■ 二极管的I-V特性


二极管是常见到的半导体电子元器件,通常情况下,应用它的单向导通特性,来进行信号的整流、检波、钳位逻辑运算等。用于描述二极管特性也相对比较简单,可以看成使用电压控制的开关。当二极管两端的电压为正时,开关闭合,反之开关打开。

当信号频率增加,则需要考虑二极管的分布电容参数;当信号幅度弱的时候,则需要考虑二极管非线性。比如对于 高频检波 应用中,则用于描述二极管I-V特性就非常复杂。

理解二极管的工作模式是将来弄懂更加复杂元器件工作原理的基础,比如BJT,JFETS,MOSFET等。这些器件都可以最终退化成一系列的PN节和电容的组合。

1.二极管I-V特性方程

  • Ideal Diode Equation

  • Reverse Saturation Current Equation

  • Ideality Factor Equation

  • Piecewise Diode Equation

  • Forward Recombination Current Equation

  • High Level Ijection Applied Voltage Equation

  • Reverse Biase Avalanche Current Breakdown Equation


▲ 二极管特性公示中的符号说明

2.理想二极管模型适用范围

在描述二极管不同方程,刻画了二极管不同工作范围的特性。比如Ideal Diode方程非常好的描述了二极管两端电压在如下范围内的特性:

上面公式中,Vbr是反向击穿电压;Eg是二极管的 带隙电压 ,在300k时,Eg大约为1.12V.

根据k=1.381e-23; q = 1.602e-19,T=300,那么 kT/q=25.85mV。5kT/q=0.1293V。

下面是整流二极管(1N4002)的分段I-V关系。

▲ 图1 二极管分段I-V关系

从上面公式来看,的确,当电压低于一定程度的时候,I-V的关系已经不在呈现模型所描述的情况了。因此,存在以下问题:

  • 究竟关系是什么?
  • 使用实验来测量这个关系,并进一步解释其中的原因。

01测量电路


1.测量电路方案

图1可以看到,我们需要测量的电流范围应该在10−12−10−910^{ - 12} -10^{ - 9}10−12−10−9之间,因此,需要能够测量在pA级别的电路能够进行测量。下面使用 ADA4531 fA级静电放大器 模块来进行测量。在面包板上搭建如下电路:

▲ 测量二极管电流电路图

▲ 扩展量程之后的测量电路

▲ 实验电路

2.测量数据和结果分析

测量输出的电流与输入电流之间的关系如下图所示:

▲ 硅二极管I-V之间的关系

u1=[0.00,0.00,0.01,0.01,0.01,0.01,0.01,0.02,0.02,0.02,0.02,0.02,0.03,0.03,0.03,0.03,0.03,0.04,0.04,0.04,0.04,0.04,0.05,0.05,0.05,0.05,0.05,0.06,0.06,0.06,0.06,0.06,0.07,0.07,0.07,0.07,0.07,0.08,0.08,0.08,0.08,0.08,0.09,0.09,0.09,0.09,0.09,0.10,0.10,0.10,0.10,0.10,0.11,0.11,0.11,0.11,0.11,0.12,0.12,0.12,0.12,0.12,0.13,0.13,0.13,0.13,0.13,0.14,0.14,0.14,0.14,0.14,0.15,0.15,0.15,0.15,0.16,0.16,0.16,0.16,0.16,0.17,0.17,0.17,0.17,0.17,0.18,0.18,0.18,0.18,0.18,0.19,0.19,0.19,0.19,0.19,0.20,0.20,0.20,0.20]
c1=[0.10,0.12,0.13,0.15,0.17,0.19,0.21,0.23,0.25,0.27,0.29,0.32,0.34,0.36,0.39,0.41,0.44,0.46,0.49,0.52,0.55,0.58,0.61,0.65,0.68,0.73,0.76,0.80,0.84,0.88,0.92,0.96,1.00,1.04,1.08,1.13,1.18,1.21,1.26,1.31,1.36,1.41,1.46,1.51,1.56,1.61,1.67,1.73,1.79,1.84,1.90,1.96,2.02,2.08,2.14,2.21,2.27,2.34,2.41,2.48,2.54,2.62,2.69,2.76,2.83,2.90,2.98,3.06,3.13,3.20,3.28,3.35,3.43,3.52,3.60,3.72,3.80,3.89,3.97,4.06,4.14,4.23,4.32,4.41,4.49,4.59,4.68,4.75,4.75,4.75,4.75,4.75,4.75,4.75,4.75,4.75,4.75,4.75,4.75,4.75]

