更多详情:http://blog.csdn.net/whyacinth/

VC++ MFC 多线程及线程同步
关键词: MFC    多线程及线程同步                                          
VC++6.0; 线程同步;临界区;事件;互斥;信号量; 
  使线程同步

  在程序中使用多线程时,一般很少有多个线程能在其生命期内进行完全独立的操作。更多的情况是一些线程进行某些处理操作,而其他的线程必须对其处理结果进行了解。正常情况下对这种处理结果的了解应当在其处理任务完成后进行。

  如果不采取适当的措施,其他线程往往会在线程处理任务结束前就去访问处理结果,这就很有可能得到有关处理结果的错误了解。例如,多个线程同时访问同一个全局变量,如果都是读取操作,则不会出现问题。如果一个线程负责改变此变量的值,而其他线程负责同时读取变量内容,则不能保证读取到的数据是经过写线程修改后的。

  为了确保读线程读取到的是经过修改的变量,就必须在向变量写入数据时禁止其他线程对其的任何访问,直至赋值过程结束后再解除对其他线程的访问限制。象这种保证线程能了解其他线程任务处理结束后的处理结果而采取的保护措施即为线程同步。

  线程同步是一个非常大的话题,包括方方面面的内容。从大的方面讲,线程的同步可分用户模式的线程同步和内核对象的线程同步两大类。用户模式中线程的同步方法主要有原子访问和临界区等方法。其特点是同步速度特别快,适合于对线程运行速度有严格要求的场合。

  内核对象的线程同步则主要由事件、等待定时器、信号量以及信号灯等内核对象构成。由于这种同步机制使用了内核对象,使用时必须将线程从用户模式切换到内核模式,而这种转换一般要耗费近千个CPU周期,因此同步速度较慢,但在适用性上却要远优于用户模式的线程同步方式。

  临界区

  临界区(Critical Section)是一段独占对某些共享资源访问的代码,在任意时刻只允许一个线程对共享资源进行访问。如果有多个线程试图同时访问临界区,那么在有一个线程进入后其他所有试图访问此临界区的线程将被挂起,并一直持续到进入临界区的线程离开。临界区在被释放后,其他线程可以继续抢占,并以此达到用原子方式操作共享资源的目的。

  临界区在使用时以CRITICAL_SECTION结构对象保护共享资源,并分别用EnterCriticalSection()和LeaveCriticalSection()函数去标识和释放一个临界区。所用到的CRITICAL_SECTION结构对象必须经过InitializeCriticalSection()的初始化后才能使用,而且必须确保所有线程中的任何试图访问此共享资源的代码都处在此临界区的保护之下。否则临界区将不会起到应有的作用,共享资源依然有被破坏的可能。

图1 使用临界区保持线程同步

  下面通过一段代码展示了临界区在保护多线程访问的共享资源中的作用。通过两个线程来分别对全局变量g_cArray[10]进行写入操作,用临界区结构对象g_cs来保持线程的同步,并在开启线程前对其进行初始化。为了使实验效果更加明显,体现出临界区的作用,在线程函数对共享资源g_cArray[10]的写入时,以Sleep()函数延迟1毫秒,使其他线程同其抢占CPU的可能性增大。如果不使用临界区对其进行保护,则共享资源数据将被破坏(参见图1(a)所示计算结果),而使用临界区对线程保持同步后则可以得到正确的结果(参见图1(b)所示计算结果)。代码实现清单附下:

// 临界区结构对象
CRITICAL_SECTION g_cs;
// 共享资源
char g_cArray[10];
UINT ThreadProc10(LPVOID pParam)
{
 // 进入临界区
 EnterCriticalSection(&g_cs);
 // 对共享资源进行写入操作
 for (int i = 0; i < 10; i++)
 {
  g_cArray[i] = 'a';
  Sleep(1);
 }
 // 离开临界区
 LeaveCriticalSection(&g_cs);
 return 0;
}
UINT ThreadProc11(LPVOID pParam)
{
 // 进入临界区
 EnterCriticalSection(&g_cs);
 // 对共享资源进行写入操作
 for (int i = 0; i < 10; i++)
 {
  g_cArray[10 - i - 1] = 'b';
  Sleep(1);
 }
 // 离开临界区
 LeaveCriticalSection(&g_cs);
 return 0;
}
……
void CSample08View::OnCriticalSection()
{
 // 初始化临界区
 InitializeCriticalSection(&g_cs);
 // 启动线程
 AfxBeginThread(ThreadProc10, NULL);
 AfxBeginThread(ThreadProc11, NULL);
 // 等待计算完毕
 Sleep(300);
 // 报告计算结果
 CString sResult = CString(g_cArray);
 AfxMessageBox(sResult);
}

  在使用临界区时,一般不允许其运行时间过长,只要进入临界区的线程还没有离开,其他所有试图进入此临界区的线程都会被挂起而进入到等待状态,并会在一定程度上影响。程序的运行性能。尤其需要注意的是不要将等待用户输入或是其他一些外界干预的操作包含到临界区。如果进入了临界区却一直没有释放,同样也会引起其他线程的长时间等待。换句话说,在执行了EnterCriticalSection()语句进入临界区后无论发生什么,必须确保与之匹配的LeaveCriticalSection()都能够被执行到。可以通过添加结构化异常处理代码来确保LeaveCriticalSection()语句的执行。虽然临界区同步速度很快,但却只能用来同步本进程内的线程,而不可用来同步多个进程中的线程。

  MFC为临界区提供有一个CCriticalSection类,使用该类进行线程同步处理是非常简单的,只需在线程函数中用CCriticalSection类成员函数Lock()和UnLock()标定出被保护代码片段即可。对于上述代码,可通过CCriticalSection类将其改写如下:

// MFC临界区类对象
CCriticalSection g_clsCriticalSection;
// 共享资源
char g_cArray[10];
UINT ThreadProc20(LPVOID pParam)
{
 // 进入临界区
 g_clsCriticalSection.Lock();
 // 对共享资源进行写入操作
 for (int i = 0; i < 10; i++)
 {
  g_cArray[i] = 'a';
  Sleep(1);
 }
 // 离开临界区
 g_clsCriticalSection.Unlock();
 return 0;
}
UINT ThreadProc21(LPVOID pParam)
{
 // 进入临界区
 g_clsCriticalSection.Lock();
 // 对共享资源进行写入操作
 for (int i = 0; i < 10; i++)
 {
  g_cArray[10 - i - 1] = 'b';
  Sleep(1);
 }
 // 离开临界区
 g_clsCriticalSection.Unlock();
 return 0;
}
……
void CSample08View::OnCriticalSectionMfc()
{
 // 启动线程
 AfxBeginThread(ThreadProc20, NULL);
 AfxBeginThread(ThreadProc21, NULL);
 // 等待计算完毕
 Sleep(300);
 // 报告计算结果
 CString sResult = CString(g_cArray);
 AfxMessageBox(sResult);
}

  管理事件内核对象

  在前面讲述线程通信时曾使用过事件内核对象来进行线程间的通信,除此之外,事件内核对象也可以通过通知操作的方式来保持线程的同步。对于前面那段使用临界区保持线程同步的代码可用事件对象的线程同步方法改写如下:

// 事件句柄
HANDLE hEvent = NULL;
// 共享资源
char g_cArray[10];
……
UINT ThreadProc12(LPVOID pParam)
{
 // 等待事件置位
 WaitForSingleObject(hEvent, INFINITE);
 // 对共享资源进行写入操作
 for (int i = 0; i < 10; i++)
 {
  g_cArray[i] = 'a';
  Sleep(1);
 }
 // 处理完成后即将事件对象置位
 SetEvent(hEvent);
 return 0;
}
UINT ThreadProc13(LPVOID pParam)
{
 // 等待事件置位
 WaitForSingleObject(hEvent, INFINITE);
 // 对共享资源进行写入操作
 for (int i = 0; i < 10; i++)
 {
  g_cArray[10 - i - 1] = 'b';
  Sleep(1);
 }
 // 处理完成后即将事件对象置位
 SetEvent(hEvent);
 return 0;
}
……
void CSample08View::OnEvent()
{
 // 创建事件
 hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
 // 事件置位
 SetEvent(hEvent);
 // 启动线程
 AfxBeginThread(ThreadProc12, NULL);
 AfxBeginThread(ThreadProc13, NULL);
 // 等待计算完毕
 Sleep(300);
 // 报告计算结果
 CString sResult = CString(g_cArray);
 AfxMessageBox(sResult);
}

  在创建线程前,首先创建一个可以自动复位的事件内核对象hEvent,而线程函数则通过WaitForSingleObject()等待函数无限等待hEvent的置位,只有在事件置位时WaitForSingleObject()才会返回,被保护的代码将得以执行。对于以自动复位方式创建的事件对象,在其置位后一被WaitForSingleObject()等待到就会立即复位,也就是说在执行ThreadProc12()中的受保护代码时,事件对象已经是复位状态的,这时即使有ThreadProc13()对CPU的抢占,也会由于WaitForSingleObject()没有hEvent的置位而不能继续执行,也就没有可能破坏受保护的共享资源。在ThreadProc12()中的处理完成后可以通过SetEvent()对hEvent的置位而允许ThreadProc13()对共享资源g_cArray的处理。这里SetEvent()所起的作用可以看作是对某项特定任务完成的通知。

  使用临界区只能同步同一进程中的线程,而使用事件内核对象则可以对进程外的线程进行同步,其前提是得到对此事件对象的访问权。可以通过OpenEvent()函数获取得到,其函数原型为:

HANDLE OpenEvent(
 DWORD dwDesiredAccess, // 访问标志
 BOOL bInheritHandle, // 继承标志
 LPCTSTR lpName // 指向事件对象名的指针
);

  如果事件对象已创建(在创建事件时需要指定事件名),函数将返回指定事件的句柄。对于那些在创建事件时没有指定事件名的事件内核对象,可以通过使用内核对象的继承性或是调用DuplicateHandle()函数来调用CreateEvent()以获得对指定事件对象的访问权。在获取到访问权后所进行的同步操作与在同一个进程中所进行的线程同步操作是一样的。

  如果需要在一个线程中等待多个事件,则用WaitForMultipleObjects()来等待。WaitForMultipleObjects()与WaitForSingleObject()类似,同时监视位于句柄数组中的所有句柄。这些被监视对象的句柄享有平等的优先权,任何一个句柄都不可能比其他句柄具有更高的优先权。WaitForMultipleObjects()的函数原型为:

DWORD WaitForMultipleObjects(
 DWORD nCount, // 等待句柄数
 CONST HANDLE *lpHandles, // 句柄数组首地址
 BOOL fWaitAll, // 等待标志
 DWORD dwMilliseconds // 等待时间间隔
);

  参数nCount指定了要等待的内核对象的数目,存放这些内核对象的数组由lpHandles来指向。fWaitAll对指定的这nCount个内核对象的两种等待方式进行了指定,为TRUE时当所有对象都被通知时函数才会返回,为FALSE则只要其中任何一个得到通知就可以返回。dwMilliseconds在这里的作用与在WaitForSingleObject()中的作用是完全一致的。如果等待超时,函数将返回WAIT_TIMEOUT。如果返回WAIT_OBJECT_0到WAIT_OBJECT_0+nCount-1中的某个值,则说明所有指定对象的状态均为已通知状态(当fWaitAll为TRUE时)或是用以减去WAIT_OBJECT_0而得到发生通知的对象的索引(当fWaitAll为FALSE时)。如果返回值在WAIT_ABANDONED_0与WAIT_ABANDONED_0+nCount-1之间,则表示所有指定对象的状态均为已通知,且其中至少有一个对象是被丢弃的互斥对象(当fWaitAll为TRUE时),或是用以减去WAIT_OBJECT_0表示一个等待正常结束的互斥对象的索引(当fWaitAll为FALSE时)。 下面给出的代码主要展示了对WaitForMultipleObjects()函数的使用。通过对两个事件内核对象的等待来控制线程任务的执行与中途退出:

// 存放事件句柄的数组
HANDLE hEvents[2];
UINT ThreadProc14(LPVOID pParam)
{
 // 等待开启事件
 DWORD dwRet1 = WaitForMultipleObjects(2, hEvents, FALSE, INFINITE);
 // 如果开启事件到达则线程开始执行任务
 if (dwRet1 == WAIT_OBJECT_0)
 {
  AfxMessageBox("线程开始工作!");
  while (true)
  {
   for (int i = 0; i < 10000; i++);
   // 在任务处理过程中等待结束事件
   DWORD dwRet2 = WaitForMultipleObjects(2, hEvents, FALSE, 0);
   // 如果结束事件置位则立即终止任务的执行
   if (dwRet2 == WAIT_OBJECT_0 + 1)
    break;
  }
 }
 AfxMessageBox("线程退出!");
 return 0;
}
……
void CSample08View::OnStartEvent()
{
 // 创建线程
 for (int i = 0; i < 2; i++)
  hEvents[i] = CreateEvent(NULL, FALSE, FALSE, NULL);
  // 开启线程
  AfxBeginThread(ThreadProc14, NULL);
  // 设置事件0(开启事件)
  SetEvent(hEvents[0]);
}
void CSample08View::OnEndevent()
{
 // 设置事件1(结束事件)
 SetEvent(hEvents[1]);
}

  MFC为事件相关处理也提供了一个CEvent类,共包含有除构造函数外的4个成员函数PulseEvent()、ResetEvent()、SetEvent()和UnLock()。在功能上分别相当与Win32 API的PulseEvent()、ResetEvent()、SetEvent()和CloseHandle()等函数。而构造函数则履行了原CreateEvent()函数创建事件对象的职责,其函数原型为:

CEvent(BOOL bInitiallyOwn = FALSE, BOOL bManualReset = FALSE, LPCTSTR lpszName = NULL, LPSECURITY_ATTRIBUTES lpsaAttribute = NULL );

  按照此缺省设置将创建一个自动复位、初始状态为复位状态的没有名字的事件对象。封装后的CEvent类使用起来更加方便,图2即展示了CEvent类对A、B两线程的同步过程:

图2 CEvent类对线程的同步过程示意

  B线程在执行到CEvent类成员函数Lock()时将会发生阻塞,而A线程此时则可以在没有B线程干扰的情况下对共享资源进行处理,并在处理完成后通过成员函数SetEvent()向B发出事件,使其被释放,得以对A先前已处理完毕的共享资源进行操作。可见,使用CEvent类对线程的同步方法与通过API函数进行线程同步的处理方法是基本一致的。前面的API处理代码可用CEvent类将其改写为:

// MFC事件类对象
CEvent g_clsEvent;
UINT ThreadProc22(LPVOID pParam)
{
 // 对共享资源进行写入操作
 for (int i = 0; i < 10; i++)
 {
  g_cArray[i] = 'a';
  Sleep(1);
 }
 // 事件置位
 g_clsEvent.SetEvent();
 return 0;
}
UINT ThreadProc23(LPVOID pParam)
{
 // 等待事件
 g_clsEvent.Lock();
 // 对共享资源进行写入操作
 for (int i = 0; i < 10; i++)
 {
  g_cArray[10 - i - 1] = 'b';
  Sleep(1);
 }
 return 0;
}
……
void CSample08View::OnEventMfc()
{
 // 启动线程
 AfxBeginThread(ThreadProc22, NULL);
 AfxBeginThread(ThreadProc23, NULL);
 // 等待计算完毕
 Sleep(300);
 // 报告计算结果
 CString sResult = CString(g_cArray);
 AfxMessageBox(sResult);
}
  信号量内核对象

  信号量(Semaphore)内核对象对线程的同步方式与前面几种方法不同,它允许多个线程在同一时刻访问同一资源,但是需要限制在同一时刻访问此资源的最大线程数目。在用CreateSemaphore()创建信号量时即要同时指出允许的最大资源计数和当前可用资源计数。一般是将当前可用资源计数设置为最大资源计数,每增加一个线程对共享资源的访问,当前可用资源计数就会减1,只要当前可用资源计数是大于0的,就可以发出信号量信号。但是当前可用计数减小到0时则说明当前占用资源的线程数已经达到了所允许的最大数目,不能在允许其他线程的进入,此时的信号量信号将无法发出。线程在处理完共享资源后,应在离开的同时通过ReleaseSemaphore()函数将当前可用资源计数加1。在任何时候当前可用资源计数决不可能大于最大资源计数。

图3 使用信号量对象控制资源

  下面结合图例3来演示信号量对象对资源的控制。在图3中,以箭头和白色箭头表示共享资源所允许的最大资源计数和当前可用资源计数。初始如图(a)所示,最大资源计数和当前可用资源计数均为4,此后每增加一个对资源进行访问的线程(用黑色箭头表示)当前资源计数就会相应减1,图(b)即表示的在3个线程对共享资源进行访问时的状态。当进入线程数达到4个时,将如图(c)所示,此时已达到最大资源计数,而当前可用资源计数也已减到0,其他线程无法对共享资源进行访问。在当前占有资源的线程处理完毕而退出后,将会释放出空间,图(d)已有两个线程退出对资源的占有,当前可用计数为2,可以再允许2个线程进入到对资源的处理。可以看出,信号量是通过计数来对线程访问资源进行控制的,而实际上信号量确实也被称作Dijkstra计数器。

  使用信号量内核对象进行线程同步主要会用到CreateSemaphore()、OpenSemaphore()、ReleaseSemaphore()、WaitForSingleObject()和WaitForMultipleObjects()等函数。其中,CreateSemaphore()用来创建一个信号量内核对象,其函数原型为:

HANDLE CreateSemaphore(
 LPSECURITY_ATTRIBUTES lpSemaphoreAttributes, // 安全属性指针
 LONG lInitialCount, // 初始计数
 LONG lMaximumCount, // 最大计数
 LPCTSTR lpName // 对象名指针
);

  参数lMaximumCount是一个有符号32位值,定义了允许的最大资源计数,最大取值不能超过4294967295。lpName参数可以为创建的信号量定义一个名字,由于其创建的是一个内核对象,因此在其他进程中可以通过该名字而得到此信号量。OpenSemaphore()函数即可用来根据信号量名打开在其他进程中创建的信号量,函数原型如下:

HANDLE OpenSemaphore(
 DWORD dwDesiredAccess, // 访问标志
 BOOL bInheritHandle, // 继承标志
 LPCTSTR lpName // 信号量名
);

  在线程离开对共享资源的处理时,必须通过ReleaseSemaphore()来增加当前可用资源计数。否则将会出现当前正在处理共享资源的实际线程数并没有达到要限制的数值,而其他线程却因为当前可用资源计数为0而仍无法进入的情况。ReleaseSemaphore()的函数原型为:

BOOL ReleaseSemaphore(
 HANDLE hSemaphore, // 信号量句柄
 LONG lReleaseCount, // 计数递增数量
 LPLONG lpPreviousCount // 先前计数
);

  该函数将lReleaseCount中的值添加给信号量的当前资源计数,一般将lReleaseCount设置为1,如果需要也可以设置其他的值。WaitForSingleObject()和WaitForMultipleObjects()主要用在试图进入共享资源的线程函数入口处,主要用来判断信号量的当前可用资源计数是否允许本线程的进入。只有在当前可用资源计数值大于0时,被监视的信号量内核对象才会得到通知。

  信号量的使用特点使其更适用于对Socket(套接字)程序中线程的同步。例如,网络上的HTTP服务器要对同一时间内访问同一页面的用户数加以限制,这时可以为没一个用户对服务器的页面请求设置一个线程,而页面则是待保护的共享资源,通过使用信号量对线程的同步作用可以确保在任一时刻无论有多少用户对某一页面进行访问,只有不大于设定的最大用户数目的线程能够进行访问,而其他的访问企图则被挂起,只有在有用户退出对此页面的访问后才有可能进入。下面给出的示例代码即展示了类似的处理过程:

// 信号量对象句柄
HANDLE hSemaphore;
UINT ThreadProc15(LPVOID pParam)
{
 // 试图进入信号量关口
 WaitForSingleObject(hSemaphore, INFINITE);
 // 线程任务处理
 AfxMessageBox("线程一正在执行!");
 // 释放信号量计数
 ReleaseSemaphore(hSemaphore, 1, NULL);
 return 0;
}
UINT ThreadProc16(LPVOID pParam)
{
 // 试图进入信号量关口
 WaitForSingleObject(hSemaphore, INFINITE);
 // 线程任务处理
 AfxMessageBox("线程二正在执行!");
 // 释放信号量计数
 ReleaseSemaphore(hSemaphore, 1, NULL);
 return 0;
}
UINT ThreadProc17(LPVOID pParam)
{
 // 试图进入信号量关口
 WaitForSingleObject(hSemaphore, INFINITE);
 // 线程任务处理
 AfxMessageBox("线程三正在执行!");
 // 释放信号量计数
 ReleaseSemaphore(hSemaphore, 1, NULL);
 return 0;
}
……
void CSample08View::OnSemaphore()
{
 // 创建信号量对象
 hSemaphore = CreateSemaphore(NULL, 2, 2, NULL);
 // 开启线程
 AfxBeginThread(ThreadProc15, NULL);
 AfxBeginThread(ThreadProc16, NULL);
 AfxBeginThread(ThreadProc17, NULL);
}

