统当前时间

这个就是获取当前时间即可,但是问题是,并发很高的时候,比如一秒并发几千,会有重复的情况,这个是肯定不合适的。基本就不用考虑了。适合的场景:一般如果用这个方案,是将当前时间跟很多其他的业务字段拼接起来,作为一个 id,如果业务上你觉得可以接受,那么也是可以的。你可以将别的业务字段值跟当前时间拼接起来,组成一个全局唯一的编号。

5.snowflake 算法(雪花算法)

snowflake 算法是 twitter 开源的分布式 id 生成算法,采用 Scala 语言实现,是把一个 64 位的 long 型的 id,1 个 bit 是不用的,用其中的 41 bit 作为毫秒数,用 10 bit 作为工作机器 id,12 bit 作为序列号。

0 | 0001100 10100010 10111110 10001001 01011100 00 | 10001 | 11001 | 0000 00000000
  • 1 bit:不用,为啥呢?因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。
  • 41 bit:表示的是时间戳,单位是毫秒。41 bit 可以表示的数字多达 2^41 - 1,也就是可以标识 2^41 - 1 个毫秒值,换算成年就是表示69年的时间。
  • 10 bit:记录工作机器 id,代表的是这个服务最多可以部署在 2^10台机器上哪,也就是1024台机器。但是 10 bit 里 5 个 bit 代表机房 id,5 个 bit 代表机器 id。意思就是最多代表 2^5个机房(32个机房),每个机房里可以代表 2^5 个机器(32台机器)。
  • 12 bit:这个是用来记录同一个毫秒内产生的不同 id,12 bit 可以代表的最大正整数是 2^12 - 1 = 4096,也就是说可以用这个 12 bit 代表的数字来区分同一个毫秒内的 4096 个不同的 id。

实现代码:

public class IdWorker {private long workerId;//机器idprivate long datacenterId;//机房idprivate long sequence;public IdWorker(long workerId, long datacenterId, long sequence) {// sanity check for workerId// 这儿不就检查了一下,要求就是你传递进来的机房id和机器id不能超过32,不能小于0if (workerId > maxWorkerId || workerId < 0) {throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));}if (datacenterId > maxDatacenterId || datacenterId < 0) {throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));}System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);this.workerId = workerId;this.datacenterId = datacenterId;this.sequence = sequence;}private long twepoch = 1288834974657L;private long workerIdBits = 5L;private long datacenterIdBits = 5L;// 这个是二进制运算,就是 5 bit最多只能有31个数字,也就是说机器id最多只能是32以内private long maxWorkerId = -1L ^ (-1L << workerIdBits);// 这个是一个意思,就是 5 bit最多只能有31个数字,机房id最多只能是32以内private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);private long sequenceBits = 12L;private long workerIdShift = sequenceBits;private long datacenterIdShift = sequenceBits + workerIdBits;private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;private long sequenceMask = -1L ^ (-1L << sequenceBits);private long lastTimestamp = -1L;public long getWorkerId() {return workerId;}public long getDatacenterId() {return datacenterId;}public long getTimestamp() {return System.currentTimeMillis();}public synchronized long nextId() {// 这儿就是获取当前时间戳,单位是毫秒long timestamp = timeGen();if (timestamp < lastTimestamp) {System.err.printf("clock is moving backwards.  Rejecting requests until %d.", lastTimestamp);throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));}if (lastTimestamp == timestamp) {// 这个意思是说一个毫秒内最多只能有4096个数字// 无论你传递多少进来,这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围sequence = (sequence + 1) & sequenceMask;if (sequence == 0) {timestamp = tilNextMillis(lastTimestamp);}} else {sequence = 0;}// 这儿记录一下最近一次生成id的时间戳,单位是毫秒lastTimestamp = timestamp;// 这儿就是将时间戳左移,放到 41 bit那儿;// 将机房 id左移放到 5 bit那儿;// 将机器id左移放到5 bit那儿;将序号放最后12 bit;// 最后拼接起来成一个 64 bit的二进制数字,转换成 10 进制就是个 long 型return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift)| (workerId << workerIdShift) | sequence;}private long tilNextMillis(long lastTimestamp) {long timestamp = timeGen();while (timestamp <= lastTimestamp) {timestamp = timeGen();}return timestamp;}private long timeGen() {return System.currentTimeMillis();}// ---------------测试---------------public static void main(String[] args) {IdWorker worker = new IdWorker(1, 1, 1);for (int i = 0; i < 30; i++) {System.out.println(worker.nextId());}}}

七:说说MySQL读写分离原理?主从复制延时咋解决?