▲ 二极管反向典雅与电流之间的观察项

u1=[0.00,0.00,0.01,0.01,0.01,0.01,0.01,0.02,0.02,0.02,0.02,0.02,0.03,0.03,0.03,0.03,0.03,0.04,0.04,0.04,0.04,0.04,0.05,0.05,0.05,0.05,0.05,0.06,0.06,0.06,0.06,0.06,0.07,0.07,0.07,0.07,0.07,0.08,0.08,0.08,0.08,0.08,0.09,0.09,0.09,0.09,0.09,0.10,0.10,0.10,0.10,0.10,0.11,0.11,0.11,0.11,0.11,0.12,0.12,0.12,0.12,0.12,0.13,0.13,0.13,0.13,0.13,0.14,0.14,0.14,0.14,0.14,0.15,0.15,0.15,0.15,0.16,0.16,0.16,0.16,0.16,0.17,0.17,0.17,0.17,0.17,0.18,0.18,0.18,0.18,0.18,0.19,0.19,0.19,0.19,0.19,0.20,0.20,0.20,0.20]
c1=[-0.07,-0.05,-0.04,-0.03,-0.01,0.00,0.01,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.10,0.11,0.12,0.12,0.13,0.14,0.15,0.16,0.16,0.17,0.18,0.19,0.19,0.20,0.20,0.21,0.21,0.22,0.22,0.23,0.23,0.24,0.24,0.25,0.25,0.26,0.26,0.26,0.27,0.27,0.27,0.28,0.28,0.28,0.29,0.29,0.29,0.30,0.30,0.30,0.31,0.31,0.31,0.31,0.31,0.32,0.32,0.32,0.32,0.33,0.33,0.33,0.33,0.34,0.34,0.34,0.34,0.34,0.35,0.35,0.35,0.35,0.36,0.36,0.36,0.36,0.36,0.37,0.37,0.37,0.37,0.37,0.37,0.38,0.38,0.38,0.38,0.38,0.38,0.39,0.39,0.39,0.39,0.39,0.39,0.40]
#!/usr/local/bin/python
# -*- coding: gbk -*-
#============================================================
# MEAS1.PY                     -- by Dr. ZhuoQing 2020-07-01
#
# Note:
#============================================================
from headm import *
from tsmodule.tsvisa        import *
from tsmodule.tsstm32       import *
dp1308open()
dm3068open()
printf(meterval())
setv = linspace(0, 0.2, 100)
dp1308p6v(0)
time.sleep(5)
u1dim = []
c1dim = []
for v in setv:dp1308p6v(v)time.sleep(2)u1 = dm3068vdc()meter = meterval()c1 = -meter[0]printff(u1, c1)u1dim.append(u1)c1dim.append(c1)
tspsave('diodeiv', u1=u1dim, c1=c1dim)
plt.plot(u1dim, c1dim)
plt.xlabel("Voltage(V)")
plt.ylabel("Current(uA)")
plt.grid(True)
plt.show()
printf('\a')
#------------------------------------------------------------
#        END OF FILE : MEAS1.PY
#============================================================