图4 开始进入的两个线程

图5 线程二退出后线程三才得以进入

  上述代码在开启线程前首先创建了一个初始计数和最大资源计数均为2的信号量对象hSemaphore。即在同一时刻只允许2个线程进入由hSemaphore保护的共享资源。随后开启的三个线程均试图访问此共享资源,在前两个线程试图访问共享资源时,由于hSemaphore的当前可用资源计数分别为2和1,此时的hSemaphore是可以得到通知的,也就是说位于线程入口处的WaitForSingleObject()将立即返回,而在前两个线程进入到保护区域后,hSemaphore的当前资源计数减少到0,hSemaphore将不再得到通知,WaitForSingleObject()将线程挂起。直到此前进入到保护区的线程退出后才能得以进入。图4和图5为上述代脉的运行结果。从实验结果可以看出,信号量始终保持了同一时刻不超过2个线程的进入。

  在MFC中,通过CSemaphore类对信号量作了表述。该类只具有一个构造函数,可以构造一个信号量对象,并对初始资源计数、最大资源计数、对象名和安全属性等进行初始化,其原型如下:

CSemaphore( LONG lInitialCount = 1, LONG lMaxCount = 1, LPCTSTR pstrName = NULL, LPSECURITY_ATTRIBUTES lpsaAttributes = NULL );

  在构造了CSemaphore类对象后,任何一个访问受保护共享资源的线程都必须通过CSemaphore从父类CSyncObject类继承得到的Lock()和UnLock()成员函数来访问或释放CSemaphore对象。与前面介绍的几种通过MFC类保持线程同步的方法类似,通过CSemaphore类也可以将前面的线程同步代码进行改写,这两种使用信号量的线程同步方法无论是在实现原理上还是从实现结果上都是完全一致的。下面给出经MFC改写后的信号量线程同步代码:

// MFC信号量类对象
CSemaphore g_clsSemaphore(2, 2);
UINT ThreadProc24(LPVOID pParam)
{
 // 试图进入信号量关口
 g_clsSemaphore.Lock();
 // 线程任务处理
 AfxMessageBox("线程一正在执行!");
 // 释放信号量计数
 g_clsSemaphore.Unlock();
 return 0;
}
UINT ThreadProc25(LPVOID pParam)
{
 // 试图进入信号量关口
 g_clsSemaphore.Lock();
 // 线程任务处理
 AfxMessageBox("线程二正在执行!");
 // 释放信号量计数
 g_clsSemaphore.Unlock();
 return 0;
}
UINT ThreadProc26(LPVOID pParam)
{
 // 试图进入信号量关口
 g_clsSemaphore.Lock();
 // 线程任务处理
 AfxMessageBox("线程三正在执行!");
 // 释放信号量计数
 g_clsSemaphore.Unlock();
 return 0;
}
……
void CSample08View::OnSemaphoreMfc()
{
 // 开启线程
 AfxBeginThread(ThreadProc24, NULL);
 AfxBeginThread(ThreadProc25, NULL);
 AfxBeginThread(ThreadProc26, NULL);
}
  互斥内核对象

  互斥(Mutex)是一种用途非常广泛的内核对象。能够保证多个线程对同一共享资源的互斥访问。同临界区有些类似,只有拥有互斥对象的线程才具有访问资源的权限,由于互斥对象只有一个,因此就决定了任何情况下此共享资源都不会同时被多个线程所访问。当前占据资源的线程在任务处理完后应将拥有的互斥对象交出,以便其他线程在获得后得以访问资源。与其他几种内核对象不同,互斥对象在操作系统中拥有特殊代码,并由操作系统来管理,操作系统甚至还允许其进行一些其他内核对象所不能进行的非常规操作。为便于理解,可参照图6给出的互斥内核对象的工作模型:

图6 使用互斥内核对象对共享资源的保护

  图(a)中的箭头为要访问资源(矩形框)的线程,但只有第二个线程拥有互斥对象(黑点)并得以进入到共享资源,而其他线程则会被排斥在外(如图(b)所示)。当此线程处理完共享资源并准备离开此区域时将把其所拥有的互斥对象交出(如图(c)所示),其他任何一个试图访问此资源的线程都有机会得到此互斥对象。

  以互斥内核对象来保持线程同步可能用到的函数主要有CreateMutex()、OpenMutex()、ReleaseMutex()、WaitForSingleObject()和WaitForMultipleObjects()等。在使用互斥对象前,首先要通过CreateMutex()或OpenMutex()创建或打开一个互斥对象。CreateMutex()函数原型为:

HANDLE CreateMutex(
 LPSECURITY_ATTRIBUTES lpMutexAttributes, // 安全属性指针
 BOOL bInitialOwner, // 初始拥有者
 LPCTSTR lpName // 互斥对象名
);

  参数bInitialOwner主要用来控制互斥对象的初始状态。一般多将其设置为FALSE,以表明互斥对象在创建时并没有为任何线程所占有。如果在创建互斥对象时指定了对象名,那么可以在本进程其他地方或是在其他进程通过OpenMutex()函数得到此互斥对象的句柄。OpenMutex()函数原型为:

HANDLE OpenMutex(
 DWORD dwDesiredAccess, // 访问标志
 BOOL bInheritHandle, // 继承标志
 LPCTSTR lpName // 互斥对象名
);

  当目前对资源具有访问权的线程不再需要访问此资源而要离开时,必须通过ReleaseMutex()函数来释放其拥有的互斥对象,其函数原型为:

BOOL ReleaseMutex(HANDLE hMutex);

  其唯一的参数hMutex为待释放的互斥对象句柄。至于WaitForSingleObject()和WaitForMultipleObjects()等待函数在互斥对象保持线程同步中所起的作用与在其他内核对象中的作用是基本一致的,也是等待互斥内核对象的通知。但是这里需要特别指出的是:在互斥对象通知引起调用等待函数返回时,等待函数的返回值不再是通常的WAIT_OBJECT_0(对于WaitForSingleObject()函数)或是在WAIT_OBJECT_0到WAIT_OBJECT_0+nCount-1之间的一个值(对于WaitForMultipleObjects()函数),而是将返回一个WAIT_ABANDONED_0(对于WaitForSingleObject()函数)或是在WAIT_ABANDONED_0到WAIT_ABANDONED_0+nCount-1之间的一个值(对于WaitForMultipleObjects()函数)。以此来表明线程正在等待的互斥对象由另外一个线程所拥有,而此线程却在使用完共享资源前就已经终止。除此之外,使用互斥对象的方法在等待线程的可调度性上同使用其他几种内核对象的方法也有所不同,其他内核对象在没有得到通知时,受调用等待函数的作用,线程将会挂起,同时失去可调度性,而使用互斥的方法却可以在等待的同时仍具有可调度性,这也正是互斥对象所能完成的非常规操作之一。

  在编写程序时,互斥对象多用在对那些为多个线程所访问的内存块的保护上,可以确保任何线程在处理此内存块时都对其拥有可靠的独占访问权。下面给出的示例代码即通过互斥内核对象hMutex对共享内存快g_cArray[]进行线程的独占访问保护。下面给出实现代码清单:

// 互斥对象
HANDLE hMutex = NULL;
char g_cArray[10];
UINT ThreadProc18(LPVOID pParam)
{
 // 等待互斥对象通知
 WaitForSingleObject(hMutex, INFINITE);
 // 对共享资源进行写入操作
 for (int i = 0; i < 10; i++)
 {
  g_cArray[i] = 'a';
  Sleep(1);
 }
 // 释放互斥对象
 ReleaseMutex(hMutex);
 return 0;
}
UINT ThreadProc19(LPVOID pParam)
{
 // 等待互斥对象通知
 WaitForSingleObject(hMutex, INFINITE);
 // 对共享资源进行写入操作
 for (int i = 0; i < 10; i++)
 {
  g_cArray[10 - i - 1] = 'b';
  Sleep(1);
 }
 // 释放互斥对象
 ReleaseMutex(hMutex);
 return 0;
}
……
void CSample08View::OnMutex()
{
 // 创建互斥对象
 hMutex = CreateMutex(NULL, FALSE, NULL);
 // 启动线程
 AfxBeginThread(ThreadProc18, NULL);
 AfxBeginThread(ThreadProc19, NULL);
 // 等待计算完毕
 Sleep(300);
 // 报告计算结果
 CString sResult = CString(g_cArray);
 AfxMessageBox(sResult);
}

  互斥对象在MFC中通过CMutex类进行表述。使用CMutex类的方法非常简单,在构造CMutex类对象的同时可以指明待查询的互斥对象的名字,在构造函数返回后即可访问此互斥变量。CMutex类也是只含有构造函数这唯一的成员函数,当完成对互斥对象保护资源的访问后,可通过调用从父类CSyncObject继承的UnLock()函数完成对互斥对象的释放。CMutex类构造函数原型为:

CMutex( BOOL bInitiallyOwn = FALSE, LPCTSTR lpszName = NULL, LPSECURITY_ATTRIBUTES lpsaAttribute = NULL );

  该类的适用范围和实现原理与API方式创建的互斥内核对象是完全类似的,但要简洁的多,下面给出就是对前面的示例代码经CMutex类改写后的程序实现清单:

// MFC互斥类对象
CMutex g_clsMutex(FALSE, NULL);
UINT ThreadProc27(LPVOID pParam)
{
 // 等待互斥对象通知
 g_clsMutex.Lock();
 // 对共享资源进行写入操作
 for (int i = 0; i < 10; i++)
 {
  g_cArray[i] = 'a';
  Sleep(1);
 }
 // 释放互斥对象
 g_clsMutex.Unlock();
 return 0;
}
UINT ThreadProc28(LPVOID pParam)
{
 // 等待互斥对象通知
 g_clsMutex.Lock();
 // 对共享资源进行写入操作
 for (int i = 0; i < 10; i++)
 {
  g_cArray[10 - i - 1] = 'b';
  Sleep(1);
 }
 // 释放互斥对象
 g_clsMutex.Unlock();
 return 0;
}
……
void CSample08View::OnMutexMfc()
{
 // 启动线程
 AfxBeginThread(ThreadProc27, NULL);
 AfxBeginThread(ThreadProc28, NULL);
 // 等待计算完毕
 Sleep(300);
 // 报告计算结果
 CString sResult = CString(g_cArray);
 AfxMessageBox(sResult);
}

