1 认识二进制数据

二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。

—— 百度百科

二进制数据就像上图一样,由0和1来存储数据。普通的十进制数转化成二进制数一般采用"除2取余,逆序排列"法,用2整除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为小于1时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。例如,数字10转成二进制就是1010,那么数字10在计算机中就以1010的形式存储。

而字母和一些符号则需要通过 ASCII 码来对应,例如,字母a对应的 ACSII 码是 97,二进制表示就是0110 0001。JavaScript 中可以使用 charCodeAt 方法获取字符对应的 ASCII:

除了ASCII外,还有一些其他的编码方式来映射不同字符,比如我们使用的汉字,通过 JavaScript 的 charCodeAt 方法得到的是其 UTF-16 的编码。

Node 处理二进制数据

JavaScript 在诞生初期主要用于表单信息的处理,所以 JavaScript 天生擅长对字符串进行处理,可以看到 String 的原型提供特别多便利的字符串操作方式。

但是,在服务端如果只能操作字符是远远不够的,特别是网络和文件的一些 IO 操作上,还需要支持二进制数据流的操作,而 Node.js 的 Buffer 就是为了支持这些而存在的。好在 ES6 发布后,引入了类型数组(TypedArray)的概念,又逐步补充了二进制数据处理的能力,现在在 Node.js 中也可以直接使用,但是在 Node.js 中,还是 Buffer 更加适合二进制数据的处理,而且拥有更优的性能,当然 Buffer 也可以直接看做 TypedArray 中的 Uint8Array。除了 Buffer,Node.js 中还提供了 stream 接口,主要用于处理大文件的 IO 操作,相对于将文件分批分片进行处理。

2 认识 Buffer

Buffer 直译成中文是『缓冲区』的意思,顾名思义,在 Node.js 中实例化的 Buffer 也是专门用来存放二进制数据的缓冲区。一个 Buffer 可以理解成开辟的一块内存区域,Buffer 的大小就是开辟的内存区域的大小。下面来看看Buffer 的基本使用方法。

API 简介

早期的 Buffer 通过构造函数进行创建,通过不同的参数分配不同的 Buffer。

new Buffer(size)

创建大小为 size(number) 的 Buffer。

new Buffer(5)// 

new Buffer(array)

使用八位字节数组 array 分配一个新的 Buffer。

const buf = new Buffer([0x74, 0x65, 0x73, 0x74])// // 对应 ASCII 码,这几个16进制数分别对应 t e s t// 将 Buffer 实例转为字符串得到如下结果buf.toString() // 'test'

new Buffer(buffer)

拷贝 buffer 的数据到新建的 Buffer 实例。

const buf1 = new Buffer('test')const buf2 = new Buffer(buf1)

new Buffer(string[, encoding])

创建内容为 string 的 Buffer,指定编码方式为 encoding。

const buf = new Buffer('test')// // 可以看到结果与 new Buffer([0x74, 0x65, 0x73, 0x74]) 一致buf.toString() // 'test'

更安全的 Buffer

由于 Buffer 实例因第一个参数类型而执行不同的结果,如果开发者不对参数进行校验,很容易导致一些安全问题。例如,我要创建一个内容为字符串 "20" 的 Buffer,而错误的传入了数字 20,结果创建了一个长度为 20 的Buffer 实例。

可以看到上图,Node.js 8 之前,为了高性能的考虑,Buffer 开辟的内存空间并未释放之前已存在的数据,直接将这个 Buffer 返回可能导致敏感信息的泄露。因此,Buffer 类在 Node.js 8 前后有一次大调整,不再推荐使用 Buffer 构造函数实例 Buffer,而是改用Buffer.from()、Buffer.alloc() 与 Buffer.allocUnsafe() 来替代 new Buffer()。

Buffer.from()

该方法用于替代 new Buffer(string)、new Buffer(array)、new Buffer(buffer)。

Buffer.alloc(size[, fill[, encoding]])

该方法用于替代 new Buffer(size),其创建的 Buffer 实例默认会使用 0 填充内存,也就是会将内存之前的数据全部覆盖掉,比之前的 new Buffer(size) 更加安全,因为要覆盖之前的内存空间,也意味着更低的性能。

同时,size 参数如果不是一个数字,会抛出 TypeError。

Buffer.allocUnsafe(size)