02测量数据分析


1.测量数据

使用 RIGOL DP1308可编程电源,独立控制P25V和N25V的输出,通过电阻网络将它们合并在一起,形式一个可以有负电压平稳过渡到正电压的电压源。

▲ 基于RIGOL DP1308数控电源合成正负连续变化电源

上面的电阻网络在面包板上进行搭建。测量电流的电路部分与前面相同。

▲ 测量实验电路

下面是测量施加电压从-4.5V增加到0.2V过程中电流的变化和数据。

▲ 实际Silicon整流二极管测量数据曲线

v=[-4.12,-4.10,-4.08,-4.06,-4.04,-4.02,-4.00,-3.98,-3.95,-3.93,-3.91,-3.89,-3.87,-3.85,-3.83,-3.81,-3.79,-3.77,-3.75,-3.73,-3.71,-3.69,-3.66,-3.64,-3.62,-3.60,-3.58,-3.56,-3.54,-3.52,-3.50,-3.48,-3.46,-3.44,-3.42,-3.40,-3.38,-3.36,-3.33,-3.31,-3.29,-3.27,-3.25,-3.23,-3.21,-3.19,-3.17,-3.15,-3.13,-3.11,-3.09,-3.07,-3.04,-3.02,-3.00,-2.98,-2.96,-2.94,-2.92,-2.90,-2.88,-2.86,-2.84,-2.82,-2.80,-2.78,-2.75,-2.73,-2.71,-2.69,-2.67,-2.65,-2.63,-2.61,-2.59,-2.57,-2.55,-2.53,-2.51,-2.49,-2.47,-2.45,-2.42,-2.40,-2.38,-2.36,-2.34,-2.32,-2.30,-2.28,-2.26,-2.24,-2.22,-2.20,-2.18,-2.16,-2.14,-2.11,-2.09,-2.07,-2.05,-2.03,-2.01,-1.99,-1.97,-1.95,-1.93,-1.91,-1.89,-1.87,-1.85,-1.82,-1.80,-1.78,-1.76,-1.74,-1.72,-1.70,-1.68,-1.66,-1.64,-1.62,-1.60,-1.58,-1.56,-1.54,-1.51,-1.49,-1.47,-1.45,-1.43,-1.41,-1.39,-1.37,-1.35,-1.33,-1.31,-1.29,-1.27,-1.25,-1.22,-1.20,-1.18,-1.16,-1.14,-1.12,-1.10,-1.08,-1.06,-1.04,-1.02,-1.00,-0.98,-0.96,-0.93,-0.91,-0.89,-0.87,-0.85,-0.83,-0.81,-0.79,-0.77,-0.75,-0.73,-0.71,-0.69,-0.66,-0.64,-0.62,-0.60,-0.58,-0.56,-0.54,-0.52,-0.50,-0.48,-0.46,-0.44,-0.42,-0.40,-0.38,-0.35,-0.33,-0.31,-0.29,-0.27,-0.25,-0.23,-0.21,-0.19,-0.17,-0.15,-0.13,-0.11,-0.09,-0.07,-0.04,-0.02,-0.02,-0.00,-0.00,-0.00,-0.00,0.00,0.00,0.00,0.00,0.00,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.02,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.03,0.04,0.04,0.04,0.04,0.04,0.04,0.04,0.04,0.04,0.04,0.04,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.05,0.06,0.06,0.06,0.06,0.06,0.06,0.06,0.06,0.06,0.06,0.06,0.07,0.07,0.07,0.07,0.07,0.07,0.07,0.07,0.07,0.07,0.07,0.08,0.08,0.08,0.08,0.08,0.08,0.08,0.08,0.08,0.08,0.08,0.08,0.09,0.09,0.09,0.09,0.09,0.09,0.09,0.09,0.09,0.09,0.09,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.10,0.11,0.11,0.11,0.11,0.11,0.11,0.11,0.11,0.11,0.11,0.11,0.12,0.12,0.12,0.12,0.12,0.12,0.12,0.12,0.12,0.12,0.12,0.13,0.13,0.13,0.13,0.13,0.13,0.13,0.13,0.13,0.13,0.13,0.14,0.14,0.14,0.14,0.14,0.14,0.14,0.14,0.14,0.14,0.14,0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.16,0.16,0.16,0.16,0.16,0.16,0.16,0.16,0.16,0.16,0.16,0.17,0.17,0.17,0.17,0.17,0.17,0.17,0.17,0.17,0.17,0.17,0.18,0.18,0.18]