  小结

  线程的使用使程序处理更够更加灵活,而这种灵活同样也会带来各种不确定性的可能。尤其是在多个线程对同一公共变量进行访问时。虽然未使用线程同步的程序代码在逻辑上或许没有什么问题,但为了确保程序的正确、可靠运行,必须在适当的场合采取线程同步措施。

转自http://www.yq8.cn/html/15/215-977.html

------------------------

下文转自 http://blog.csdn.net/lzxxteam/archive/2008/03/04/2147520.aspx

一、问题的提出

编写一个耗时的单线程程序:

  新建一个基于对话框的应用程序SingleThread,在主对话框IDD_SINGLETHREAD_DIALOG添加一个按钮,ID为IDC_SLEEP_SIX_SECOND,标题为“延时6秒”,添加按钮的响应函数,代码如下:

void CSingleThreadDlg::OnSleepSixSecond()
{
Sleep(6000); //延时6秒
}

  编译并运行应用程序,单击“延时6秒”按钮,你就会发现在这6秒期间程序就象“死机”一样,不在响应其它消息。为了更好地处理这种耗时的操作,我们有必要学习——多线程编程。
二、多线程概述

  进程和线程都是操作系统的概念。进程是应用程序的执行实例,每个进程是由私有的虚拟地址空间、代码、数据和其它各种系统资源组成,进程在运行过程中创建的资源随着进程的终止而被销毁,所使用的系统资源在进程终止时被释放或关闭。
  线程是进程内部的一个执行单元。系统创建好进程后,实际上就启动执行了该进程的主执行线程,主执行线程以函数地址形式,比如说main或WinMain函数,将程序的启动点提供给Windows系统。主执行线程终止了,进程也就随之终止。
  每一个进程至少有一个主执行线程,它无需由用户去主动创建,是由系统自动创建的。用户根据需要在应用程序中创建其它线程,多个线程并发地运行于同一个进程中。一个进程中的所有线程都在该进程的虚拟地址空间中,共同使用这些虚拟地址空间、全局变量和系统资源,所以线程间的通讯非常方便,多线程技术的应用也较为广泛。
  多线程可以实现并行处理,避免了某项任务长时间占用CPU时间。要说明的一点是,目前大多数的计算机都是单处理器(CPU)的,为了运行所有这些线程,操作系统为每个独立线程安排一些CPU时间,操作系统以轮换方式向线程提供时间片,这就给人一种假象,好象这些线程都在同时运行。由此可见,如果两个非常活跃的线程为了抢夺对CPU的控制权,在线程切换时会消耗很多的CPU资源,反而会降低系统的性能。这一点在多线程编程时应该注意。
  Win32 SDK函数支持进行多线程的程序设计,并提供了操作系统原理中的各种同步、互斥和临界区等操作。Visual C++ 6.0中,使用MFC类库也实现了多线程的程序设计,使得多线程编程更加方便。

三、Win32 API对多线程编程的支持

  Win32 提供了一系列的API函数来完成线程的创建、挂起、恢复、终结以及通信等工作。下面将选取其中的一些重要函数进行说明。

1、HANDLE CreateThread(LPSECURITY_ATTRIBUTES lpThreadAttributes,
                  DWORD dwStackSize,
                  LPTHREAD_START_ROUTINE lpStartAddress,
                  LPVOID lpParameter,
                  DWORD dwCreationFlags,
                  LPDWORD lpThreadId);

该函数在其调用进程的进程空间里创建一个新的线程,并返回已建线程的句柄,其中各参数说明如下:
lpThreadAttributes:指向一个 SECURITY_ATTRIBUTES 结构的指针,该结构决定了线程的安全属性,一般置为 NULL;
dwStackSize:指定了线程的堆栈深度,一般都设置为0;
lpStartAddress:表示新线程开始执行时代码所在函数的地址,即线程的起始地址。一般情况为(LPTHREAD_START_ROUTINE)ThreadFunc,ThreadFunc 是线程函数名;
lpParameter:指定了线程执行时传送给线程的32位参数,即线程函数的参数;
dwCreationFlags:控制线程创建的附加标志,可以取两种值。如果该参数为0,线程在被创建后就会立即开始执行;如果该参数为CREATE_SUSPENDED,则系统产生线程后,该线程处于挂起状态,并不马上执行,直至函数ResumeThread被调用;
lpThreadId:该参数返回所创建线程的ID;
如果创建成功则返回线程的句柄,否则返回NULL。

2、DWORD SuspendThread(HANDLE hThread);

该函数用于挂起指定的线程,如果函数执行成功,则线程的执行被终止。 3、DWORD ResumeThread(HANDLE hThread);

该函数用于结束线程的挂起状态,执行线程。 4、VOID ExitThread(DWORD dwExitCode);

该函数用于线程终结自身的执行,主要在线程的执行函数中被调用。其中参数dwExitCode用来设置线程的退出码。 5、BOOL TerminateThread(HANDLE hThread,DWORD dwExitCode);

  一般情况下,线程运行结束之后,线程函数正常返回,但是应用程序可以调用TerminateThread强行终止某一线程的执行。各参数含义如下:
hThread:将被终结的线程的句柄;
dwExitCode:用于指定线程的退出码。
  使用TerminateThread()终止某个线程的执行是不安全的,可能会引起系统不稳定;虽然该函数立即终止线程的执行,但并不释放线程所占用的资源。因此,一般不建议使用该函数。

6、BOOL PostThreadMessage(DWORD idThread,
    UINT Msg,
    WPARAM wParam,
    LPARAM lParam);

该函数将一条消息放入到指定线程的消息队列中,并且不等到消息被该线程处理时便返回。
idThread:将接收消息的线程的ID;
Msg:指定用来发送的消息;
wParam:同消息有关的字参数;
lParam:同消息有关的长参数;
调用该函数时,如果即将接收消息的线程没有创建消息循环,则该函数执行失败。

四、Win32 API多线程编程例程

例程1 MultiThread1

建立一个基于对话框的工程MultiThread1,在对话框IDD_MULTITHREAD1_DIALOG中加入两个按钮和一个编辑框,两个按钮的ID 分别是IDC_START,IDC_STOP ,标题分别为“启动”,“停止”,IDC_STOP的属性选中Disabled;编辑框的ID为IDC_TIME ,属性选中Read-only;
 
在MultiThread1Dlg.h文件中添加线程函数声明: void ThreadFunc();

注意,线程函数的声明应在类CMultiThread1Dlg的外部。 在类CMultiThread1Dlg内部添加protected型变量:   HANDLE hThread;
DWORD ThreadID;

分别代表线程的句柄和ID。
 
在MultiThread1Dlg.cpp文件中添加全局变量m_bRun : volatile BOOL m_bRun;

m_bRun 代表线程是否正在运行。

你要留意到全局变量 m_bRun 是使用 volatile 修饰符的,volatile 修饰符的作用是告诉编译器无需对该变量作任何的优化,即无需将它放到一个寄存器中,并且该值可被外部改变。对于多线程引用的全局变量来说, volatile 是一个非常重要的修饰符。

编写线程函数: void ThreadFunc()
{
CTime time;
CString strTime;
m_bRun=TRUE;
while(m_bRun)
{
   time=CTime::GetCurrentTime();
   strTime=time.Format("%H:%M:%S");
   ::SetDlgItemText(AfxGetMainWnd()->m_hWnd,IDC_TIME,strTime);
   Sleep(1000);
}
}

该线程函数没有参数,也不返回函数值。只要m_bRun为TRUE,线程一直运行。

双击IDC_START按钮,完成该按钮的消息函数: void CMultiThread1Dlg::OnStart()
{
// TODO: Add your control notification handler code here
hThread=CreateThread(NULL,
   0,
   (LPTHREAD_START_ROUTINE)ThreadFunc,
   NULL,
   0,
   &ThreadID);
GetDlgItem(IDC_START)->EnableWindow(FALSE);
GetDlgItem(IDC_STOP)->EnableWindow(TRUE);

}

双击IDC_STOP按钮,完成该按钮的消息函数: void CMultiThread1Dlg::OnStop()
{
// TODO: Add your control notification handler code here
m_bRun=FALSE;
GetDlgItem(IDC_START)->EnableWindow(TRUE);
GetDlgItem(IDC_STOP)->EnableWindow(FALSE);
}

编译并运行该例程,体会使用Win32 API编写的多线程。

例程2 MultiThread2

  该线程演示了如何传送一个一个整型的参数到一个线程中,以及如何等待一个线程完成处理。

建立一个基于对话框的工程MultiThread2,在对话框IDD_MULTITHREAD2_DIALOG中加入一个编辑框和一个按钮,ID分别是IDC_COUNT,IDC_START ,按钮控件的标题为“开始”;
在MultiThread2Dlg.h文件中添加线程函数声明: void ThreadFunc(int integer);

注意,线程函数的声明应在类CMultiThread2Dlg的外部。

在类CMultiThread2Dlg内部添加protected型变量:   HANDLE hThread;
DWORD ThreadID;

分别代表线程的句柄和ID。
 
打开ClassWizard,为编辑框IDC_COUNT添加int型变量m_nCount。在MultiThread2Dlg.cpp文件中添加:void ThreadFunc(int integer)
{
int i;
for(i=0;i<integer;i++)
{
   Beep(200,50);
   Sleep(1000);
}
}

双击IDC_START按钮,完成该按钮的消息函数: void CMultiThread2Dlg::OnStart()
{
UpdateData(TRUE);
int integer=m_nCount;
hThread=CreateThread(NULL,
   0,
   (LPTHREAD_START_ROUTINE)ThreadFunc,
   (VOID*)integer,
   0,
   &ThreadID);
GetDlgItem(IDC_START)->EnableWindow(FALSE);
WaitForSingleObject(hThread,INFINITE);
GetDlgItem(IDC_START)->EnableWindow(TRUE);
}

顺便说一下WaitForSingleObject函数,其函数原型为:DWORD WaitForSingleObject(HANDLE hHandle,DWORD dwMilliseconds);

hHandle为要监视的对象(一般为同步对象,也可以是线程)的句柄;
dwMilliseconds为hHandle对象所设置的超时值,单位为毫秒;
  当在某一线程中调用该函数时,线程暂时挂起,系统监视hHandle所指向的对象的状态。如果在挂起的dwMilliseconds毫秒内,线程所等待的对象变为有信号状态,则该函数立即返回;如果超时时间已经到达dwMilliseconds毫秒,但hHandle所指向的对象还没有变成有信号状态,函数照样返回。参数dwMilliseconds有两个具有特殊意义的值:0和INFINITE。若为0,则该函数立即返回;若为INFINITE,则线程一直被挂起,直到hHandle所指向的对象变为有信号状态时为止。
  本例程调用该函数的作用是按下IDC_START按钮后,一直等到线程返回,再恢复IDC_START按钮正常状态。编译运行该例程并细心体会。