该方法与之前的 new Buffer(size) 保持一致,虽然该方法不安全,但是相比起 alloc 具有明显的性能优势。

Buffer 的编码

前面介绍过二进制数据与字符对应需要指定编码,同理将字符串转化为 Buffer、Buffer 转化为字符串都是需要指定编码的。

Node.js 目前支持的编码方式如下:

  • hex:将每个字节编码成两个十六进制的字符。

  • ascii:仅适用于 7 位 ASCII 数据。此编码速度很快,如果设置则会剥离高位。

  • utf8:多字节编码的 Unicode 字符。许多网页和其他文档格式都使用 UTF-8。

  • utf16le:2 或 4 个字节,小端序编码的 Unicode 字符。

  • ucs2:utf16le 的别名。

  • base64:Base64 编码。

  • latin1:一种将 Buffer 编码成单字节编码字符串的方法。

  • binary:latin1 的别名。

比较常用的就是 UTF-8、UTF-16、ASCII,前面说过 JavaScript 的 charCodeAt 使用的是 UTF-16 编码方式,或者说 JavaScript 中的字符串都是通过 UTF-16 存储的,不过 Buffer 默认的编码是 UTF-8。

可以看到一个汉字在 UTF-8 下需要占用 3 个字节,而 UTF-16 只需要 2 个字节。主要原因是 UTF-8 是一种可变长的字符编码,大部分字符使用 1 个字节表示更加节省空间,而某些超出一个字节的字符,则需要用到 2 个或 3 个字节表示,大部分汉字在 UTF-8 中都需要用到 3 个字节来表示。UTF-16 则全部使用 2 个字节来表示,对于一下超出了 2 字节的字符,需要用到 4 个字节表示。2 个字节表示的 UTF-16 编码与 Unicode 完全一致,通过汉字Unicode编码表可以找到大部分中文所对应的 Unicode 编码。前面提到的 『汉』,通过 Unicode 表示为 6C49。

这里提到的 Unicode 编码又被称为统一码、万国码、单一码,它为每种语言都设定了统一且唯一的二进制编码,而上面说的 UTF-8、UTF-16 都是他的一种实现方式。更多关于编码的细节不再赘述,也不是本文的重点,如果想了解更多可自行搜索。

乱码的原因

我们经常会出现一些乱码的情况,就是因为在字符串与 Buffer 的转化过程中,使用了不同编码导致的。

我们先新建一个文本文件,然后通过 utf16 编码保存,然后通过 Node.js 读取改文件。

const fs = require('fs')const buffer = fs.readFileSync('./1.txt')console.log(buffer.toString())

由于 Buffer 在调用 toString 方法时,默认使用的是 utf8 编码,所以输出了乱码,这里我们将 toString 的编码方式改成 utf16 就可以正常输出了。

const fs = require('fs')const buffer = fs.readFileSync('./1.txt')console.log(buffer.toString('utf16le'))

3 认识 Stream

前面我们说过,在 Node.js 中可以利用 Buffer 来存放一段二进制数据,但是如果这个数据量非常的大使用 Buffer 就会消耗相当大的内存,这个时候就需要用到 Node.js 中的 Stream(流)。要理解流,就必须知道管道的概念。

在类Unix操作系统(以及一些其他借用了这个设计的操作系统,如Windows)中,管道是一系列将标准输入输出链接起来的进程,其中每一个进程的输出被直接作为下一个进程的输入。这个概念是由道格拉斯·麦克罗伊为Unix 命令行发明的,因与物理上的管道相似而得名。

-- 摘自维基百科

我们经常在 Linux 命令行使用管道,将一个命令的结果传输给另一个命令,例如,用来搜索文件。

ls | grep code

这里使用 ls 列出当前目录的文件,然后交由 grep 查找包含 code 关键词的文件。

在前端的构建工具 gulp 中也用到了管道的概念,因为使用了管道的方式来进行构建,大大简化了工作流,用户量一下子就超越了 grunt。

// 使用 gulp 编译 scssconst gulp = require('gulp')const sass = require('gulp-sass')const csso = require('gulp-csso')gulp.task('sass', function () {  return gulp.src('./**/*.scss')    .pipe(sass()) // scss 转 css    .pipe(csso()) // 压缩 css    .pipe(gulp.dest('./css'))})