c=[-13.04,-14.48,-14.61,-14.61,-14.61,-14.63,-14.63,-14.61,-14.55,-14.51,-14.51,-14.54,-14.49,-14.49,-14.46,-14.49,-14.48,-14.46,-14.43,-14.41,-14.41,-14.39,-14.38,-14.37,-14.36,-14.36,-14.34,-14.33,-14.33,-14.32,-14.32,-14.32,-14.32,-14.29,-14.29,-14.28,-14.29,-14.21,-14.23,-14.20,-14.19,-14.17,-14.16,-14.13,-14.08,-14.04,-14.04,-14.02,-14.01,-13.99,-13.98,-13.95,-13.89,-13.89,-13.87,-13.86,-13.84,-13.78,-13.75,-13.71,-13.66,-13.61,-13.60,-13.59,-13.55,-13.49,-13.45,-13.43,-13.40,-13.35,-13.32,-13.28,-13.23,-13.21,-13.19,-13.15,-13.08,-13.04,-13.00,-12.95,-12.91,-12.86,-12.84,-12.82,-12.78,-12.75,-12.71,-12.68,-12.65,-12.62,-12.58,-12.51,-12.46,-12.40,-12.32,-12.33,-12.32,-12.30,-12.27,-12.22,-12.16,-12.14,-12.12,-12.10,-12.04,-11.98,-11.93,-11.88,-11.84,-11.83,-11.78,-11.73,-11.66,-11.61,-11.55,-11.53,-11.50,-11.47,-11.43,-11.42,-11.36,-11.29,-11.25,-11.20,-11.14,-11.09,-11.04,-11.00,-10.97,-10.93,-10.91,-10.84,-10.82,-10.77,-10.72,-10.64,-10.61,-10.54,-10.45,-10.41,-10.37,-10.30,-10.23,-10.17,-10.11,-10.06,-10.01,-9.97,-9.91,-9.85,-9.79,-9.75,-9.68,-9.63,-9.58,-9.50,-9.44,-9.37,-9.25,-9.39,-9.07,-9.04,-8.98,-8.92,-8.88,-8.78,-8.71,-8.65,-8.65,-8.58,-8.53,-8.45,-8.38,-8.28,-8.21,-8.12,-8.03,-7.98,-7.89,-7.78,-7.70,-7.60,-7.49,-7.37,-7.27,-7.15,-7.03,-6.92,-6.81,-6.69,-6.55,-6.40,-6.26,-6.09,-5.89,-5.61,-5.35,-4.92,-4.30,-4.23,-3.35,-3.27,-3.20,-3.08,-3.03,-3.04,-2.99,-2.96,-2.87,-2.82,-2.78,-2.71,-2.65,-2.60,-2.55,-2.47,-2.40,-2.35,-2.27,-2.21,-2.15,-2.06,-2.00,-1.90,-1.85,-1.79,-1.72,-1.63,-1.56,-1.49,-1.39,-1.33,-1.25,-1.14,-1.05,-0.98,-0.91,-0.82,-0.75,-0.68,-0.55,-0.46,-0.38,-0.27,-0.17,-0.08,0.07,0.19,0.28,0.36,0.52,0.61,0.72,0.83,0.93,1.09,1.21,1.36,1.48,1.59,1.69,1.83,1.96,2.07,2.21,2.33,2.44,2.56,2.86,2.95,3.09,3.23,3.31,3.43,3.66,3.79,3.94,4.10,4.23,4.37,4.62,4.79,4.93,5.10,5.23,5.38,5.65,5.81,6.01,6.12,6.30,6.45,6.58,6.85,7.08,7.23,7.40,7.57,7.74,8.01,8.20,8.39,8.60,8.79,8.99,9.29,9.48,9.66,9.88,10.07,10.26,10.49,10.80,11.02,11.24,11.44,11.63,11.83,12.13,12.37,12.58,12.80,13.03,13.29,13.65,13.89,14.09,14.38,14.61,14.84,15.24,15.51,15.71,15.95,16.24,16.47,16.69,17.06,17.33,17.53,17.81,18.04,18.29,18.71,19.00,19.20,19.45,19.70,19.97,20.41,20.78,21.03,21.47,21.78,22.06,22.38,22.63,22.89,23.33,23.62,23.86,24.18,24.49,24.78,25.09,25.54,25.88,26.15,26.52,26.78,27.07,27.58,27.88,28.17,28.49,28.81,29.13,29.63,29.94,30.24,30.59,30.87,31.18,31.68,32.03,32.33,32.63,32.95,33.27,33.57,34.09,34.39,34.70,35.04,35.40,35.73,36.27,36.61,36.92,37.33]