例程3 MultiThread3
传送一个结构体给一个线程函数也是可能的,可以通过传送一个指向结构体的指针参数来完成。先定义一个结构体:

typedef struct
{
int firstArgu,
long secondArgu,

}myType,*pMyType;

创建线程时CreateThread(NULL,0,threadFunc,pMyType,…);
在threadFunc函数内部,可以使用“强制转换”:

int intValue=((pMyType)lpvoid)->firstArgu;
long longValue=((pMyType)lpvoid)->seconddArgu;
……

例程3 MultiThread3将演示如何传送一个指向结构体的指针参数。

建立一个基于对话框的工程MultiThread3,在对话框IDD_MULTITHREAD3_DIALOG中加入一个编辑框IDC_MILLISECOND,一个按钮IDC_START,标题为“开始” ,一个进度条IDC_PROGRESS1;
打开ClassWizard,为编辑框IDC_MILLISECOND添加int型变量m_nMilliSecond,为进度条IDC_PROGRESS1添加CProgressCtrl型变量m_ctrlProgress;
在MultiThread3Dlg.h文件中添加一个结构的定义: struct threadInfo
{
UINT nMilliSecond;
CProgressCtrl* pctrlProgress;
};

线程函数的声明: UINT ThreadFunc(LPVOID lpParam);

注意,二者应在类CMultiThread3Dlg的外部。

在类CMultiThread3Dlg内部添加protected型变量: HANDLE hThread;
DWORD ThreadID;

分别代表线程的句柄和ID。
在MultiThread3Dlg.cpp文件中进行如下操作:

定义公共变量 threadInfo Info;
双击按钮IDC_START,添加相应消息处理函数:void CMultiThread3Dlg::OnStart()
{
// TODO: Add your control notification handler code here

UpdateData(TRUE);
Info.nMilliSecond=m_nMilliSecond;
Info.pctrlProgress=&m_ctrlProgress;

hThread=CreateThread(NULL,
   0,
   (LPTHREAD_START_ROUTINE)ThreadFunc,
   &Info,
   0,
   &ThreadID);
/*
GetDlgItem(IDC_START)->EnableWindow(FALSE);
WaitForSingleObject(hThread,INFINITE);
GetDlgItem(IDC_START)->EnableWindow(TRUE);
*/
}

在函数BOOL CMultiThread3Dlg::OnInitDialog()中添加语句: {
……

// TODO: Add extra initialization here
m_ctrlProgress.SetRange(0,99);
m_nMilliSecond=10;
UpdateData(FALSE);
return TRUE;   // return TRUE   unless you set the focus to a control
}

添加线程处理函数:UINT ThreadFunc(LPVOID lpParam) {
threadInfo* pInfo=(threadInfo*)lpParam;
for(int i=0;i<100;i++)
{
   int nTemp=pInfo->nMilliSecond;

pInfo->pctrlProgress->SetPos(i);

Sleep(nTemp);
}
return 0;
}

  顺便补充一点,如果你在void CMultiThread3Dlg::OnStart() 函数中添加/* */语句,编译运行你就会发现进度条不进行刷新,主线程也停止了反应。什么原因呢?这是因为WaitForSingleObject函数等待子线程(ThreadFunc)结束时,导致了线程死锁。因为WaitForSingleObject函数会将主线程挂起(任何消息都得不到处理),而子线程 ThreadFunc正在设置进度条,一直在等待主线程将刷新消息处理完毕返回才会检测通知事件。这样两个线程都在互相等待,死锁发生了,编程时应注意避免。
例程4 MultiThread4
该例程测试在Windows下最多可创建线程的数目。

建立一个基于对话框的工程MultiThread4,在对话框IDD_MULTITHREAD4_DIALOG中加入一个按钮IDC_TEST和一个编辑框IDC_COUNT,按钮标题为“测试” , 编辑框属性选中Read-only;
在MultiThread4Dlg.cpp文件中进行如下操作:

添加公共变量volatile BOOL m_bRunFlag=TRUE;
该变量表示是否还能继续创建线程。

添加线程函数:

DWORD WINAPI threadFunc(LPVOID threadNum)
{
while(m_bRunFlag)
{
   Sleep(3000);
}
return 0;
}

只要 m_bRunFlag 变量为TRUE,线程一直运行。

双击按钮IDC_TEST,添加其响应消息函数:void CMultiThread4Dlg::OnTest()
{
DWORD threadID;
GetDlgItem(IDC_TEST)->EnableWindow(FALSE);
long nCount=0;
while(m_bRunFlag)
{
   if(CreateThread(NULL,0,threadFunc,NULL,0,&threadID)==NULL)
   {
    m_bRunFlag=FALSE;
    break;
   }
   else
   {
    nCount++;
   }
}
    //不断创建线程,直到再不能创建为止
m_nCount=nCount;
UpdateData(FALSE);
Sleep(5000);
    //延时5秒,等待所有创建的线程结束
GetDlgItem(IDC_TEST)->EnableWindow(TRUE);
     m_bRunFlag=TRUE;
}

五、MFC对多线程编程的支持

  MFC中有两类线程,分别称之为工作者线程和用户界面线程。二者的主要区别在于工作者线程没有消息循环,而用户界面线程有自己的消息队列和消息循环。
  工作者线程没有消息机制,通常用来执行后台计算和维护任务,如冗长的计算过程,打印机的后台打印等。用户界面线程一般用于处理独立于其他线程执行之外的用户输入,响应用户及系统所产生的事件和消息等。但对于Win32的API编程而言,这两种线程是没有区别的,它们都只需线程的启动地址即可启动线程来执行任务。
  在MFC中,一般用全局函数AfxBeginThread()来创建并初始化一个线程的运行,该函数有两种重载形式,分别用于创建工作者线程和用户界面线程。两种重载函数原型和参数分别说明如下:

(1) CWinThread* AfxBeginThread(AFX_THREADPROC pfnThreadProc,
                       LPVOID pParam,
                       nPriority=THREAD_PRIORITY_NORMAL,
                       UINT nStackSize=0,
                       DWORD dwCreateFlags=0,
                       LPSECURITY_ATTRIBUTES lpSecurityAttrs=NULL);

PfnThreadProc:指向工作者线程的执行函数的指针,线程函数原型必须声明如下: UINT ExecutingFunction(LPVOID pParam);

请注意,ExecutingFunction()应返回一个UINT类型的值,用以指明该函数结束的原因。一般情况下,返回0表明执行成功。
pParam:传递给线程函数的一个32位参数,执行函数将用某种方式解释该值。它可以是数值,或是指向一个结构的指针,甚至可以被忽略;
nPriority:线程的优先级。如果为0,则线程与其父线程具有相同的优先级;
nStackSize:线程为自己分配堆栈的大小,其单位为字节。如果nStackSize被设为0,则线程的堆栈被设置成与父线程堆栈相同大小;
dwCreateFlags:如果为0,则线程在创建后立刻开始执行。如果为CREATE_SUSPEND,则线程在创建后立刻被挂起;
lpSecurityAttrs:线程的安全属性指针,一般为NULL;
(2) CWinThread* AfxBeginThread(CRuntimeClass* pThreadClass,
                       int nPriority=THREAD_PRIORITY_NORMAL,
                       UINT nStackSize=0,
                       DWORD dwCreateFlags=0,
                       LPSECURITY_ATTRIBUTES lpSecurityAttrs=NULL);

  pThreadClass 是指向 CWinThread 的一个导出类的运行时类对象的指针,该导出类定义了被创建的用户界面线程的启动、退出等;其它参数的意义同形式1。使用函数的这个原型生成的线程也有消息机制,在以后的例子中我们将发现同主线程的机制几乎一样。

下面我们对CWinThread类的数据成员及常用函数进行简要说明。

m_hThread:当前线程的句柄;
m_nThreadID:当前线程的ID;
m_pMainWnd:指向应用程序主窗口的指针
BOOL CWinThread::CreateThread(DWORD dwCreateFlags=0,
UINT nStackSize=0,
LPSECURITY_ATTRIBUTES lpSecurityAttrs=NULL);

  该函数中的dwCreateFlags、nStackSize、lpSecurityAttrs参数和API函数CreateThread中的对应参数有相同含义,该函数执行成功,返回非0值,否则返回0。
  一般情况下,调用AfxBeginThread()来一次性地创建并启动一个线程,但是也可以通过两步法来创建线程:首先创建CWinThread类的一个对象,然后调用该对象的成员函数CreateThread()来启动该线程。

virtual BOOL CWinThread::InitInstance();

  重载该函数以控制用户界面线程实例的初始化。初始化成功则返回非0值,否则返回0。用户界面线程经常重载该函数,工作者线程一般不使用InitInstance()。 virtual int CWinThread::ExitInstance();

  在线程终结前重载该函数进行一些必要的清理工作。该函数返回线程的退出码,0表示执行成功,非0值用来标识各种错误。同InitInstance()成员函数一样,该函数也只适用于用户界面线程。
六、MFC多线程编程实例

  在Visual C++ 6.0编程环境中,我们既可以编写C风格的32位Win32应用程序,也可以利用MFC类库编写C++风格的应用程序,二者各有其优缺点。基于Win32 的应用程序执行代码小巧,运行效率高,但要求程序员编写的代码较多,且需要管理系统提供给程序的所有资源;而基于MFC类库的应用程序可以快速建立起应用程序,类库为程序员提供了大量的封装类,而且Developer Studio为程序员提供了一些工具来管理用户源程序,其缺点是类库代码很庞大。由于使用类库所带来的快速、简捷和功能强大等优越性,因此除非有特殊的需要,否则Visual C++推荐使用MFC类库进行程序开发。

我们知道,MFC中的线程分为两种:用户界面线程和工作者线程。我们将分别举例说明。

用 MFC 类库编程实现工作者线程

例程5 MultiThread5

为了与Win32 API对照,我们使用MFC 类库编程实现例程3 MultiThread3。

建立一个基于对话框的工程MultiThread5,在对话框IDD_MULTITHREAD5_DIALOG中加入一个编辑框IDC_MILLISECOND,一个按钮IDC_START,标题为“开始” ,一个进度条IDC_PROGRESS1;
打开ClassWizard,为编辑框IDC_MILLISECOND添加int型变量m_nMilliSecond,为进度条IDC_PROGRESS1添加CProgressCtrl型变量m_ctrlProgress;
在MultiThread5Dlg.h文件中添加一个结构的定义: struct threadInfo
{
UINT nMilliSecond;
CProgressCtrl* pctrlProgress;
};

