背景

我们准备利用17天时间,将 “Python基础的刻意练习” 分为如下任务:

  • Task01:变量、运算符与数据类型(1day)
  • Task02:条件与循环(1day)
  • Task03:列表与元组(2day)
  • Task04:字符串与序列(1day)
  • Task05:函数与Lambda表达式(2day)
  • Task06:字典与集合(1day)
  • Task07:文件与文件系统(2day)
  • Task08:异常处理(1day)
  • Task09:else 与 with 语句(1day)
  • Task10:类与对象(2day)
  • Task11:魔法方法(2day)
  • Task12:模块(1day)

这是我的 11/12 次任务的打卡内容。欢迎大家加入社群一起学习打卡。

我学习 Python 的思路是,先去熟悉 Python 的整体语法框架与自己熟悉的编程语言进行知识点的连接,后面遇到问题再来慢慢补充,慢慢形成自己的知识结构。

关于 “基础算法刻意练习活动” 的复盘可以参见图文:对“基础算法(LeetCode)刻意练习活动”的复盘,后面我们还会组织一系列活动,欢迎大家参与,一起来刻意练习啊。


Python 基础语法

魔法方法总是被双下划线包围,例如__init__

魔法方法是面向对象的 Python 的一切,如果你不知道魔法方法,说明你还没能意识到面向对象的 Python 的强大。

魔法方法的“魔力”体现在它们总能够在适当的时候被自动调用。

魔法方法的第一个参数应为cls(类方法) 或者self(实例方法)。

  • cls:代表一个类的名称
  • self:代表一个实例对象的名称

1. 基本的魔法方法

__init__(self[, ...])

  • 构造器,当一个实例被创建的时候调用的初始化方法
class Rectangle:def __init__(self, x, y):self.x = xself.y = ydef getPeri(self):return (self.x + self.y) * 2def getArea(self):return self.x * self.yrect = Rectangle(4, 5)
print(rect.getPeri())  # 18
print(rect.getArea())  # 20

__new__(cls[, ...])

  • __new__是在一个对象实例化的时候所调用的第一个方法,在调用__init__初始化前,先调用__new__
  • __new__至少要有一个参数cls,代表要实例化的类,此参数在实例化时由 Python 解释器自动提供,后面的参数直接传递给__init__
  • __new__对当前类进行了实例化,并将实例返回,传给__init__self。但是,执行了__new__,并不一定会进入__init__,只有__new__返回了,当前类cls的实例,当前类的__init__才会进入。
class A(object):def __init__(self, value):print("into A __init__")self.value = valuedef __new__(cls, *args, **kwargs):print("into A __new__")print(cls)return object.__new__(cls)class B(A):def __init__(self, value):print("into B __init__")self.value = valuedef __new__(cls, *args, **kwargs):print("into B __new__")print(cls)return super().__new__(cls, *args, **kwargs)b = B(10)# 结果:
# into B __new__
# <class '__main__.B'>
# into A __new__
# <class '__main__.B'>
# into B __init__class A(object):def __init__(self, value):print("into A __init__")self.value = valuedef __new__(cls, *args, **kwargs):print("into A __new__")print(cls)return object.__new__(cls)class B(A):def __init__(self, value):print("into B __init__")self.value = valuedef __new__(cls, *args, **kwargs):print("into B __new__")print(cls)return super().__new__(A, *args, **kwargs)  # 改动了cls变为Ab = B(10)# 结果:
# into B __new__
# <class '__main__.B'>
# into A __new__
# <class '__main__.A'>
  • __new__没有正确返回当前类cls的实例,那__init__是不会被调用的,即使是父类的实例也不行,将没有__init__被调用。
  • 可利用__new__实现单例模式。
class Earth:passa = Earth()
print(id(a))  # 260728291456
b = Earth()
print(id(b))  # 260728291624class Earth:__instance = None  # 定义一个类属性做判断def __new__(cls):if cls.__instance is None:cls.__instance = object.__new__(cls)return cls.__instanceelse:return cls.__instancea = Earth()
print(id(a))  # 512320401648
b = Earth()
print(id(b))  # 512320401648
  • __new__方法主要是当你继承一些不可变的 class 时(比如int, str, tuple), 提供给你一个自定义这些类的实例化过程的途径。
class CapStr(str):def __new__(cls, string):string = string.upper()return str.__new__(cls, string)a = CapStr("i love lsgogroup")
print(a)  # I LOVE LSGOGROUP