从图中可以看到在测量开始的时候,由于ADA4530 需要稳定一段时间。电压是从0V降低下来,还没有达到稳定,所以第一个测量数据有一点大的误差。实际稳定的测量应该从第二个数据开始绘制。

#!/usr/local/bin/python
# -*- coding: gbk -*-
#============================================================
# TEST1.PY                     -- by Dr. ZhuoQing 2020-07-02
#
# Note:
#============================================================from headm import *
from tsmodule.tsvisa        import *
from tsmodule.tsstm32       import *dp1308open()
dm3068open()
#------------------------------------------------------------
step=200setv = linspace(-9, 0, step)
dp1308p25v(0)
dp1308n25v(0)vdim = []
cdim = []
for v in setv:dp1308n25v(-v)time.sleep(2)meter = meterval()voltage = dm3068vdc()vdim.append(voltage)cdim.append(meter[0])printff(v, voltage, meter)setv = linspace(0, 0.4, step)
dp1308p25v(0)
dp1308n25v(0)for v in setv:dp1308p25v(v)time.sleep(2)meter = meterval()voltage = dm3068vdc()vdim.append(voltage)cdim.append(meter[0])printff(v, voltage, meter)cdim = [-cur*100/11 for cur in cdim]
tspsave('diode1', v=vdim, c=cdim)dp1308p25v(0)
dp1308n25v(0)plt.plot(vdim, cdim)
plt.xlabel("Vappl(V)")
plt.ylabel("Current(pA)")
plt.grid(True)
plt.show()#------------------------------------------------------------
#        END OF FILE : TEST1.PY
#============================================================

2.分析数据

使用指数模型对上述测量结果进行建模:

利用scipy.optimize中的curve_fit函数来进行曲线拟合,得到的参数为:[a,b,c]= [ 8.44483303 0.09925057 -11.89422983]

绘制出模型曲线与测量曲线:

▲ 对测量的硅二极管的典雅与电流曲线与建模曲线的对比

可以看到,对于施加电压对于0部分,拟合曲线的精度相当好。而对于电压小于0之后,测量的曲线电流就明显偏离了模型指数曲线了。

对测量数据施加电压小于0部分进行线性拟合:

得到对应的参数:[a,b]=[ 2.10646325 -7.27212467]

▲ 对测量结果施加电压小于0部分进行线性拟合

根据斜率a的数值,可以得到对应的等效电阻数值:

这个电阻很可能是由于二极管所在的面包板的相邻两个所造成的电阻泄露所引起的。这一点可以通过将二极管去掉然后重新测量I-V曲线来验证。

▲ 测量二极管以及所在的面包板

下面是将二极管去掉,重新扫描电压-4V~+4V之间电压与电流之间的关系。通过线性拟合,可以得到对应的曲线参数:[a,b]=[ 0.02182531 -2.41772746]

换算之后的等效电阻为:

▲ 将二极管去掉之后,测量施加电压与测量电流之间的曲线

这个数值比起前面二极管对应的电阻小了两个数量级,所以前面测量对于负电压之间的差别中存在的电阻主要是由二极管内部的电阻泄露所引起的。

使用前面参数[a,b,c]= [ 8.44483303 -0.09925057 -11.89422983]作为初始值,对于硅耳机的电压大于零的部分重新按照指数模型(2.2.1)进行参数辨识,可以得到对应的结果为:[a,b,c] = [ 9.12216015 0.10247578 -12.96444879]

▲ 只对施加电压大于零的部分进行指数建模

由前面公式(1)可以知道:

根据 Physics constants ,可以计算出来参数n的数值

※ 结论


使用飞安放大器,可以得到硅二极管的电流与电压特性。根据实际测量的结果,可以看到在正向特性中,I-V的关系基本上符合指数关系。而反向的电流关系,可能会受到实际二极管的并联电阻的影响,使得实际的电流曲线与指数理论模型相去甚远。

对于所测的的参数,在进行具体数据回归的时候。还需要使用标准的电阻进行校准。这样才能够对于实际的物理参数数值进行合理的解释。具体的分析在以后在进行实验吧。

二极管极低电流I-V特性测量相关推荐

  1. 利用二极管的P-N结的I-V特性测量Boltzmann常数

    ■ 前言 在网文 An Electronic Mesurement of the Boltzmann's Constant Using I-V Characterisctic of a Silicon ...

  2. 镜像电流源特点_9000大型地网变频大电流接地特性测量系统介绍

    湖北中试高测电气控股有限公司为您解答:9000大型地网变频大电流接地特性测量系统介绍 ZS9000大型地网变频大电流接地特性测量系统 一.产品概述: ZS9000变频大电流多功能地网接地特性测量系统采 ...

  3. 如何使用标准稳压器输出几百毫伏极低直流电压?