线程函数的声明:UINT ThreadFunc(LPVOID lpParam);
注意,二者应在类CMultiThread5Dlg的外部。

在类CMultiThread5Dlg内部添加protected型变量:

CWinThread* pThread;
在MultiThread5Dlg.cpp文件中进行如下操作:定义公共变量:threadInfo Info;
双击按钮IDC_START,添加相应消息处理函数:

void CMultiThread5Dlg::OnStart()
{
// TODO: Add your control notification handler code here

UpdateData(TRUE);
Info.nMilliSecond=m_nMilliSecond;
Info.pctrlProgress=&m_ctrlProgress;

pThread=AfxBeginThread(ThreadFunc,
   &Info);
}

在函数BOOL CMultiThread3Dlg::OnInitDialog()中添加语句: {
……

// TODO: Add extra initialization here
m_ctrlProgress.SetRange(0,99);
m_nMilliSecond=10;
UpdateData(FALSE);
return TRUE;   // return TRUE   unless you set the focus to a control
}

添加线程处理函数: UINT ThreadFunc(LPVOID lpParam)
{
threadInfo* pInfo=(threadInfo*)lpParam;
for(int i=0;i<100;i++)
{
   int nTemp=pInfo->nMilliSecond;

pInfo->pctrlProgress->SetPos(i);

Sleep(nTemp);
}
return 0;
}
用 MFC 类库编程实现用户界面线程

创建用户界面线程的步骤:

使用ClassWizard创建类CWinThread的派生类(以CUIThread类为例) class CUIThread : public CWinThread
{
DECLARE_DYNCREATE(CUIThread)
protected:
CUIThread();            // protected constructor used by dynamic creation

// Attributes
public:

// Operations
public:

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CUIThread)
public:
virtual BOOL InitInstance();
virtual int ExitInstance();
//}}AFX_VIRTUAL

// Implementation
protected:
virtual ~CUIThread();

// Generated message map functions
//{{AFX_MSG(CUIThread)
   // NOTE - the ClassWizard will add and remove member functions here.
//}}AFX_MSG

DECLARE_MESSAGE_MAP()
};

重载函数InitInstance()和ExitInstance()。 BOOL CUIThread::InitInstance()
{
CFrameWnd* wnd=new CFrameWnd;
wnd->Create(NULL,"UI Thread Window");
wnd->ShowWindow(SW_SHOW);
wnd->UpdateWindow();
m_pMainWnd=wnd;
return TRUE;
}

创建新的用户界面线程 void CUIThreadDlg::OnButton1()
{
CUIThread* pThread=new CUIThread();
pThread->CreateThread();
}

请注意以下两点:

A、在UIThreadDlg.cpp的开头加入语句: #include "UIThread.h"
B、把UIThread.h中类CUIThread()的构造函数的特性由 protected 改为 public。
  用户界面线程的执行次序与应用程序主线程相同,首先调用用户界面线程类的InitInstance()函数,如果返回TRUE,继续调用线程的Run ()函数,该函数的作用是运行一个标准的消息循环,并且当收到WM_QUIT消息后中断,在消息循环过程中,Run()函数检测到线程空闲时(没有消息),也将调用OnIdle()函数,最后Run()函数返回,MFC调用ExitInstance()函数清理资源。
  你可以创建一个没有界面而有消息循环的线程,例如:你可以从CWinThread派生一个新类,在InitInstance函数中完成某项任务并返回FALSE,这表示仅执行 InitInstance函数中的任务而不执行消息循环,你可以通过这种方法,完成一个工作者线程的功能。

例程6 MultiThread6

建立一个基于对话框的工程MultiThread6,在对话框IDD_MULTITHREAD6_DIALOG中加入一个按钮IDC_UI_THREAD,标题为“用户界面线程”
右击工程并选中“New Class…”为工程添加基类为CWinThread派生线程类CUIThread。
给工程添加新对话框IDD_UITHREADDLG,标题为“线程对话框”。
为对话框IDD_UITHREADDLG创建一个基于CDialog的类CUIThreadDlg。使用ClassWizard为CUIThreadDlg 类添加WM_LBUTTONDOWN消息的处理函数OnLButtonDown,如下: void CUIThreadDlg::OnLButtonDown(UINT nFlags, CPoint point)
{
AfxMessageBox("You Clicked The Left Button!");
CDialog::OnLButtonDown(nFlags, point);
}
在UIThread.h中添加 #include "UIThreadDlg.h"
并在CUIThread类中添加protected变量CUIThread m_dlg: class CUIThread : public CWinThread
{
DECLARE_DYNCREATE(CUIThread)
protected:
CUIThread();            // protected constructor used by dynamic creation

// Attributes
public:

// Operations
public:

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CUIThread)
public:
virtual BOOL InitInstance();
virtual int ExitInstance();
//}}AFX_VIRTUAL

// Implementation
protected:
CUIThreadDlg m_dlg;
virtual ~CUIThread();

// Generated message map functions
//{{AFX_MSG(CUIThread)
   // NOTE - the ClassWizard will add and remove member functions here.
//}}AFX_MSG

DECLARE_MESSAGE_MAP()
};

分别重载InitInstance()函数和ExitInstance()函数: BOOL CUIThread::InitInstance()
{
m_dlg.Create(IDD_UITHREADDLG);
m_dlg.ShowWindow(SW_SHOW);
m_pMainWnd=&m_dlg;
return TRUE;
}

int CUIThread::ExitInstance()
{
m_dlg.DestroyWindow();
return CWinThread::ExitInstance();
}

双击按钮IDC_UI_THREAD,添加消息响应函数: void CMultiThread6Dlg::OnUiThread()
{
CWinThread *pThread=AfxBeginThread(RUNTIME_CLASS(CUIThread));
}

并在MultiThread6Dlg.cpp的开头添加: #include "UIThread.h"

  好了,编译并运行程序吧。每单击一次“用户界面线程”按钮,都会弹出一个线程对话框,在任何一个线程对话框内按下鼠标左键,都会弹出一个消息框。
七、线程间通讯

  一般而言,应用程序中的一个次要线程总是为主线程执行特定的任务,这样,主线程和次要线程间必定有一个信息传递的渠道,也就是主线程和次要线程间要进行通信。这种线程间的通信不但是难以避免的,而且在多线程编程中也是复杂和频繁的,下面将进行说明。

使用全局变量进行通信

由于属于同一个进程的各个线程共享操作系统分配该进程的资源,故解决线程间通信最简单的一种方法是使用全局变量。对于标准类型的全局变量,我们建议使用 volatile 修饰符,它告诉编译器无需对该变量作任何的优化,即无需将它放到一个寄存器中,并且该值可被外部改变。如果线程间所需传递的信息较复杂,我们可以定义一个结构,通过传递指向该结构的指针进行传递信息。
 
使用自定义消息

我们可以在一个线程的执行函数中向另一个线程发送自定义的消息来达到通信的目的。一个线程向另外一个线程发送消息是通过操作系统实现的。利用Windows操作系统的消息驱动机制,当一个线程发出一条消息时,操作系统首先接收到该消息,然后把该消息转发给目标线程,接收消息的线程必须已经建立了消息循环。
例程7 MultiThread7

  该例程演示了如何使用自定义消息进行线程间通信。首先,主线程向CCalculateThread线程发送消息WM_CALCULATE, CCalculateThread线程收到消息后进行计算,再向主线程发送WM_DISPLAY消息,主线程收到该消息后显示计算结果。

建立一个基于对话框的工程MultiThread7,在对话框IDD_MULTITHREAD7_DIALOG中加入三个单选按钮IDC_RADIO1, IDC_RADIO2,IDC_RADIO3,标题分别为1+2+3+4+......+10,1+2+3+4+......+50,1+2+3+4 +......+100。加入按钮IDC_SUM,标题为“求和”。加入标签框IDC_STATUS,属性选中“边框”;
在MultiThread7Dlg.h中定义如下变量: protected:
int nAddend;

代表加数的大小。

分别双击三个单选按钮,添加消息响应函数:void CMultiThread7Dlg::OnRadio1()
{
nAddend=10;
}

void CMultiThread7Dlg::OnRadio2()
{
nAddend=50;

}

void CMultiThread7Dlg::OnRadio3()
{
nAddend=100;

}
并在OnInitDialog函数中完成相应的初始化工作: BOOL CMultiThread7Dlg::OnInitDialog()
{
……
((CButton*)GetDlgItem(IDC_RADIO1))->SetCheck(TRUE);
nAddend=10;
……

在MultiThread7Dlg.h中添加: #include "CalculateThread.h"
#define WM_DISPLAY WM_USER+2
class CMultiThread7Dlg : public CDialog
{
// Construction
public:
CMultiThread7Dlg(CWnd* pParent = NULL); // standard constructor
CCalculateThread* m_pCalculateThread;
……
protected:
int nAddend;
LRESULT OnDisplay(WPARAM wParam,LPARAM lParam);
……

在MultiThread7Dlg.cpp中添加: BEGIN_MESSAGE_MAP(CMultiThread7Dlg, CDialog)
……
ON_MESSAGE(WM_DISPLAY,OnDisplay)
END_MESSAGE_MAP()

LRESULT CMultiThread7Dlg::OnDisplay(WPARAM wParam,LPARAM lParam)
{
int nTemp=(int)wParam;
SetDlgItemInt(IDC_STATUS,nTemp,FALSE);

return 0;

}
以上代码使得主线程类CMultiThread7Dlg可以处理WM_DISPLAY消息,即在IDC_STATUS标签框中显示计算结果。
双击按钮IDC_SUM,添加消息响应函数: void CMultiThread7Dlg::OnSum()
{
m_pCalculateThread=
   (CCalculateThread*)AfxBeginThread(RUNTIME_CLASS(CCalculateThread));

Sleep(500);

m_pCalculateThread->PostThreadMessage(WM_CALCULATE,nAddend,NULL);
}
OnSum()函数的作用是建立CalculateThread线程,延时给该线程发送WM_CALCULATE消息。
右击工程并选中“New Class…”为工程添加基类为 CWinThread 派生线程类 CCalculateThread。

在文件CalculateThread.h 中添加 #define WM_CALCULATE WM_USER+1
class CCalculateThread : public CWinThread
{
……
protected:
afx_msg LONG OnCalculate(UINT wParam,LONG lParam);
……