__del__(self)

析构器,当一个对象将要被系统回收之时调用的方法。

Python 采用自动引用计数(ARC)方式来回收对象所占用的空间,当程序中有一个变量引用该 Python 对象时,Python 会自动保证该对象引用计数为 1;当程序中有两个变量引用该 Python 对象时,Python 会自动保证该对象引用计数为 2,依此类推,如果一个对象的引用计数变成了 0,则说明程序中不再有变量引用该对象,表明程序不再需要该对象,因此 Python 就会回收该对象。

大部分时候,Python 的 ARC 都能准确、高效地回收系统中的每个对象。但如果系统中出现循环引用的情况,比如对象 a 持有一个实例变量引用对象 b,而对象 b 又持有一个实例变量引用对象 a,此时两个对象的引用计数都是 1,而实际上程序已经不再有变量引用它们,系统应该回收它们,此时 Python 的垃圾回收器就可能没那么快,要等专门的循环垃圾回收器(Cyclic Garbage Collector)来检测并回收这种引用循环。

class C(object):def __init__(self):print('into C __init__')def __del__(self):print('into C __del__')c1 = C()
# into C __init__
c2 = c1
c3 = c2
del c3
del c2
del c1
# into C __del__

__str____repr__

__str__(self):

  • 当你打印一个对象的时候,触发__str__
  • 当你使用%s格式化的时候,触发__str__
  • str强转数据类型的时候,触发__str__

__repr__(self):

  • reprstr的备胎
  • __str__的时候执行__str__,没有实现__str__的时候,执行__repr__
  • repr(obj)内置函数对应的结果是__repr__的返回值
  • 当你使用%r格式化的时候 触发__repr__
class Cat:"""定义一个猫类"""def __init__(self, new_name, new_age):"""在创建完对象之后 会自动调用, 它完成对象的初始化的功能"""self.name = new_nameself.age = new_agedef __str__(self):"""返回一个对象的描述信息"""return "名字是:%s , 年龄是:%d" % (self.name, self.age)def __repr__(self):"""返回一个对象的描述信息"""return "Cat:(%s,%d)" % (self.name, self.age)def eat(self):print("%s在吃鱼...." % self.name)def drink(self):print("%s在喝可乐..." % self.name)def introduce(self):print("名字是:%s, 年龄是:%d" % (self.name, self.age))# 创建了一个对象
tom = Cat("汤姆", 30)
print(tom)  # 名字是:汤姆 , 年龄是:30
print(str(tom)) # 名字是:汤姆 , 年龄是:30
print(repr(tom))  # Cat:(汤姆,30)
tom.eat()  # 汤姆在吃鱼....
tom.introduce()  # 名字是:汤姆, 年龄是:30

__str__(self) 的返回结果可读性强。也就是说,__str__ 的意义是得到便于人们阅读的信息,就像下面的 ‘2019-10-11’ 一样。

__repr__(self) 的返回结果应更准确。怎么说,__repr__ 存在的目的在于调试,便于开发者使用。

import datetimetoday = datetime.date.today()
print(str(today))  # 2019-10-11
print(repr(today))  # datetime.date(2019, 10, 11)
print('%s' %today)  # 2019-10-11
print('%r' %today)  # datetime.date(2019, 10, 11)

扩展参考:

  • 技术图文:如何利用 Python 做一个简单的定时器类?