    在过去的几年里,由于微控制器.CPU.DSP等数字电路的几何结构尺寸不断缩小,电子元器件的电源电压一直持续下降.在测量领域也有一些需要低电源电压的应用. 多年以来,线性稳压器和开关稳压器一直采用约1. ...

  4. 极低噪声幻像电源如何设计?详细原理图和三种消噪方法拿走不谢

    极低噪声幻像电源如何设计?详细原理图和三种消噪方法拿走不谢 原创 ADI 亚德诺半导体 2022-04-19 11:48 极低噪声幻像电源如何设计?详细原理图和三种消噪方法拿走不谢 Q: 是否可以利用 ...

  5. 台湾ICPlus IP175GHI, 85nm /极低功率,5接口10/100以太网集成交换机芯片

    台湾ICPlus IP175GHI 5接口10/100以太网集成交换机 , 85nm /极低功率 功能一般描述 z 5端口嵌入式10/100 PHY开关控制器 IP175G支持5 100BaseTX ...

  6. 【DZBS-202/T低电流启动中间继电器】

    系列型号: DZBS-120低电流启动中间继电器 DZBS-303低电流启动中间继电器 DZBS-404低电流启动中间继电器 DZBS-400低电流启动中间继电器 DZBS-600低电流启动中间继电器 ...

  7. 超越GhostNet!吊打MobileNetV3!MicroNet通过极低FLOPs实现图像识别(文末获取论文)

    点击上方"3D视觉工坊",选择"星标" 干货第一时间送达 本文提出Micro-Factorized卷积,将点和深度卷积分解为低秩矩阵,并提出新的激活函数,称为D ...

  8. 高灵敏度压电传感器频率温度特性测量中的TEC型精密温控系统

    摘要:为解决石英晶体微量天平这类压电传感器频率温度特性全自动测量中存在的温度控制精度差和测试效率低的问题,本文在TEC半导体制冷技术基础上,提出了小尺寸.高精度和全自动程序温控的解决方案,给出了温控装 ...

  9. 番外7:F类功放中漏极四分之一波长阻抗线特性分析

    番外7:F类功放中漏极四分之一波长阻抗线特性分析 众所周知,理想F类的基本实现方案是通过漏极的四分之一阻抗线实现的,其基本框图如下所示: 为什么可以用这样一段四分之一波长阻抗线构建F类功放呢?因为理想 ...

最新文章

  1. buffer sort Oracle,[转]BUFFER SORT是BUFFER却不是SORT
  2. 获取预制体_基于弱磁探测技术的轴承滚动体转速检测方法研究
  3. php 168任意代码执行漏洞之php的Complex (curly) syntax
  4. kuangbin大数模板(加法和乘法)
  5. Web前端开发笔记——第二章 HTML语言 第八节 表单标签
  6. java胜任理由_Java在几乎所有方面均能胜任本机响应
  7. 华为鸿蒙用户体验计划怎样关闭,华为用户要注意,手机关闭这3个“默认选项”,还能流畅再用2年...
  8. 大数据?人工智能?揭秘银行数据仓库发展趋势
  9. cuda和cudnn各版本下载地址
  10. WPF 登录界面跳转代码
  11. ubuntu14.0.4安装drozer
  12. 手机NFC是什么?怎么使用?
  13. 2018年第九届蓝桥杯省赛C/C++ A组(蒻鸡自己写的,看不上勿喷,自己的一点想法)
  14. 微信浏览器调用手机摄像头录像
  15. 投资百万运营网站 为何只坚持了一年?
  16. eclipse打开报错:Failed to load the JNI shared library
  17. ENSP实现小型企业网三层架构
  18. 我的世界启动侠启动器java_我的世界启动侠 2020.8云启动版
  19. CAJ转PDF文件,这两个免费方法非常好用!
  20. JAVA类似ABP框架_使用ABP框架踩过的坑系列5

热门文章

  1. 自定义Android菜单背景
  2. ASP.NET MVC实践系列5-结合jQuery
  3. 刚刚,蚂蚁金服荣膺“中国金融大数据领军企业”称号
  4. 【leetcode】923. 3Sum With Multiplicity
  5. C# 利用反射调用类下的方法
  6. Python之pandas数据加载、存储
  7. Length High
  8. (转)AS3函数动态添加实例属性
  9. pre使页面正确显示文本格式
  10. django前端引用数据_「基于Python技术的智慧中医商业项目」Django前端网站篇-5.资讯的数据交互...