现在有很多数据处理都要用到不定长数据,而单片机串口的RXNE中断一次只能接收一个字节的数据,没有缓冲区,无法接收一帧多个数据,现提供两种利用串口IDLE空闲中断的方式接收一帧数据,方法如下:

方法1:实现思路:采用STM32F103的串口1,并配置成空闲中断IDLE模式且使能DMA接收,并同时设置接收缓冲区和初始化DMA。那么初始化完成之后,当外部给单片机发送数据的时候,假设这帧数据长度是200个字节,那么在单片机接收到一个字节的时候并不会产生串口中断,而是DMA在后台把数据默默地搬运到你指定的缓冲区里面。当整帧数据发送完毕之后串口才会产生一次中断,此时可以利用DMA_GetCurrDataCounter();函数计算出本次的数据接受长度,从而进行数据处理。

应用对象:适用于各种串口相关的通信协议,如:MODBUS,PPI ;还有类似于GPS数据接收解析,串口WIFI的数据接收等,都是很好的应用对象。

关键代码分析:

usart.H

#ifndef __USART_H
#define __USART_H
#include "stdio.h"
#include "sys.h" #define DMA_Rec_Len 200      //定义一个长度为200个字节的数据缓冲区。(建议定义的长度比你可能接收到的最长单帧数据长度长!)
void uart_init(u32 bound);
void MYDMA_Enable(DMA_Channel_TypeDef*DMA_CHx);#endif
usart.C
//初始化IO 串口1
//bound:波特率
void uart_init(u32 bound)
{//GPIO端口设置GPIO_InitTypeDef GPIO_InitStructure;USART_InitTypeDef USART_InitStructure;NVIC_InitTypeDef NVIC_InitStructure;DMA_InitTypeDef DMA_InitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA,ENABLE); //使能USART1,GPIOA时钟RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); //使能DMA传输RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2,ENABLE);//使能USART2时钟USART_DeInit(USART1);  //复位串口1//USART1_TX   PA.9GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.9GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化PA9//USART1_RX  PA.10GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输入GPIO_Init(GPIOA, &GPIO_InitStructure);  //初始化PA10//Usart1 NVIC 配置NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3 ;//抢占优先级3NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //子优先级3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器//USART 初始化设置USART_InitStructure.USART_BaudRate = bound;USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位USART_InitStructure.USART_HardwareFlowControl =USART_HardwareFlowControl_None;//无硬件数据流控制USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式USART_Init(USART1, &USART_InitStructure); //初始化串口USART_ITConfig(USART1, USART_IT_IDLE, ENABLE);//开启空闲中断USART_DMACmd(USART1,USART_DMAReq_Rx,ENABLE);   //使能串口1 DMA接收USART_Cmd(USART1, ENABLE);                   //使能串口 //相应的DMA配置DMA_DeInit(DMA1_Channel5);   //将DMA的通道5寄存器重设为缺省值  串口1对应的是DMA通道5DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)&USART1->DR; //DMA外设usart基地址DMA_InitStructure.DMA_MemoryBaseAddr = (u32)DMA_Rece_Buf;  //DMA内存基地址DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;  //数据传输方向,从外设读取发送到内存DMA_InitStructure.DMA_BufferSize = DMA_Rec_Len;  //DMA通道的DMA缓存的大小DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //外设地址寄存器不变DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;  //内存地址寄存器递增DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; //数据宽度为8位DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; //数据宽度为8位DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;  //工作在正常缓存模式DMA_InitStructure.DMA_Priority = DMA_Priority_Medium; //DMA通道 x拥有中优先级 DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;  //DMA通道x没有设置为内存到内存传输DMA_Init(DMA1_Channel5, &DMA_InitStructure);  //根据DMA_InitStruct中指定的参数初始化DMA的通道DMA_Cmd(DMA1_Channel5, ENABLE);  //正式驱动DMA传输
}//重新恢复DMA指针
void MYDMA_Enable(DMA_Channel_TypeDef*DMA_CHx)
{ DMA_Cmd(DMA_CHx, DISABLE );  //关闭USART1 TX DMA1所指示的通道    DMA_SetCurrDataCounter(DMA_CHx,DMA_Rec_Len);//DMA通道的DMA缓存的大小DMA_Cmd(DMA_CHx, ENABLE);  //打开USART1 TX DMA1所指示的通道
}   //发送len个字节
//buf:发送区首地址
//len:发送的字节数
void Usart1_Send(u8 *buf,u8 len)
{u8 t;for(t=0;t<len;t++)      //循环发送数据{          while(USART_GetFlagStatus(USART1, USART_FLAG_TC) == RESET);   USART_SendData(USART1,buf[t]);}    while(USART_GetFlagStatus(USART1, USART_FLAG_TC) == RESET);
}//串口中断函数
void USART1_IRQHandler(void)                //串口1中断服务程序
{if(USART_GetITStatus(USART1, USART_IT_IDLE) != RESET) //接收中断(接收到的数据必须是0x0d 0x0a结尾){USART_ReceiveData(USART1);//读取数据注意:这句必须要,否则不能够清除中断标志位。Usart1_Rec_Cnt =DMA_Rec_Len-DMA_GetCurrDataCounter(DMA1_Channel5); //算出接本帧数据长度//***********帧数据处理函数************//printf ("Thelenght:%d\r\n",Usart1_Rec_Cnt);printf ("The data:\r\n");Usart1_Send(DMA_Rece_Buf,Usart1_Rec_Cnt);printf ("\r\nOver! \r\n");//*************************************//USART_ClearITPendingBit(USART1,USART_IT_IDLE);         //清除中断标志MYDMA_Enable(DMA1_Channel5);                  //恢复DMA指针,等待下一次的接收} }
  • 方法2:实现思路:直接利用stm32的RXNE和IDLE中断进行接收不定字节数据。