2. 算术运算符

类型工厂函数,指的是不通过类而是通过函数来创建对象

class C:passprint(type(len))  # <class 'builtin_function_or_method'>
print(type(dir))  # <class 'builtin_function_or_method'>
print(type(int))  # <class 'type'>
print(type(list))  # <class 'type'>
print(type(tuple))  # <class 'type'>
print(type(C))  # <class 'type'>
print(int('123'))  # 123# 这个例子中list工厂函数把一个元祖对象加工成了一个列表对象。
print(list((1, 2, 3)))  # [1, 2, 3]
  • __add__(self, other)定义加法的行为:+
  • __sub__(self, other)定义减法的行为:-
class MyClass:def __init__(self, height, weight):self.height = heightself.weight = weight# 两个对象的长相加,宽不变.返回一个新的类def __add__(self, others):return MyClass(self.height + others.height, self.weight + others.weight)# 两个对象的宽相减,长不变.返回一个新的类def __sub__(self, others):return MyClass(self.height - others.height, self.weight - others.weight)# 说一下自己的参数def intro(self):print("高为", self.height, " 重为", self.weight)def main():a = MyClass(height=10, weight=5)a.intro()b = MyClass(height=20, weight=10)b.intro()c = b - ac.intro()d = a + bd.intro()if __name__ == '__main__':main()# 高为 10  重为 5
# 高为 20  重为 10
# 高为 10  重为 5
# 高为 30  重为 15
  • __mul__(self, other)定义乘法的行为:*
  • __truediv__(self, other)定义真除法的行为:/
  • __floordiv__(self, other)定义整数除法的行为://
  • __mod__(self, other) 定义取模算法的行为:%
  • __divmod__(self, other)定义当被 divmod() 调用时的行为
  • divmod(a, b)把除数和余数运算结果结合起来,返回一个包含商和余数的元组(a // b, a % b)
print(divmod(7, 2))  # (3, 1)
print(divmod(8, 2))  # (4, 0)
  • __pow__(self, other[, module])定义当被 power() 调用或 ** 运算时的行为
  • __lshift__(self, other)定义按位左移位的行为:<<
  • __rshift__(self, other)定义按位右移位的行为:>>
  • __and__(self, other)定义按位与操作的行为:&
  • __xor__(self, other)定义按位异或操作的行为:^
  • __or__(self, other)定义按位或操作的行为:|

3. 反算术运算符

反运算魔方方法,与算术运算符保持一一对应,不同之处就是反运算的魔法方法多了一个“r”。当文件左操作不支持相应的操作时被调用。

  • __radd__(self, other)定义加法的行为:+
  • __rsub__(self, other)定义减法的行为:-
  • __rmul__(self, other)定义乘法的行为:*
  • __rtruediv__(self, other)定义真除法的行为:/
  • __rfloordiv__(self, other)定义整数除法的行为://
  • __rmod__(self, other) 定义取模算法的行为:%
  • __rdivmod__(self, other)定义当被 divmod() 调用时的行为
  • __rpow__(self, other[, module])定义当被 power() 调用或 ** 运算时的行为
  • __rlshift__(self, other)定义按位左移位的行为:<<
  • __rrshift__(self, other)定义按位右移位的行为:>>
  • __rand__(self, other)定义按位与操作的行为:&
  • __rxor__(self, other)定义按位异或操作的行为:^
  • __ror__(self, other)定义按位或操作的行为:|

a + b

这里加数是a,被加数是b,因此是a主动,反运算就是如果a对象的__add__()方法没有实现或者不支持相应的操作,那么 Python 就会调用b__radd__()方法。

class Nint(int):def __radd__(self, other):return int.__sub__(other, self) # 注意 self 在后面a = Nint(5)
b = Nint(3)
print(a + b)  # 8
print(1 + b)  # -2