1.如何实现 MySQL 的读写分离

就是基于主从复制架构,简单来说,就搞一个主库,挂多个从库,然后我们就单单只是写主库,然后主库会自动把数据给同步到从库上去。

2.MySQL主从复制原理

主库将变更写入 binlog 日志,然后从库连接到主库之后,从库有一个 IO 线程,将主库的 binlog 日志拷贝到自己本地,写入一个 relay 中继日志中。接着从库中有一个 SQL 线程会从中继日志读取 binlog,然后执行 binlog 日志中的内容,也就是在自己本地再次执行一遍 SQL,这样就可以保证自己跟主库的数据是一样的。

这里有一个非常重要的一点,就是从库同步主库数据的过程是串行化的(从库拉取binlog日志在mysql5.6.x后是多线程的,但是从库读取中继日志是单线程的),也就是说主库上并行的操作,在从库上会串行执行。所以这就是一个非常重要的点了,由于从库从主库拷贝日志以及串行执行 SQL 的特点,在高并发场景下,从库的数据一定会比主库慢一些,是有延时的,主库写并发越高,从库延迟越高。所以经常出现,刚写入主库的数据可能是读不到的,要过几十毫秒,甚至几百毫秒才能读取到。而且这里还有另外一个问题,就是如果主库突然宕机,然后恰好数据还没同步到从库,那么有些数据可能在从库上是没有的,有些数据可能就丢失了。所以 MySQL 实际上在这一块有两个机制,一个是半同步复制,用来解决主库数据丢失问题;一个是并行复制,用来解决主从同步延时问题。这个所谓半同步复制,也叫 semi-sync 复制,指的就是主库写入 binlog 日志之后,就会将强制此时立即将数据同步到从库,从库将日志写入自己本地的 relay log 之后,接着会返回一个 ack 给主库,主库接收到至少一个从库的 ack 之后才会认为写操作完成了,客户端在写时,主库宕机,客户端从新写请求,此时从库可能升级为主库,在写会成功。所谓并行复制(mysql5.7),指的是从库开启多SQL个线程,并行读取 relay log 中不同库的日志,然后并发重放不同库的日志,这是库级别的并行。

经验值:主库写并发1000/s,从库延迟几毫秒,主库写并发2000/s,从库延迟几十毫秒,主库写并发4000/s,6000/s,8000/s都快宕机了,从库延迟达到几秒。

3.解决主从复制延迟(精华)

通过show status查看 Seconds_Behind_Master,可以看到从库复制主库的数据落后了几 ms。插入主库,马上查询从库,可能查询不到,后面操作就失败。

  • 分库,将一个主库拆分为多个主库,每个主库的写并发就减少了几倍,此时主从延迟可以忽略不计。
  • 打开 MySQL 支持的并行复制,多个库并行复制。如果说某个库的写入并发就是特别高,单库写并发达到了 2000/s,并行复制还是没意义。
  • 重写代码,写代码的同学,要慎重,插入数据时立马查询可能查不到。
  • 如果确实是存在必须先插入,立马要求就查询到,然后立马就要反过来执行一些操作,对这个查询设置直连主库。不推荐这种方法,你要是这么搞,读写分离的意义就丧失了。
  • 开启半同步复制,拉取binlog日志要是多线程的

八:分库分表后跨库join,跨库分页实现?

1.跨库join

全局表:所谓全局表,就是有可能系统中所有模块都可能会依赖到的一些表。比较类似我们理解的“数据字典”。为了避免跨库join查询,我们可以将这类表在其他每个数据库中均保存一份。同时,这类数据通常也很少发生修改(甚至几乎不会),所以也不用太担心“一致性”问题。

字段冗余:违反数据库设计三范式,例如:“订单表”中保存“卖家Id”的同时,将卖家的“Name”字段也冗余,这样查询订单详情的时候就不需要再去查询“卖家用户表”。段冗余能带来便利,是一种“空间换时间”的体现。但其适用场景也比较有限,比较适合依赖字段较少的情况。最复杂的还是数据一致性问题,这点很难保证,可以借助数据库中的触发器或者在业务代码层面去保证。当然,也需要结合实际业务场景来看一致性的要求。就像上面例子,如果卖家修改了Name之后,是否需要在订单信息中同步更新呢?