前面说了这么多管道,那管道和流直接应该怎么联系呢。流可以理解为水流,水要流向哪里,就是由管道来决定的,如果没有管道,水也就不能形成水流了,所以流必须要依附管道。在 Node.js 中所有的 IO 操作都可以通过流来完成,因为 IO 操作的本质就是从一个地方流向另一个地方。例如,一次网络请求,就是将服务端的数据流向客户端。

const fs = require('fs')const http = require('http')const server = http.createServer((request, response) => {    // 创建数据流    const stream = fs.createReadStream('./data.json')    // 将数据流通过管道传输给响应流    stream.pipe(response)})server.listen(8100)// data.json{ "name": "data" }

使用 Stream 会一边读取 data.json 一边将数据写入响应流,而不是像 Buffer 一样,先将整个 data.json 读取到内存,然后一次性输出到响应中,所以使用 Stream 的时候会更加节约内存。

其实 Stream 在内部依然是运作在 Buffer 上。如果我们把一段二进制数据比做一桶水,那么通过 Buffer 进行文件传输就是直接将一桶水倒入到另一个桶里面,而使用 Stream,就是将桶里面的水通过管道一点点的抽取过去。

Stream 与 Buffer 内存消耗对比

这里如果只是口头说说可能感知不明显,现在分别通过 Stream 和 Buffer 来复制一个 2G 大小的文件,看看 node 进程的内存消耗。

Stream 复制文件

// Stream 复制文件const fs = require('fs');const file = './file.mp4';fs.createReadStream(file)  .pipe(fs.createWriteStream('./file.copy.mp4'))  .on('finish', () => {      console.log('file successfully copy');  })

Buffer 复制文件

// Buffer 复制文件const fs = require('fs');const file = './file.mp4';// fs.readFile 直接输出的是文件 Bufferfs.readFile(file, (err, buffer) => {    fs.writeFile('./file.copy.mp4', buffer, (err) => {        console.log('file successfully copy');    });});

通过上图的结果可以看出,通过 Stream 拷贝时,只占用了我电脑 0.6% 的内存,而使用 Buffer 时,占用了 15.3% 的内存。

API 简介

在 Node.js 中,Steam 一共被分为五种类型。

可读流(Readable),可读取数据的流;

可写流(Writable),可写入数据的流;

双工流(Duplex),可读又可写的流;

转化流(Transform),在读写过程中可任意修改和转换数据的流(也是可读写的流);

所有的流都可以通过 .pipe 也就是管道(类似于 linux 中的 |)来进行数据的消费。另外,也可以通过事件来监听数据的流动。不管是文件的读写,还是 http 的请求、响应都会在内部自动创建 Stream,读取文件时,会创建一个可读流,输出文件时,会创建可写流。

可读流(Readable)

虽然叫做可读流,但是可读流也是可写的,只是这个写操作一般是在内部进行的,外部只需要读取就行了。

可读流一般分为两种模式:

流动模式:表示正在读取数据,一般通过事件监听来获取流中的数据。

暂停模式:此时流中的数据不会被消耗,如果在暂停模式需要读取可读流的数据,需要显式调用stram.read()。

可读流在创建时,默认为暂停模式,一旦调用了 .pipe,或者监听了 data 事件,就会自动切换到流动模式。

const { Readable } = require('stream')// 创建可读流const readable = new Readable()// 绑定 data 事件,将模式变为流动模式readable.on('data', chunk => {  console.log('chunk:', chunk.toString()) // 输出 chunk})// 写入 5 个字母for (let i = 97; i < 102; i++) {  const str = String.fromCharCode(i);  readable.push(str)}// 推入 `null` 表示流已经结束readable.push(null)

const { Readable } = require('stream')// 创建可读流const readable = new Readable()// 写入 5 个字母for (let i = 97; i < 102; i++) {  const str = String.fromCharCode(i);  readable.push(str)}// 推入 `null` 表示流已经结束readable.push('\n')readable.push(null)// 通过管道将流的数据输出到控制台readable.pipe(process.stdout)

上面的代码都是手动创建可读流,然后通过 push 方法往流里面写数据的。前面说过,Node.js 中数据的写入都是内部实现的,下面通过读取文件的 fs 创建的可读流来举例:

const fs = require('fs')// 创建 data.json 文件的可读流const read = fs.createReadStream('./data.json')// 监听 data 事件,此时变成流动模式read.on('data', json => {  console.log('json:', json.toString())})