4. 增量赋值运算符

  • __iadd__(self, other)定义赋值加法的行为:+=
  • __isub__(self, other)定义赋值减法的行为:-=
  • __imul__(self, other)定义赋值乘法的行为:*=
  • __itruediv__(self, other)定义赋值真除法的行为:/=
  • __ifloordiv__(self, other)定义赋值整数除法的行为://=
  • __imod__(self, other)定义赋值取模算法的行为:%=
  • __ipow__(self, other[, modulo])定义赋值幂运算的行为:**=
  • __ilshift__(self, other)定义赋值按位左移位的行为:<<=
  • __irshift__(self, other)定义赋值按位右移位的行为:>>=
  • __iand__(self, other)定义赋值按位与操作的行为:&=
  • __ixor__(self, other)定义赋值按位异或操作的行为:^=
  • __ior__(self, other)定义赋值按位或操作的行为:|=

5. 一元运算符

  • __neg__(self)定义正号的行为:+x
  • __pos__(self)定义负号的行为:-x
  • __abs__(self)定义当被abs()调用时的行为
  • __invert__(self)定义按位求反的行为:~x

6. 属性访问
__getattr____getattribute____setattr____delattr__

__getattr__(self, name): 定义当用户试图获取一个不存在的属性时的行为。

__getattribute__(self, name):定义当该类的属性被访问时的行为(先调用该方法,查看是否存在该属性,若不存在,接着去调用__getattr__)。

__setattr__(self, name, value):定义当一个属性被设置时的行为。

__delattr__(self, name):定义当一个属性被删除时的行为。

class C:def __getattribute__(self, item):print('__getattribute__')return super().__getattribute__(item)def __getattr__(self, item):print('__getattr__')def __setattr__(self, key, value):print('__setattr__')super().__setattr__(key, value)def __delattr__(self, item):print('__delattr__')super().__delattr__(item)c = C()
c.x
# __getattribute__
# __getattr__c.x = 1
# __setattr__del c.x
# __delattr__

扩展参考:

  • 技术图文:Python魔法方法之属性访问详解

7. 描述符

描述符就是将某种特殊类型的类的实例指派给另一个类的属性。

  • __get__(self, instance, owner)用于访问属性,它返回属性的值。
  • __set__(self, instance, value)将在属性分配操作中调用,不返回任何内容。
  • __del__(self, instance)控制删除操作,不返回任何内容。
class MyDecriptor:def __get__(self, instance, owner):print('__get__', self, instance, owner)def __set__(self, instance, value):print('__set__', self, instance, value)def __delete__(self, instance):print('__delete__', self, instance)class Test:x = MyDecriptor()t = Test()
t.x
# __get__ <__main__.MyDecriptor object at 0x000000CEAAEB6B00> <__main__.Test object at 0x000000CEABDC0898> <class '__main__.Test'>t.x = 'x-man'
# __set__ <__main__.MyDecriptor object at 0x00000023687C6B00> <__main__.Test object at 0x00000023696B0940> x-mandel t.x
# __delete__ <__main__.MyDecriptor object at 0x000000EC9B160A90> <__main__.Test object at 0x000000EC9B160B38>

扩展参考:

  • 技术图文:什么是Python的描述符?

8. 定制序列

协议(Protocols)与其它编程语言中的接口很相似,它规定你哪些方法必须要定义。然而,在 Python 中的协议就显得不那么正式。事实上,在 Python 中,协议更像是一种指南。

容器类型的协议

  • 如果说你希望定制的容器是不可变的话,你只需要定义__len__()__getitem__()方法。
  • 如果你希望定制的容器是可变的话,除了__len__()__getitem__()方法,你还需要定义__setitem__()__delitem__()两个方法。

