编辑 | 萝卜皮

偶极扩散函数 (DSF) 工程重塑了显微镜的图像,可以最大限度地提高测量偶极状发射器 3D 方向的灵敏度。然而,严重的泊松散粒噪声、重叠图像以及同时拟合高维信息(包括方向和位置)使单分子定向定位显微镜(SMOLM)中的图像分析变得非常复杂。

在这里,华盛顿大学的研究人员报告了一种基于深度学习的估计器,称为 Deep-SMOLM,它在理论极限的 3% 内实现了卓越的 3D 方向和 2D 位置测量精度(3.8° 方向、0.32 sr 摆动角和 8.5 nm 横向位置,使用 1000 个检测到的光子)。

Deep-SMOLM 还展示了对发射器重叠图像的最新估计性能,例如,发射器相隔 139 nm 的 Jaccard 指数为 0.95,对应于 43% 的图像重叠。Deep-SMOLM 从包含高度重叠的 DSF 的图像中以比迭代估计器快约 10 倍的速度准确地重建模拟生物纤维和实验淀粉样蛋白原纤维的 5D 信息。

该研究以「Deep-SMOLM: deep learning resolves the 3D orientations and 2D positions of overlapping single molecules with optimal nanoscale resolution」为题,于 2022 年 9 月 26 日发布在《Optics Express》。

单分子定向定位显微镜(SMOLM)是一种通用工具,用于可视化生物分子之间的相互作用及其所产生结构的结构;它以纳米级分辨率同时测量单个荧光分子的 3D 方向和位置。研究人员已经使用分子取向来阐明淀粉样蛋白聚集体的结构、肌动蛋白丝中蛋白质的组织,以及胆固醇引起的脂质膜极性和流动性的变化。

为了在单分子(SM)成像中有效使用有限的光子预算,必须设计偶极子扩展函数(DSF),即光学显微镜点扩展函数的矢量扩展,以编码有关分子 3D 方向的附加信息。然而,同时估计发射器的 3D 方向和位置具有挑战性,因为(1)很难在 5 维空间(3D 方向、摆动、2D 位置)中估计 SM 参数而不陷入由严重的泊松散粒噪声引发的局部最小值;(2)工程 DSF 具有较大的足迹,导致 SM 图像频繁重叠;以及(3)当大型 DSF 将光子散布在许多相机像素上时,暗发射器很难检测到。

为了估计 SM 方向,现有技术将嘈杂的实验图像与预先计算的采样 DSF 库进行匹配,或者使用成像系统的模型构建参数拟合。这些方法要么遭受(1) 由于有限采样和/或 DSF 近似而导致精度降低或(2) 在缓慢的迭代优化过程中计算负担过重。

此外,估计图像重叠的暗淡 SM 的参数极具挑战性。用于测量方向的早期神经网络仅限于包含一个发射器的图像。最近,DeepSTORM3D 和 DECODE 已被开发用于估计单个分子的 3D 位置,即使对于图像重叠的高密度发射器也是如此。然而,仍然缺少能够从密集发射器的重叠图像进行高维估计的技术,即测量五个或更多参数。

在这里,华盛顿大学的研究人员展示了一种基于深度学习的估计器,称为 Deep-SMOLM,用于从实现工程化偶极子扩展功能的显微镜中同时估计单个分子的 3D 方向和 2D 位置。与传统的优化方法相比,Deep-SMOLM 对 3D 方向和 2D 位置均实现了卓越的估计精度,平均在最佳精度的 3 以内(图 2(b-d))。通常,为高维估计设计损失函数并特别是在多个参数之间平衡权重总是具有挑战性的。

图示:使用 Deep-SMOLM 估计单分子 (SM) 的 3D 方向和 2D 位置。(来源:论文)

研究人员将 Deep-SMOLM 的卓越性能归因于从嘈杂的 SM 图像中估计亮度加权定向二阶矩的线性;否则,直接估计方向角 %[

深度学习以最佳纳米尺度分辨率解决重叠单个分子的3D方向和2D位置,生成蛋白质图片...相关推荐

  1. 超分辨率 | 综述!使用深度学习来实现图像超分辨率

    关注公众号"AI算法修炼营",选择"星标"公众号 精选作品,第一时间送达 今天给大家介绍一篇图像超分辨率邻域的综述,这篇综述总结了图像超分辨率领域的几方面:pr ...