数据同步:定时A库中的tab_a表和B库中tbl_b有关联,可以定时将指定的表做同步。当然,同步本来会对数据库带来一定的影响,需要性能影响和数据时效性中取得一个平衡。这样来避免复杂的跨库查询

系统组装:在系统层面,通过调用不同模块的组件或者服务,获取到数据并进行字段拼装。我们只需要先获取“主表”数据,然后再根据关联关系,调用其他模块的组件或服务来获取依赖的其他字段(如例中依赖的用户信息),最后将数据进行组装。通常,我们都会通过缓存来避免频繁RPC通信和数据库查询的开销。

2.跨库分页

全局视野法:

正常情况下,全局排序的第3页数据,每个库都会包含一部分,由于不清楚到底是哪种情况,所以必须每个库都返回3页数据,所得到的6页数据在服务层进行内存排序,得到数据全局视野,再取第3页数据,便能够得到想要的全局分页数据。步骤:

  • 将order by time offset X limit Y,改写成order by time offset 0 limit X+Y
  • 服务层将改写后的SQL语句发往各个分库:即例子中的各取3页数据
  • 假设共分为N个库,服务层将得到N*(X+Y)条数据:即例子中的6页数据
  • 服务层对得到的N*(X+Y)条数据进行内存排序,内存排序后再取偏移量X后的Y条记录,就是全局视野所需的一页数据

优点:通过服务层修改SQL语句,扩大数据召回量,能够得到全局视野,业务无损,精准返回所需数据。

缺点:

  • 每个分库需要返回更多的数据,增大了网络传输量(耗网络);
  • 除了数据库按照time进行排序,服务层还需要进行二次排序,增大了服务层的计算量(耗CPU);
  • 最致命的,这个算法随着页码的增大,性能会急剧下降,这是因为SQL改写后每个分库要返回X+Y行数据:返回第3页,offset中的X=200;假如要返回第100页,offset中的X=9900,即每个分库要返回100页数据,数据量和排序量都将大增,性能平方级下降。

禁止跳页查询:

在数据量很大,翻页数很多的时候,很多产品并不提供“直接跳到指定页面”的功能,而只提供“下一页”的功能,这一个小小的业务折衷,就能极大的降低技术方案的复杂度。

  • 首先在各个分库中查询第一页数据,返回到服务层做排序,得到全局第一页数据
  • 获取下一页时,根据上一页的条件,作为这次查询的条件(比如根据时间升序分页,得到第一页数据后记录最后一条记录的时间max_time,下次分页以这个时间做过滤条件,time>=max_time),各个分库再次返回这一页数据,服务层在全局排序得到数据
  • 这样循环往复执行,每次返回的都是各个分库的每页显示条数的数据,而不像全局视野法那样,查询页数越深分库返回到服务层数据就越多

允许数据精度损失:

在数据量较大,数据分布足够随机的情况下,各分库所有非patition key属性,在各个分库上的数据分布,统计概率情况是一致的。例如,在uid随机的情况下,使用uid取模分两库,db0和db1:

  • 性别属性,如果db0库上的男性用户占比70%,则db1上男性用户占比也应为70%
  • 年龄属性,如果db0库上18-28岁少女用户比例占比15%,则db1上少女用户比例也应为15%
  • 时间属性,如果db0库上每天10:00之前登录的用户占比为20%,则db1上应该是相同的统计规律

利用这一原理,要查询全局100页数据,offset 9900 limit 100改写为offset 4950 limit 50,每个分库偏移4950(一半),获取50条数据(半页),得到的数据集的并集,基本能够认为,是全局数据的offset 9900 limit 100的数据,当然,这一页数据的精度,并不是精准的。根据实际业务经验,用户都要查询第100页网页、帖子、邮件的数据了,这一页数据的精准性损失,业务上往往是可以接受的,但此时技术方案的复杂度便大大降低了,既不需要返回更多的数据,也不需要进行服务内存排序了。

二次查询法:

为了方便举例,假设一页只有5条数据,查询第200页的SQL语句为select * from T order by time offset 1000 limit 5;将原sql语句改写为select * from T order by time offset 500 limit 5 并投递给所有的分库,注意,这个offset的500,来自于全局offset的总偏移量1000,除以水平切分数据库个数2。如果是3个分库,则可以改写为select * from T order by time offset 333 limit 5 假设这三个分库返回的数据(time, uid)如下:

可以看到,每个分库都是返回的按照time排序的一页数据。

找到所返回3页全部数据的最小值,比如说:第一个库,5条数据的time最小值是1487501123 ,第二个库,5条数据的time最小值是1487501133 ,第三个库,5条数据的time最小值是1487501143

故,三页数据中,time最小值来自第一个库,time_min=1487501123,这个过程只需要比较各个分库第一条数据,时间复杂度很低。

查询二次改写,第一次改写的SQL语句是select * from T order by time offset 333 limit 5 ,第二次要改写成一个between语句,between的起点是time_min,between的终点是原来每个分库各自返回数据的最大值: 第一个分库,第一次返回数据的最大值是1487501523 ,所以查询改写为select * from T order by time where time between time_min and 1487501523,第二个分库,第一次返回数据的最大值是1487501323 ,所以查询改写为select * from T order by time where time between time_min and 1487501323,第三个分库,第一次返回数据的最大值是1487501553 ,所以查询改写为select * from T order by time where time between time_min and 1487501553,相对第一次查询,第二次查询条件放宽了,故第二次查询会返回比第一次查询结果集更多的数据,假设这三个分库返回的数据(time, uid)如下:

可以看到: 
由于time_min来自原来的分库一,所以分库一的返回结果集和第一次查询相同(所以其实这次访问是可以省略的); 
分库二的结果集,比第一次多返回了1条数据,头部的1条记录(time最小的记录)是新的(上图中粉色记录); 
分库三的结果集,比第一次多返回了2条数据,头部的2条记录(time最小的2条记录)是新的(上图中粉色记录);

在每个结果集中虚拟一个time_min记录,找到time_min在全局的offset:

在第一个库中,time_min在第一个库的offset是333 
在第二个库中,(1487501133, uid_aa)的offset是333(根据第一次查询条件得出的),故虚拟time_min在第二个库的offset是331 
在第三个库中,(1487501143, uid_aaa)的offset是333(根据第一次查询条件得出的),故虚拟time_min在第三个库的offset是330,综上,time_min在全局的offset是333+331+330=994

既然得到了time_min在全局的offset,就相当于有了全局视野,根据第二次的结果集,就能够得到全局offset 1000 limit 5的记录

第二次查询在各个分库返回的结果集是有序的,又知道了time_min在全局的offset是994,一路排下来,容易知道全局offset 1000 limit 5的一页记录(上图中黄色记录)。是不是非常巧妙?这种方法的优点是:可以精确的返回业务所需数据,每次返回的数据量都非常小,不会随着翻页增加数据的返回量。不足是:需要进行两次数据库查询。

跨库分页原文地址:https://mp.weixin.qq.com/s?__biz=MjM5ODYxMDA5OQ==&mid=2651959942&idx=1&sn=e9d3fe111b8a1d44335f798bbb6b9eea&chksm=bd2d075a8a5a8e4cad985b847778aa83056e22931767bb835132c04571b66d5434020fd4147f&mpshare=1&scene=23&srcid=06058n49pOx2xQJoDrL1OyMT#rd

高频数据库分库分表面试题解析相关推荐

  1. 高并发下数据库分库分表面试题整理

    1. 为什么要分库分表(设计高并发系统的时候,数据库层面该如何设计)?用过哪些分库分表中间件?不同的分库分表中间件都有什么优点和缺点?你们具体是如何对数据库如何进行垂直拆分或水平拆分的? 面试题剖析 ...

  2. mysql 表与表之间的条件比对_Mysql分库分表面试题(mysql高可用方案解析)

    数据库数据过大的系统架构-mysql分库分表高可用 如果当你的数据量达到千万级,亿级的时候,我们用常规的方式去做优化那么效果可能就不是很好了.这已经不是说性能的问题了,而是数据量响应的处理问题了,所以 ...