编写一个不可改变的自定义列表,要求记录列表中每个元素被访问的次数。

class CountList:def __init__(self, *args):self.values = [x for x in args]self.count = {}.fromkeys(range(len(self.values)), 0)def __len__(self):return len(self.values)def __getitem__(self, item):self.count[item] += 1return self.values[item]c1 = CountList(1, 3, 5, 7, 9)
c2 = CountList(2, 4, 6, 8, 10)
print(c1[1])  # 3
print(c2[2])  # 6
print(c1[1] + c2[1])  # 7print(c1.count)
# {0: 0, 1: 2, 2: 0, 3: 0, 4: 0}print(c2.count)
# {0: 0, 1: 1, 2: 1, 3: 0, 4: 0}
  • __len__(self)定义当被len()调用时的行为(返回容器中元素的个数)。
  • __getitem(self, key)定义获取容器中元素的行为,相当于self[key]
  • __setitem(self, key, value)定义设置容器中指定元素的行为,相当于self[key] = value
  • __delitem(self, key)定义删除容器中指定元素的行为,相当于del self[key]

编写一个可改变的自定义列表,要求记录列表中每个元素被访问的次数。

class CountList:def __init__(self, *args):self.values = [x for x in args]self.count = {}.fromkeys(range(len(self.values)), 0)def __len__(self):return len(self.values)def __getitem__(self, item):self.count[item] += 1return self.values[item]def __setitem__(self, key, value):self.values[key] = valuedef __delitem__(self, key):del self.values[key]for i in range(0, len(self.values)):if i >= key:self.count[i] = self.count[i + 1]self.count.pop(len(self.values))c1 = CountList(1, 3, 5, 7, 9)
c2 = CountList(2, 4, 6, 8, 10)
print(c1[1])  # 3
print(c2[2])  # 6
c2[2] = 12
print(c1[1] + c2[2])  # 15
print(c1.count)
# {0: 0, 1: 2, 2: 0, 3: 0, 4: 0}
print(c2.count)
# {0: 0, 1: 0, 2: 2, 3: 0, 4: 0}
del c1[1]
print(c1.count)
# {0: 0, 1: 0, 2: 0, 3: 0}

9. 迭代器

  • 迭代是 Python 最强大的功能之一,是访问集合元素的一种方式。
  • 迭代器是一个可以记住遍历的位置的对象。
  • 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。
  • 迭代器只能往前不会后退。
  • 字符串,列表或元组对象都可用于创建迭代器:

Sample01:

string = 'lsgogroup'
for c in string:print(c)'''
l
s
g
o
g
r
o
u
p
'''for c in iter(string):print(c)

Sample02:

links = {'B': '百度', 'A': '阿里', 'T': '腾讯'}
for each in links:print('%s -> %s' % (each, links[each]))'''
B -> 百度
A -> 阿里
T -> 腾讯
'''for each in iter(links):print('%s -> %s' % (each, links[each]))
  • 迭代器有两个基本的方法:iter()next()
  • iter(object) 函数用来生成迭代器。
  • next(iterator[, default]) 返回迭代器的下一个项目。
  • iterator – 可迭代对象
  • default – 可选,用于设置在没有下一个元素时返回该默认值,如果不设置,又没有下一个元素则会触发 StopIteration 异常。
links = {'B': '百度', 'A': '阿里', 'T': '腾讯'}
it = iter(links)
print(next(it))  # B
print(next(it))  # A
print(next(it))  # T
print(next(it))  # StopIterationit = iter(links)
while True:try:each = next(it)except StopIteration:breakprint(each)# B
# A
# T

把一个类作为一个迭代器使用需要在类中实现两个魔法方法 __iter__()__next__()

  • __iter__(self)定义当迭代容器中的元素的行为,返回一个特殊的迭代器对象, 这个迭代器对象实现了 __next__() 方法并通过 StopIteration 异常标识迭代的完成。
  • __next__() 返回下一个迭代器对象。
  • StopIteration 异常用于标识迭代的完成,防止出现无限循环的情况,在 __next__() 方法中我们可以设置在完成指定循环次数后触发 StopIteration 异常来结束迭代。
class Fibs:def __init__(self, n=10):self.a = 0self.b = 1self.n = ndef __iter__(self):return selfdef __next__(self):self.a, self.b = self.b, self.a + self.bif self.a > self.n:raise StopIterationreturn self.afibs = Fibs(100)
for each in fibs:print(each, end=' ')# 1 1 2 3 5 8 13 21 34 55 89