  2. 2020-10-18 从SRCNN到EDSR,总结深度学习端到端超分辨率方法发展历程

    本文转自:https://blog.csdn.net/aBlueMouse/article/details/78710553 超分辨率技术(Super-Resolution, SR)是指从观测到的低分 ...

  3. 从SRCNN到EDSR,总结深度学习端到端超分辨率方法发展历程(转)

    超分辨率技术(Super-Resolution, SR)是指从观测到的低分辨率图像重建出相应的高分辨率图像,在监控设备.卫星图像和医学影像等领域都有重要的应用价值. 本文针对端到端的基于深度学习的单张 ...

  4. 【超分辨率】从SRCNN到EDSR,总结深度学习端到端超分辨率方法发展历程

    此文转自 知乎专栏 棉花糖的工坊 作者 棉花糖 (侵删) 一直在学习图像超分辨率和深度学习,看到此文写得很好,故此转载分享.如有侵权,私信联系我,我将作删除. 超分辨率技术(Super-Resolut ...

  5. 从SRCNN到EDSR,总结深度学习端到端超分辨率方法发展历程 2018.11 写的还可以

    超分辨率技术(Super-Resolution, SR)是指从观测到的低分辨率图像重建出相应的高分辨率图像,在监控设备.卫星图像和医学影像等领域都有重要的应用价值. 本文针对端到端的基于深度学习的单张 ...

  6. 从SRCNN到EDSR,总结深度学习端到端超分辨率方法发展历程

    超分辨率技术(Super-Resolution, SR)是指从观测到的低分辨率图像重建出相应的高分辨率图像,在监控设备.卫星图像和医学影像等领域都有重要的应用价值. 本文针对端到端的基于深度学习的单张 ...

  7. 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践

    https://zhuanlan.zhihu.com/p/25928551 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类 ...

  8. 【AI不惑境】深度学习中的多尺度模型设计

    大家好,这是专栏<AI不惑境>的第七篇文章,讲述计算机视觉中的多尺度问题. 进入到不惑境界,就是向高手迈进的开始了,在这个境界需要自己独立思考.如果说学习是一个从模仿,到追随,到创造的过程 ...

  9. 【超分辨率实验】Matlab-使用深度学习的单图像超分辨率(Single Image Super-Resolution Using Deep Learning)

    [超分辨率实验]Matlab-使用深度学习的单图像超分辨率(Single Image Super-Resolution Using Deep Learning) 此示例演示如何训练非常深的超分辨率 V ...

最新文章

  1. python做excel表格柱状图_用python处理excel数据(八)实现excel表中柱状图功能
  2. angularJs的学习笔记
  3. 从0到1学习Vue.js,包含例子及实战项目(三)
  4. HTML连载14-文字属性补充简写
  5. pymysql语法_如何使用PyMySQL模块进行增删改查?
  6. mysql数据库开启远程连接_安装MySQL数据库并开启远程访问
  7. Kotlin 的 Array 转 List
  8. 物联网运营关键技术、终端、发展及运营前景
  9. rabbitmq docker
  10. ios开发之--UITableView中的visibleCells的用法
  11. 2018年湖南居民人均可支配收入25241元 出行餐饮成消费热点
  12. linux下查找文件、排序、查看文件内容
  13. redis缓存Hash操作的在主数据中的应用
  14. 收藏!万字长文盘点美国、德国、日本和韩国数字科技创新战略
  15. Marlin固件学习总结(一)
  16. 约瑟夫问题c语言链表41人,约瑟夫问题 C语言链表实现
  17. NOIP2015斗地主
  18. EasyCVR通过GB28181级联到紫光华智综合安防应用平台无法注册成功问题排查
  19. 机器人运动学标定:基于指数积的串联机构运动学标定
  20. 耀之阳电商:拼多多买家降权是什么意思

热门文章

  1. Facebook广告投放运营中的关键成功因素是什么?
  2. VB实现 汉字转拼音缩写的函数
  3. 把极致的单品做到极致,让每一个商品都是爆品
  4. html5自动收回键盘,如何监听移动端软键盘的弹出和收回?
  5. 【AppCan开发者故事 第九期】泡泡:KTV包厢里的移动开发技术
  6. 白白速学MySQL基础知识-安装MySQL
  7. C语言新建文件写入数据
  8. 阿里云大学公益人才培养平台上线,让科技更有温度,让人才大有作为
  9. IDEA使用自带ant插件编译失败:系统资源不足
  10. 客服系统的电话录音功能作用