  3. 数据库 分库分表----全貌解析----策略,方法,中间件,途中问题,数据迁移方法

    https://baijiahao.baidu.com/s?id=1622441635115622194&wfr=spider&for=pc https://mp.weixin.qq. ...

  4. mysql分库分表 ppt_数据库分库分表中间件架构解析.ppt

    数据库分库分表中间件架构解析 Processor(1) Processor(n) MySQL MySQL MySQL Cobar结构 Front-end Communication Applicati ...

  5. 数据库分库分表,分片配置轻松入门!

    上次和大伙聊了 MyCat 的安装,今天来说一个新的话题,就是数据库的分片. 当我们把 MyCat + MySQL 的架构搭建完成之后,接下来面临的一个问题就是,数据库的分片规则:有那么多 MySQL ...

  6. 数据库分库分表(sharding)系列(三) 关于使用框架还是自主开发以及sharding实现层面的考量...

    当团队对系统业务和数据库进行了细致的梳理,确定了切分方案后,接下来的问题就是如何去实现切分方案了,目前在sharding方面有不少的开源框架和产 品可供参考,同时很多团队也会选择自主开发实现,而不管是 ...

  7. 别再问什么是数据库分库分表了,看这里!

    编者语:为了避免被误解为:「手里有把锤子,看什么都是钉子!」,说明一下不是什么业务都适合分布式数据库,更不是用了分布式数据库性能就一定能得到扩展. 其次:本文为纯干货,建议先转发.收藏再观看. 分布式 ...

  8. 数据库分库分表解决方案

    数据库分库分表解决方案 前言 MySQL表大小限制 分表方案 垂直分表 水平分表 按月分表 MySQL分区表 分库方案 按业务分库 按表分库 拆分后的问题及常见的解决方案 垂直拆分 跨库Join问题 ...

  9. 数据库分库分表中间件对比(很全)

    数据库(分库分表)中间件对比 分区:对业务透明,分区只不过把存放数据的文件分成了许多小块,例如mysql中的一张表对应三个文件.MYD,MYI,frm. 根据一定的规则把数据文件(MYD)和索引文件( ...

  10. mysql分库分表中间件6_当当开源sharding-jdbc,轻量级数据库分库分表中间件

    近期,当当开源了数据库分库分表中间件sharding-jdbc. Sharding-JDBC是当当应用框架ddframe中,从关系型数据库模块dd-rdb中分离出来的数据库水平分片框架,实现透明化数据 ...

最新文章

  1. HTTPS加密那点事--轻松秒懂HTTPS非对称加密
  2. 多线程-单生产单消费模型
  3. java对象序列化去掉字段_使用序列化查找对象中的脏字段
  4. Adobe PhotoShop(PS) for Mac 如何隐藏切片框?
  5. java api 第一个类是_JAVA常用API:String 类的常用方法
  6. 吴恩达机器学习【第六天】神经网络模型
  7. STM32固件库下载步骤
  8. 学python必备的英语单词(终身受益)
  9. 经典有源滤波电路(赛伦-凯滤波器)
  10. react-native获取农历日期和二十四节气
  11. 这 5 本数据分析书籍,都是经典中的经典
  12. c语言常用的运行速度优化,C语言程序设计优化(提速)
  13. 【二十八宿】又叫二十八舍或二十八星,是今人为观测日、
  14. ubuntu下gEDA安装及使用
  15. aop的jdk动态代理和cglib动态代理
  16. 仿驾校一点通android
  17. 学会提问太..重要了
  18. php商城项目视频,thinkphp5.0商城项目实战视频教程
  19. Linux执行source隐藏文件,用ls命令实现Linux主目录中隐藏文件查找
  20. c语言 union及 大端小端

热门文章

  1. MarkDown 内部跳转链接
  2. 带宽叠加是什么意思?
  3. 蚂蚁安全键盘空白或应该显示安全键盘却显示的系统键盘的问题(iOS中时间佛历如何转换为公历)
  4. css样式表的作用和意义,什么是CSS?
  5. 张博增是谁?为什么说他开启石墨烯的2.0时代!
  6. 获取银行卡Log接口
  7. Ubuntu 18.04 DNS解析失败
  8. MySQL - MySQL 8.0(二)基本操作:对象
  9. 发了两个月传单,他转行做了程序员
  10. oracle重启rac2监听,RAC监听服务