10. 生成器

  • 在 Python 中,使用了 yield 的函数被称为生成器(generator)。
  • 跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。
  • 在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。
  • 调用一个生成器函数,返回的是一个迭代器对象。
def myGen():print('生成器执行!')yield 1yield 2myG = myGen()
print(next(myG))
# 生成器执行!
# 1print(next(myG))  # 2
print(next(myG))  # StopIterationmyG = myGen()
for each in myG:print(each)'''
生成器执行!
1
2
'''

用生成器实现斐波那契数列。

def libs(n):a = 0b = 1while True:a, b = b, a + bif a > n:returnyield afor each in libs(100):print(each, end=' ')# 1 1 2 3 5 8 13 21 34 55 89

11. 推导式

列表推导式

a = [i for i in range(100) if (i % 2) != 0 and (i % 3) == 0]
print(a)
# [3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87, 93, 99]

字典推导式

b = {i: i % 2 == 0 for i in range(10) if i % 3 == 0}
print(b)
# {0: True, 3: False, 6: True, 9: False}

集合推导式

c = {i for i in [1, 2, 3, 4, 5, 5, 6, 4, 3, 2, 1]}
print(c)
# {1, 2, 3, 4, 5, 6}

其它

d = 'i for i in "I Love Lsgogroup"'
print(d)
# i for i in "I Love Lsgogroup"e = (i for i in range(10))
print(e)
# <generator object <genexpr> at 0x0000007A0B8D01B0>print(next(e))  # 0
print(next(e))  # 1for each in e:print(each, end=' ')# 2 3 4 5 6 7 8 9s = sum([i for i in range(101)])
print(s)  # 5050
s = sum((i for i in range(101)))
print(s)  # 5050

总结

好了,到此为止有关于 Python 的 魔法方法 部分就介绍完了,大家要根据上面的例子多多体会,只有刻意练习才能掌握一门技术,没有捷径的,加油啊!See You!


参考文献

  • https://www.runoob.com/python3/python3-tutorial.html
  • https://www.bilibili.com/video/av4050443
  • http://c.biancheng.net/view/2371.html
  • https://www.cnblogs.com/seablog/p/7173107.html
  • https://www.cnblogs.com/Jimmy1988/p/6804095.html
  • https://blog.csdn.net/johnsonguo/article/details/585193

相关图文

  • 资料分享:数学建模资料分享 – 图论部分
  • 资料分享:数学建模资料分享 – 神经网络部分
  • 如何利用 C# 实现 K 最邻近算法?
  • 如何利用 C# 实现 K-D Tree 结构?
  • 如何利用 C# + KDTree 实现 K 最邻近算法?
  • 如何利用 C# 对神经网络模型进行抽象?
  • 如何利用 C# 实现神经网络的感知器模型?
  • 如何利用 C# 实现 Delta 学习规则?
  • 如何利用 C# 实现 误差反向传播 学习规则?
  • 如何利用 C# 爬取带 Token 验证的网站数据?
  • 如何利用 C# 向 Access 数据库插入大量数据?
  • 如何利用 C# + Python 破解猫眼电影的反爬虫机制?

刻意练习:Python基础 -- Task11. 魔法方法相关推荐

  1. (更新时间)2021年3月24日 python基础知识(魔法方法)

    1.魔法方法 在 python 的类中,有一类方法,这类方法以 `两个下划线开头` 和`两个下划线结尾`, 并且在`满足某个特定条件的情况下,会自动调用`. 这类方法,称为魔法方法如何学习魔法方法: ...

  2. Python学习笔记Task11.魔法方法

    Python学习笔记Task11.魔法方法 魔法方法格式__init__ 1.基本 init(self[,-]) new(cls[,-]) del(self) str(self) repr(self) ...