基本知识:
IDLE中断什么时候发生?
IDLE就是串口收到一帧数据后,发生的中断。什么是一帧数据呢?比如说给单片机一次发来1个字节,或者一次发来8个字节,这些一次发来的数据,就称为一帧数据,也可以叫做一包数据。
如何判断一帧数据结束,就是我们今天讨论的问题。因为很多项目中都要用到这个,因为只有接收到一帧数据以后,你才可以判断这次收了几个字节和每个字节的内容是否符合协议要求。
看了前面IDLE中断的定义,你就会明白了,一帧数据结束后,就会产生IDLE中断。

如何配置好IDLE中断?
下面我们就配置好串口IDLE中断吧。

这是串口CR1寄存器,其中,对bit4写1开启IDLE中断,对bit5写1开启接收数据中断。(注意:不同系列的STM32,对应的寄存器位可能不同)

RXNE中断和IDLE中断的区别?
当接收到1个字节,就会产生RXNE中断,当接收到一帧数据,就会产生IDLE中断。比如给单片机一次性发送了8个字节,就会产生8次RXNE中断,1次IDLE中断。

这是状态寄存器,当串口接收到数据时,bit5就会自动变成1,当接收完一帧数据后,bit4就会变成1.
需要注意的是,在中断函数里面,需要把对应的位清0,否则会影响下一次数据的接收。比如RXNE接收数据中断,只要把接收到的一个字节读出来,就会清除这个中断。IDLE中断,如何是F0系列的单片机,需要用ICR寄存器来清除,如果是F1系列的单片机,清除方法是“先读SR寄存器,再读DR寄存器”。(我怎么知道?手册上写的)

下面以STM32F103为例给出源程序。
我们先来看程序中的主要部分。
串口初始化函数片段

串口中断函数

串口中断函数里面,最重要的两条语句,就是上图中圈出来的两条语句。第一条语句用来判断是否接收到1个字节,第二条语句用来判断是否接收到1帧数据。(是不是感觉超级方便?妈妈再也不用担心我如何判断是否接收完1帧数据了。)
主函数

这个主函数,是用来验证接收的正确性的。RxCounter表示的是这一帧数据有几个字节,接收完一帧数据,会在中断函数里面把ReceiveState置1,然后,通过串口把接收到的数据发送回串口。这样,既验证了接收了多少字节的正确性,又验证了接收到的数据是否正确。

两个程序代码均采用stm32f103zet6测试过,完全没问题。
参考文章:http://www.51hei.com/bbs/dpj-39885-1.html(STM32串口接收不定长数据原理与源程序)
http://www.openedv.com/thread-63849-1-1.htmlSTM32(使用串口1配合DMA接收不定长数据,大大减轻CPU载荷。)

STM32使用串口IDLE中断的两种接收不定长数据的方式相关推荐

  1. 处理串口接收不定长数据的另一种解决方法

    开发平台:Keil 5 库函数版本:V3.5 芯片:STM32F103CBT6 之前我在我的另一篇博客中介绍过使用串口空闲中断+DMA的方式来处理不定长数据,没有看过的同学可以点击这里查看.今天要介绍 ...

  2. openmv串口数据 串口助手_STM32 串口接收不定长数据 STM32 USART空闲检测中断

    编者注: 单片机串口接收不定长数据时,必须面对的一个问题为:怎么判断这一包数据接收完成了呢?常见的方法主要有以下两种: 1.在接收数据时启动一个定时器,在指定时间间隔内没有接收到新数据,认为数据接收完 ...