可写流(Writable)

可写流对比起可读流,它是真的只能写,属于只进不出的类型,类似于貔貅。

创建可写流的时候,必须手动实现一个 _write() 方法,因为前面有下划线前缀表明这是内部方法,一般不由用户直接实现,所以该方法都是在 Node.js 内部定义,例如,文件可写流会在该方法中将传入的 Buffer 写入到指定文本中。

写入如果结束,一般需要调用可写流的 .end() 方法,表示结束本次写入,此时还会调用 finish 事件。

const { Writable } = require('stream')// 创建可写流const writable = new Writable()// 绑定 _write 方法,在控制台输出写入的数据writable._write = function (chunk) {  console.log(chunk.toString())}// 写入数据writable.write('abc')// 结束写入writable.end()_write 方法也可以在实例可写流的时候,通过传入对象的 write 属性来实现。const { Writable } = require('stream')// 创建可写流const writable = new Writable({  // 同,绑定 _write 方法    write(chunk) {    console.log(chunk.toString())  }})// 写入数据writable.write('abc')// 结束写入writable.end()

下面看看 Node.js 中内部通过 fs 创建的可写流。

const fs = require('fs')// 创建可写流const writable = fs.createWriteStream('./data.json')// 写入数据,与自己手动创建的可写流一致writable.write(`{  "name": "data"}`)// 结束写入writable.end()

看到这里就能理解,Node.js 在 http 响应时,需要调用 .end() 方法来结束响应,其实内部就是一个可写流。现在再回看前面通过 Stream 来复制文件的代码就更加容易理解了。

const fs = require('fs');const file = './file.mp4';fs.createReadStream(file)  .pipe(fs.createWriteStream('./file.copy.mp4'))  .on('finish', () => {      console.log('file successfully copy');  })

双工流(Duplex)

双工流同时实现了 Readable 和 Writable,具体用法可以参照可读流和可写流,这里就不占用文章篇幅了。

管道串联

前面介绍了通过管道(.pipe())可以将一个桶里的数据转移到另一个桶里,但是有多个桶的时候,我们就需要多次调用 .pipe()。例如,我们有一个文件,需要经过 gzip 压缩后重新输出。

const fs = require('fs')const zlib = require('zlib')const gzip = zlib.createGzip() // gzip 为一个双工流,可读可写const input = fs.createReadStream('./data.json')const output = fs.createWriteStream('./data.json.gz')input.pipe(gzip) // 文件压缩gzip.pipe(output) // 压缩后输出

面对这种情况,Node.js 提供了 pipeline() api,可以一次性完成多个管道操作,而且还支持错误处理。

const { pipeline } = require('stream')const fs = require('fs')const zlib = require('zlib')const gzip = zlib.createGzip()const input = fs.createReadStream('./data.json')const output = fs.createWriteStream('./data.json.gz')pipeline(  input,   // 输入  gzip,    // 压缩  output,  // 输出  // 最后一个参数为回调函数,用于错误捕获  (err) => {    if (err) {      console.error('压缩失败', err)    } else {      console.log('压缩成功')    }  })

4 参考

字符编码笔记

Buffer | Node.js API

stream | Node.js API

stream-handbook

关注我们

公众号ID:前端Sharing

冰淇淋里有夏天的味道

二进制差分码规则_一篇文章弄明白Node.js与二进制数据流相关推荐

  1. base64 转二进制_一篇文章弄明白Node.js与二进制数据流

    1 认识二进制数据 二进制是计算技术中广泛采用的一种数制.二进制数据是用0和1两个数码来表示的数.它的基数为2,进位规则是"逢二进一",借位规则是"借一当二", ...

  2. python 结构体数组 定义_一篇文章弄懂Python中所有数组数据类型

    前言 数组类型是各种编程语言中基本的数组结构了,本文来盘点下Python中各种"数组"类型的实现. list tuple array.array str bytes bytearr ...

  3. bytes数组转string指定编码_一篇文章弄懂Python中所有数组数据类型

    前言 数组类型是各种编程语言中基本的数组结构了,本文来盘点下Python中各种"数组"类型的实现. list tuple array.array str bytes bytearr ...