在文件CalculateThread.cpp中添加 LONG CCalculateThread::OnCalculate(UINT wParam,LONG lParam)
{
int nTmpt=0;
for(int i=0;i<=(int)wParam;i++)
{
   nTmpt=nTmpt+i;
}

Sleep(500);
     ::PostMessage((HWND)(GetMainWnd()->GetSafeHwnd()),WM_DISPLAY,nTmpt,NULL);

return 0;
}
BEGIN_MESSAGE_MAP(CCalculateThread, CWinThread)
//{{AFX_MSG_MAP(CCalculateThread)
   // NOTE - the ClassWizard will add and remove mapping macros here.
//}}AFX_MSG_MAP
ON_THREAD_MESSAGE(WM_CALCULATE,OnCalculate)
//和主线程对比,注意它们的区别
END_MESSAGE_MAP()

在CalculateThread.cpp文件的开头添加一条: #include "MultiThread7Dlg.h"

  以上代码为 CCalculateThread 类添加了 WM_CALCULATE 消息,消息的响应函数是 OnCalculate,其功能是根据参数 wParam 的值,进行累加,累加结果在临时变量nTmpt中,延时0.5秒,向主线程发送WM_DISPLAY消息进行显示,nTmpt作为参数传递。
编译并运行该例程,体会如何在线程间传递消息。
八、线程的同步

  虽然多线程能给我们带来好处,但是也有不少问题需要解决。例如,对于像磁盘驱动器这样独占性系统资源,由于线程可以执行进程的任何代码段,且线程的运行是由系统调度自动完成的,具有一定的不确定性,因此就有可能出现两个线程同时对磁盘驱动器进行操作,从而出现操作错误;又例如,对于银行系统的计算机来说,可能使用一个线程来更新其用户数据库,而用另外一个线程来读取数据库以响应储户的需要,极有可能读数据库的线程读取的是未完全更新的数据库,因为可能在读的时候只有一部分数据被更新过。

  使隶属于同一进程的各线程协调一致地工作称为线程的同步。MFC提供了多种同步对象,下面我们只介绍最常用的四种:

临界区(CCriticalSection)
事件(CEvent)
互斥量(CMutex)
信号量(CSemaphore)
 
通过这些类,我们可以比较容易地做到线程同步。

A、使用 CCriticalSection 类

  当多个线程访问一个独占性共享资源时,可以使用“临界区”对象。任一时刻只有一个线程可以拥有临界区对象,拥有临界区的线程可以访问被保护起来的资源或代码段,其他希望进入临界区的线程将被挂起等待,直到拥有临界区的线程放弃临界区时为止,这样就保证了不会在同一时刻出现多个线程访问共享资源。

CCriticalSection类的用法非常简单,步骤如下:
 

定义CCriticalSection类的一个全局对象(以使各个线程均能访问),如CCriticalSection critical_section;
在访问需要保护的资源或代码之前,调用CCriticalSection类的成员Lock()获得临界区对象: critical_section.Lock();

在线程中调用该函数来使线程获得它所请求的临界区。如果此时没有其它线程占有临界区对象,则调用Lock()的线程获得临界区;否则,线程将被挂起,并放入到一个系统队列中等待,直到当前拥有临界区的线程释放了临界区时为止。
访问临界区完毕后,使用CCriticalSection的成员函数Unlock()来释放临界区:critical_section.Unlock();

再通俗一点讲,就是线程A执行到critical_section.Lock();语句时,如果其它线程(B)正在执行 critical_section.Lock();语句后且critical_section. Unlock();语句前的语句时,线程A就会等待,直到线程B执行完critical_section. Unlock();语句,线程A才会继续执行。
下面再通过一个实例进行演示说明。

例程8 MultiThread8

建立一个基于对话框的工程MultiThread8,在对话框IDD_MULTITHREAD8_DIALOG中加入两个按钮和两个编辑框控件,两个按钮的 ID分别为IDC_WRITEW和IDC_WRITED,标题分别为“写‘W’”和“写‘D’”;两个编辑框的ID分别为IDC_W和IDC_D,属性都选中Read-only;
在MultiThread8Dlg.h文件中声明两个线程函数: UINT WriteW(LPVOID pParam);
UINT WriteD(LPVOID pParam);

使用ClassWizard分别给IDC_W和IDC_D添加CEdit类变量m_ctrlW和m_ctrlD;
在MultiThread8Dlg.cpp文件中添加如下内容:

为了文件中能够正确使用同步类,在文件开头添加:#include "afxmt.h"

定义临界区和一个字符数组,为了能够在不同线程间使用,定义为全局变量:CCriticalSection critical_section;
char g_Array[10];

添加线程函数:UINT WriteW(LPVOID pParam)
{
CEdit *pEdit=(CEdit*)pParam;
pEdit->SetWindowText("");
critical_section.Lock();
//锁定临界区,其它线程遇到critical_section.Lock();语句时要等待
//直至执行critical_section.Unlock();语句
for(int i=0;i<10;i++)
{
   g_Array[i]=''W'';
      pEdit->SetWindowText(g_Array);
   Sleep(1000);
}
critical_section.Unlock();
return 0;

}

UINT WriteD(LPVOID pParam)
{
CEdit *pEdit=(CEdit*)pParam;
pEdit->SetWindowText("");
critical_section.Lock();
//锁定临界区,其它线程遇到critical_section.Lock();语句时要等待
//直至执行critical_section.Unlock();语句
for(int i=0;i<10;i++)
{
   g_Array[i]=''D'';
      pEdit->SetWindowText(g_Array);
   Sleep(1000);
}
critical_section.Unlock();
return 0;

}
分别双击按钮IDC_WRITEW和IDC_WRITED,添加其响应函数: void CMultiThread8Dlg::OnWritew()
{
CWinThread *pWriteW=AfxBeginThread(WriteW,
   &m_ctrlW,
   THREAD_PRIORITY_NORMAL,
   0,
   CREATE_SUSPENDED);
pWriteW->ResumeThread();
}

void CMultiThread8Dlg::OnWrited()
{
CWinThread *pWriteD=AfxBeginThread(WriteD,
   &m_ctrlD,
   THREAD_PRIORITY_NORMAL,
   0,
   CREATE_SUSPENDED);
pWriteD->ResumeThread();

}
由于代码较简单,不再详述。编译、运行该例程,您可以连续点击两个按钮,观察体会临界类的作用。
B、使用 CEvent 类

  CEvent 类提供了对事件的支持。事件是一个允许一个线程在某种情况发生时,唤醒另外一个线程的同步对象。例如在某些网络应用程序中,一个线程(记为A)负责监听通讯端口,另外一个线程(记为B)负责更新用户数据。通过使用CEvent 类,线程A可以通知线程B何时更新用户数据。每一个CEvent 对象可以有两种状态:有信号状态和无信号状态。线程监视位于其中的CEvent 类对象的状态,并在相应的时候采取相应的操作。
  在MFC中, CEvent 类对象有两种类型:人工事件和自动事件。一个自动CEvent 对象在被至少一个线程释放后会自动返回到无信号状态;而人工事件对象获得信号后,释放可利用线程,但直到调用成员函数ReSetEvent()才将其设置为无信号状态。在创建CEvent 类的对象时,默认创建的是自动事件。 CEvent 类的各成员函数的原型和参数说明如下:

1、CEvent(BOOL bInitiallyOwn=FALSE,
           BOOL bManualReset=FALSE,
           LPCTSTR lpszName=NULL,
           LPSECURITY_ATTRIBUTES lpsaAttribute=NULL);

bInitiallyOwn:指定事件对象初始化状态,TRUE为有信号,FALSE为无信号;
bManualReset:指定要创建的事件是属于人工事件还是自动事件。TRUE为人工事件,FALSE为自动事件;
后两个参数一般设为NULL,在此不作过多说明。
2、BOOL CEvent::SetEvent();

  将 CEvent 类对象的状态设置为有信号状态。如果事件是人工事件,则 CEvent 类对象保持为有信号状态,直到调用成员函数ResetEvent()将 其重新设为无信号状态时为止。如果CEvent 类对象为自动事件,则在SetEvent()将事件设置为有信号状态后,CEvent 类对象由系统自动重置为无信号状态。

如果该函数执行成功,则返回非零值,否则返回零。 3、BOOL CEvent::ResetEvent();
  该函数将事件的状态设置为无信号状态,并保持该状态直至SetEvent()被调用时为止。由于自动事件是由系统自动重置,故自动事件不需要调用该函数。如果该函数执行成功,返回非零值,否则返回零。我们一般通过调用WaitForSingleObject函数来监视事件状态。前面我们已经介绍了该函数。由于语言描述的原因,CEvent 类的理解确实有些难度,但您只要通过仔细玩味下面例程,多看几遍就可理解。
例程9 MultiThread9

建立一个基于对话框的工程MultiThread9,在对话框IDD_MULTITHREAD9_DIALOG中加入一个按钮和两个编辑框控件,按钮的ID 为IDC_WRITEW,标题为“写‘W’”;两个编辑框的ID分别为IDC_W和IDC_D,属性都选中Read-only;
在MultiThread9Dlg.h文件中声明两个线程函数: UINT WriteW(LPVOID pParam);
UINT WriteD(LPVOID pParam);

使用ClassWizard分别给IDC_W和IDC_D添加CEdit类变量m_ctrlW和m_ctrlD;
在MultiThread9Dlg.cpp文件中添加如下内容:
为了文件中能够正确使用同步类,在文件开头添加

#include "afxmt.h"

定义事件对象和一个字符数组,为了能够在不同线程间使用,定义为全局变量。 CEvent eventWriteD;
char g_Array[10];

添加线程函数: UINT WriteW(LPVOID pParam)
{
CEdit *pEdit=(CEdit*)pParam;
pEdit->SetWindowText("");
for(int i=0;i<10;i++)
{
   g_Array[i]=''W'';
      pEdit->SetWindowText(g_Array);
   Sleep(1000);
}
eventWriteD.SetEvent();
return 0;

}
UINT WriteD(LPVOID pParam)
{
CEdit *pEdit=(CEdit*)pParam;
pEdit->SetWindowText("");
WaitForSingleObject(eventWriteD.m_hObject,INFINITE);
for(int i=0;i<10;i++)
{
   g_Array[i]=''D'';
      pEdit->SetWindowText(g_Array);
   Sleep(1000);
}
return 0;