  3. 串口IDLE空闲中断+DMA实现接收不定长数据基于stm32cubemx

    引言:对于串口接收一些不定长的数据,必须面对一个问题:怎么判断一帧数据接收是否完成?通常使用RXNE非空中断配合简单的数据协议,在数据中加入帧头.帧尾,在程序中判断是否接收到帧尾来确定数据接收完毕,因 ...

  4. STM32单片机串口空闲中断+DMA接收不定长数据

    在上一篇文章STM32单片机串口空闲中断接收不定长数据中介绍了利用串口空闲中断接收不定长数据,这种方式有一个问题就是串口每接收到一个字节就会进入一次中断,如果发送的数据比较频繁,那么串口中断就会不停打 ...

  5. STM32单片机串口空闲中断接收不定长数据

    在使用单片机的串口通信功能时,常用的接收数据方法是通过固定的字节数来判断一帧数是否发送完成,或者是通过固定的结束标志位来表示一帧数据发送完成.但是有时候会遇到发送的数据长度不固定,也没有固定的结束标志 ...

  6. stm32串口空闲中断接收不定长数据

    串口空闲中断接收不定长数据 空闲中断是接受数据后出现一个byte的高电平(空闲)状态,就会触发空闲中断.并不是空闲就会一直中断,准确的说应该是上升沿(停止位)后一个byte,如果一直是低电平是不会触发 ...

  7. STM32串口接收不定长数据原理与源程序

    **STM32串口接收不定长数据原理与源程序**CSDN上有很多关于STM32串口接收不定长数据的文章,但实际使用后发现照搬他们的代码,程序根本就不能正确接收数据,其中最关键的一句有问题.其余内容完全 ...

  8. STM32使用串口1配合DMA接收不定长数据,减轻CPU载荷

    STM32使用串口1配合DMA接收不定长数据,减轻CPU载荷 http://www.openedv.com/thread-63849-1-1.html 实现思路:采 用STM32F103的串口1,并配 ...

  9. STM32 HAL库 串口DMA接收不定长数据

    STM32 HAL库 串口DMA接收不定长数据 整体思路:我是用的CUBEMX软件生成的工程,使能了两个串口,串口2用来接收不定长的数据,串口1用来发送串口2接收到的数据:串口2我找了一个UBLOX卫 ...

最新文章

  1. HDU 2564 词组缩写
  2. 智慧城市监控照明物联网管理系统应用分析
  3. 关于压缩jar包时提示*.*没有这个文件或目录的问题以及解决办法:
  4. 使用访问控制列表控制用户登录
  5. boost::math模块非有限环回的基本测试
  6. mysql安装check requirements出错_超详细的MySQL8.0.17版本安装教程
  7. 致敬金庸:武侠版编程语言...Java像张无忌还是令狐冲?
  8. python hacklib_【入门】angr:基于python的二进制分析框架
  9. html5之api,HTML5之API(示例代码)
  10. 利用STM32制作红外测温仪之硬件设计
  11. 语音云识别工具_语音识别工具_web语音识别应用程序的工具 - 云+社区 - 腾讯云...
  12. SSM-jsp页面放在web-INF下受保护,读取出现404页面tomcat获取不到资源-问题解决配置docBase
  13. vs2013 使用vs调试器,发现调试器显示的数据错误。查看内存,发现内存是正确的。...
  14. 为什么我创建了一个计算机用户名 再打开计算机时 我打不开以前的文件,电脑中office文件无法打开的三种解决方法...
  15. 切图具体需要切什么内容_网页制作中的切图是什么?什么是切图
  16. python调用vbs脚本_用VBS脚本读英语的Python代码分享
  17. 左室短轴切面_心脏超声常用切面与解剖.pptx
  18. python发微博头条文章_Python脚本实现自动发带图的微博
  19. C#计算wgs84大地坐标转换为空间直角坐标
  20. 记war exploded部署不成功

热门文章

  1. Eclipse 4.9 正式发布,支持 Java 11!
  2. Spring boot处理附件的一个坑
  3. 如何实现一个Java Class解析器
  4. 【Python】青少年蓝桥杯_每日一题_8.19_数字组合
  5. 数据港:攻破OPEX+SLA难题,实现全生命周期效能管理
  6. 谷歌开始用AI技术帮助数据中心散热节省成本
  7. java创建集合有的不用泛型_为什么在Java泛型右手边的集合类型没有任何影响?...
  8. 电脑显示器变色_两千元档超强电竞小金刚:180hz的泰坦军团T27QR显示器
  9. DL之PerceptronAdalineGD:基于iris莺尾花数据集利用Perceptron感知机和AdalineGD算法实现二分类
  10. DL之ResNeXt:ResNeXt算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略