  4. response对象的方法有哪些_一篇文章弄懂Request和Response(建议收藏复习)

    一:HttpServletRequest 1.简介: HttpServletRequest 是专用于HTTP协议的ServletRequest 子接口,它用于封装 HTTP 请求消息. 它在每次请求s ...

  5. lbp7660cdn设置网络打印_一篇文章弄懂局域网打印机共享

    打印机具有高打印质量.高速度.高稳定性等特点,可广泛应用于POS系统.餐饮行业等需要现场实时打印收据的场合.现在打印机都有网络接口,这样使得网络打印更加方便.那么怎么添加打印机共享?下面,小编给大家讲 ...

  6. c++ 读写锁_一篇文章弄懂MySQL锁机制

    一.锁的分类 1.按锁的粒度划分,可分为表级锁.行级锁.页级锁(mysql) 2.按锁级别划分,可分为共享锁.排他锁 3.按使用方式划分,可分为乐观锁.悲观锁 (一).按粒度划分的锁 1.表级锁(偏向 ...

  7. vue获取div中的值_一篇文章看懂Vue.js的11种传值通信方式

    面试的时候,也算是常考的一道题目了,而且,在日常的开发中,对于组件的封装,尤其是在 ui组件库中,会用到很多,下面,就来详细的了解下,通过这篇文章的学习,可以提升项目中组件封装的灵活性,可维护性,话不 ...

  8. int** 赋值_一篇文章搞明白Integer、new Integer() 和 int 的概念与区别

    基本概念的区分 1.Integer 是 int 的包装类,int 则是 java 的一种基本数据类型 2.Integer 变量必须实例化后才能使用,而int变量不需要 3.Integer 实际是对象的 ...

  9. 计算机论文章节构成,一篇文章弄懂电脑的组成

    原标题:一篇文章弄懂电脑的组成 来源:转载于网络:学电脑知识http://www.pc280.com 今天为大家全面介绍电脑的组成,看完这个你一定再也不会对这个铁盒子产生畏惧,一定让你理解,让你懂! ...

最新文章

  1. Android ANR异常及解决方法
  2. asp.net 中显示各类文件
  3. nginx php页面打开404,nginx php页面 error_page 404不起作用解决
  4. Python从头/尾删除子符串的正确操作
  5. Python高级运维开发2016年7月第14期隆重开课
  6. 分析一下mp4格式的trak -> mdia -> minf -> stbl -> stts、stsc 这两个box信息
  7. Android平台使用Camera2(5.0+)替代过时的Camera
  8. java link_Java Link类代码示例
  9. 无界面chrome + selenium爬虫
  10. oracle级联查询 level,ORACLE 数据库的级联查询 一句sql搞定(部门多级)
  11. mysql 7.x 集群_MySQL cluster 7.X集群部署配置
  12. fields and vector spaces
  13. nginx-配置记录
  14. linux怎么查看设备序列号,linux 使用dmidecode查看设备序列号
  15. 安捷伦or是德信号源+频谱仪操作: 从程控到自动测试 (三)互调检测的程控实现
  16. word java api_Java中的Word文档创建API
  17. 输入一个正整数数组,把数组里所有数字拼接起来排成一个数,打印能拼接出的所有数字中最小的一个。例如输入数组{3,32,321},则打印出这三个数字能排成的最小数字为321323。剑指Offer(32)
  18. 哈工大硕士生用 Python 实现了 11 种经典数据降维算法,源代码库已开放
  19. 2012最犀利语录大全
  20. linux如何将百分比转换为数字,Linux_sql 自定义百分比转换小数函数代码,复制代码 代码如下: --CAST 和 CO - phpStudy...

热门文章

  1. vm 安装unbuntu
  2. 游戏出海加速度,腾讯、网易“快吃慢咽”
  3. 专业工具软件课程意见汇总及答复
  4. 因果推断-重要概念:ATE/CATE/ITE/ATT
  5. 基于单片机信号波形发生器系统设计-毕设课设
  6. Markdown如何画时序图,一篇就够了
  7. 30. 主频和时钟配置实验
  8. 北京城市总体规划 (2016年—2035年)附图
  9. hangfire mysql_Hangfire 后台日志 The underlying provider failed on Open 错误
  10. 发送邮件sendEmailUtil