  3. python入门——P41魔法方法:构造和析构

    魔法方法总是被双下划线包围 魔法方法是面向对象Python的一切 魔法方法的强大,体现在他们总能在合适的时候自动调用 __init__(self[, -]) 在实例被构造初始就需要属性,对一个对象进行 ...

  4. python深度讲解_《深度剖析CPython解释器》21. Python类机制的深度解析(第五部分): 全方位介绍Python中的魔法方法,一网打尽...

    楔子 下面我们来看一下Python中的魔法方法,我们知道Python将操作符都抽象成了一个魔法方法(magic method),实例对象进行操作时,实际上会调用魔法方法.也正因为如此,numpy才得以 ...

  5. 从零开始学Python编程之魔法方法

    大家好,我是岛上程序猿,欢迎关注! Python中的魔法方法是一种特殊方法,以双下划线开头和结尾,并且可以在类定义中定义,用于执行特定的操作.在本文中,我们将介绍魔法方法的作用.如何使用它们以及Pyt ...

  6. Python的类和对象的介绍,定义类和对象,定义实例方法和属性以及Python中的魔法方法

    Day09新手小白学python 第九节 Python的类和对象的介绍,定义类和对象,定义实例方法和属性以及Python中的魔法方法 目录 Day09新手小白学python 前言 一.面向对象介绍 二 ...

  7. python类的魔法方法基础

    参考:小甲鱼视频 作用:对类进行"刷机"级的修改 魔法方法的标志:①被__xxx__两条下划线包围:如典型的__init__ 1.__init__(self,....) 问:在定义 ...

  8. python 类 对象 魔法方法概念+习题

    类 对象 类 对象是c++和java中都有的内容,python定义类的简单语法如下: class 类名: -类变量或者方法 Python 的类定义有点像函数定义,都是以冒号:作为类体的开始,以统一缩进 ...

  9. Python面向对象、魔法方法

    文章目录 写在篇前 封装 继承 单继承 Mixin 抽象 多态 特殊方法&属性 特殊属性 魔法方法 辅助知识 OOP实用函数 迭代器生成器 写在篇前   OOP(Object Oriented ...

最新文章

  1. list字母排序 java_通过Java排序List集合的元素的几种方法
  2. Qt控制台工程不能调试问题
  3. tl-wn821n无线网卡驱动 linux,tl-wn821n win10驱动
  4. 什么是 Spring?
  5. IDEA使用从Eclipse过来的快捷键
  6. ffmpeg简单使用小记
  7. 北邮-上机-提交错误解决及一些经验
  8. C++学习之路 | PTA乙级—— 1020 月饼 (25分)(精简)
  9. git-bug分支-git-stash-工作代码与bug解决同时处理时解决模拟
  10. 20200716:最多 K 次交换相邻数位后得到的最小整数(leetcode 1505)
  11. Vivado:信道编码卷积编码和RS编码IP核
  12. SpringBoot整合activiti7,demo示例
  13. 邮件服务器的功能以及相关工作原理
  14. OpenCms8.5 安装
  15. 音频视频点播收费在线观看系统网站小程序app开发建设
  16. Java实现求质数(素数)
  17. excel计算二元线性回归_分享一个用用Excel做回归分析
  18. 锚定情境法(二):如何合理选择情境题?
  19. 设计一个学生学籍管理系统
  20. java毕业设计开题报告SSM实现的在线商城系统|电商购物系统

热门文章

  1. c++框架有哪些_Java Mybatis框架入门教程_v20200726
  2. PCB多层线路板打样难点
  3. 云原生应用的10大关键属性
  4. Linux下分割与合并文件的方法
  5. 关于git bush 中不能复制黏贴的问题
  6. 更新ADT到Android L的方法
  7. rhel6Inode详解
  8. [Design] Flyweight Pattern
  9. linux+用户的shell,Linux用户管理(十)Linux Shell高级
  10. windows系统安装airflow模块(一)