}

  仔细分析这两个线程函数, 您就会正确理解CEvent 类。线程WriteD执行到 WaitForSingleObject(eventWriteD.m_hObject,INFINITE);处等待,直到事件eventWriteD为有信号该线程才往下执行,因为eventWriteD对象是自动事件,则当WaitForSingleObject()返回时,系统自动把 eventWriteD对象重置为无信号状态。
双击按钮IDC_WRITEW,添加其响应函数: void CMultiThread9Dlg::OnWritew()
{
CWinThread *pWriteW=AfxBeginThread(WriteW,
   &m_ctrlW,
   THREAD_PRIORITY_NORMAL,
   0,
   CREATE_SUSPENDED);
pWriteW->ResumeThread();

CWinThread *pWriteD=AfxBeginThread(WriteD,
   &m_ctrlD,
   THREAD_PRIORITY_NORMAL,
   0,
   CREATE_SUSPENDED);
pWriteD->ResumeThread();

}
编译并运行程序,单击“写‘W’”按钮,体会事件对象的作用。
C、使用CMutex 类

  互斥对象与临界区对象很像.互斥对象与临界区对象的不同在于:互斥对象可以在进程间使用,而临界区对象只能在同一进程的各线程间使用。当然,互斥对象也可以用于同一进程的各个线程间,但是在这种情况下,使用临界区会更节省系统资源,更有效率。

D、使用CSemaphore 类

  当需要一个计数器来限制可以使用某个线程的数目时,可以使用“信号量”对象。CSemaphore 类的对象保存了对当前访问某一指定资源的线程的计数值,该计数值是当前还可以使用该资源的线程的数目。如果这个计数达到了零,则所有对这个 CSemaphore 类对象所控制的资源的访问尝试都被放入到一个队列中等待,直到超时或计数值不为零时为止。一个线程被释放已访问了被保护的资源时,计数值减1;一个线程完成了对被控共享资源的访问时,计数值增1。这个被CSemaphore 类对象所控制的资源可以同时接受访问的最大线程数在该对象的构建函数中指定。

CSemaphore 类的构造函数原型及参数说明如下:

CSemaphore (LONG lInitialCount=1,
             LONG lMaxCount=1,
             LPCTSTR pstrName=NULL,
             LPSECURITY_ATTRIBUTES lpsaAttributes=NULL);

lInitialCount:信号量对象的初始计数值,即可访问线程数目的初始值;
lMaxCount:信号量对象计数值的最大值,该参数决定了同一时刻可访问由信号量保护的资源的线程最大数目;
后两个参数在同一进程中使用一般为NULL,不作过多讨论;
  在用CSemaphore 类的构造函数创建信号量对象时要同时指出允许的最大资源计数和当前可用资源计数。一般是将当前可用资源计数设置为最大资源计数,每增加一个线程对共享资源的访问,当前可用资源计数就会减1,只要当前可用资源计数是大于0的,就可以发出信号量信号。但是当前可用计数减小到0时,则说明当前占用资源的线程数已经达到了所允许的最大数目,不能再允许其它线程的进入,此时的信号量信号将无法发出。线程在处理完共享资源后,应在离开的同时通过 ReleaseSemaphore()函数将当前可用资源数加1。

下面给出一个简单实例来说明 CSemaphore 类的用法。

例程10 MultiThread10

建立一个基于对话框的工程MultiThread10,在对话框IDD_MULTITHREAD10_DIALOG中加入一个按钮和三个编辑框控件,按钮的 ID为IDC_START,标题为“同时写‘A’、‘B’、‘C’”;三个编辑框的ID分别为IDC_A、IDC_B和IDC_C,属性都选中Read- only;
在MultiThread10Dlg.h文件中声明两个线程函数: UINT WriteA(LPVOID pParam);
UINT WriteB(LPVOID pParam);
UINT WriteC(LPVOID pParam);
使用ClassWizard分别给IDC_A、IDC_B和IDC_C添加CEdit类变量m_ctrlA、m_ctrlB和m_ctrlC;
在MultiThread10Dlg.cpp文件中添加如下内容:
为了文件中能够正确使用同步类,在文件开头添加:

#include "afxmt.h"

定义信号量对象和一个字符数组,为了能够在不同线程间使用,定义为全局变量:CSemaphore semaphoreWrite(2,2); //资源最多访问线程2个,当前可访问线程数2个
char g_Array[10];
添加三个线程函数:

UINT WriteA(LPVOID pParam)
{
CEdit *pEdit=(CEdit*)pParam;
pEdit->SetWindowText("");
WaitForSingleObject(semaphoreWrite.m_hObject,INFINITE);
CString str;
for(int i=0;i<10;i++)
{
         pEdit->GetWindowText(str);
   g_Array[i]=''A'';
   str=str+g_Array[i];
      pEdit->SetWindowText(str);
   Sleep(1000);
}
ReleaseSemaphore(semaphoreWrite.m_hObject,1,NULL);
return 0;

}
UINT WriteB(LPVOID pParam)
{
CEdit *pEdit=(CEdit*)pParam;
pEdit->SetWindowText("");
WaitForSingleObject(semaphoreWrite.m_hObject,INFINITE);
CString str;
for(int i=0;i<10;i++)
{

pEdit->GetWindowText(str);
   g_Array[i]=''B'';
   str=str+g_Array[i];
      pEdit->SetWindowText(str);
   Sleep(1000);
}
ReleaseSemaphore(semaphoreWrite.m_hObject,1,NULL);
return 0;

}
UINT WriteC(LPVOID pParam)
{
CEdit *pEdit=(CEdit*)pParam;
pEdit->SetWindowText("");
WaitForSingleObject(semaphoreWrite.m_hObject,INFINITE);
for(int i=0;i<10;i++)
{
   g_Array[i]=''C'';
      pEdit->SetWindowText(g_Array);
   Sleep(1000);
}
ReleaseSemaphore(semaphoreWrite.m_hObject,1,NULL);
return 0;

}

这三个线程函数不再多说。在信号量对象有信号的状态下,线程执行到WaitForSingleObject语句处继续执行,同时可用线程数减1;若线程执行到WaitForSingleObject语句时信号量对象无信号,线程就在这里等待,直到信号量对象有信号线程才往下执行。
双击按钮IDC_START,添加其响应函数: void CMultiThread10Dlg::OnStart()
{
CWinThread *pWriteA=AfxBeginThread(WriteA,
   &m_ctrlA,
   THREAD_PRIORITY_NORMAL,
   0,
   CREATE_SUSPENDED);
pWriteA->ResumeThread();

CWinThread *pWriteB=AfxBeginThread(WriteB,
   &m_ctrlB,
   THREAD_PRIORITY_NORMAL,
   0,
   CREATE_SUSPENDED);
pWriteB->ResumeThread();

CWinThread *pWriteC=AfxBeginThread(WriteC,
   &m_ctrlC,
   THREAD_PRIORITY_NORMAL,
   0,
   CREATE_SUSPENDED);
pWriteC->ResumeThread();

}

VC++ MFC 多线程及线程同步(详细、全面总结!)相关推荐

  1. MFC 多线程及线程同步

    一.MFC对多线程编程的支持 MFC中有两类线程,分别称之为工作者线程和用户界面线程.二者的主要区别在于工作者线程没有消息循环,而用户界面线程有自己的消息队列和消息循环. 工作者线程没有消息机制,通常 ...

  2. 3、Linux多线程,线程同步(转)

    3.Linux多线程,线程同步 5)线程私有数据 进程内的所有线程共享进程的数据空间,因此全局变量为所有线程所共有.但有时线程也需要保存自己的私有数据,这时可以创建线程私有数据(Thread-spec ...

  3. C#笔记20:多线程之线程同步中的信号量AutoResetEvent和ManualResetEvent

    C#笔记20:多线程之线程同步中的信号量AutoResetEvent和ManualResetEvent 本章概要: 1:终止状态和非终止状态 2:AutoResetEvent和ManualResetE ...

  4. Java多线程之线程同步机制(锁,线程池等等)

    Java多线程之线程同步机制 一.概念 1.并发 2.起因 3.缺点 二.三大不安全案例 1.样例一(模拟买票场景) 2.样例二(模拟取钱场景) 3.样例三(模拟集合) 三.同步方法及同步块 1.同步 ...

  5. MFC多线程各种线程用法 .

    一.问题的提出 编写一个耗时的单线程程序: 新建一个基于对话框的应用程序SingleThread,在主对话框IDD_SINGLETHREAD_DIALOG添加一个按钮,ID为 IDC_SLEEP_SI ...

  6. cocos2dx多线程以及线程同步 与 cocos2dx内存管理与多线程问题

    cocos2d-x引擎在内部实现了一个庞大的主循环,每帧之间更新界面,如果耗时的操作放到了主线程中,游戏的界面就会卡,这是不能容忍的,游戏最基本的条件就是流畅性,这就是为什么游戏开发选择C++的原因. ...

  7. 多线程,线程同步,synchronized关键字的用法

    一.什么是多线程 Java多线程实现方式主要有四种:继承Thread类.实现Runnable接口.实现Callable接口通过FutureTask包装器来创建Thread线程.使用ExecutorSe ...

  8. 多线程(6)线程同步

    使用多线程很容易,但是如果多个线程同时访问一个共享资源时而不加以控制,就会导致数据损坏.所以多线程并发时,必须要考虑线程同步(或称线程安全)的问题.  什么是线程同步 多个线程同时访问共享资源时,使多 ...

  9. NET多线程探索-线程同步和通信

    NET中各种线程同步方法 在NET多线程开发中,有时候需要多个线程协调工作,完成这个步骤的过程称为"同步". 使用同步的主要原因: 1.多个线程访问同一个共享资源. 2.多线程写入 ...

最新文章

  1. js 去掉地址栏内参数_JS获取网站地址栏URL中的参数值并转换成json对象
  2. 5G元年的世界电信日,我们的生活将如何被改变?
  3. 关闭子页面刷新父页面,不需要弹出确认窗口
  4. Linux / offsetof 和 container_of
  5. C#跨窗体传值的几种方法分析第三版
  6. 学习 WebService 第五步:在Local创建测试用WebService(WSDL)
  7. 第八届蓝桥杯省赛C/C++本科B组真题解析
  8. 影视】100种说爱你的方式~
  9. MySQL是怎样运行的(实体书扫描+掘金小册)免费下载
  10. python实现爬虫收集图片 花瓣网_利用Python抓取花瓣网美图实例
  11. 解析ISO17799方法
  12. 高中信息技术教资-笔记-存储容量之间的换算关系
  13. html 怎么做图标在圆圈上旋转,纯CSS3图标旋转效果
  14. Gmail配置邮箱客户端
  15. c语言 请编程序将 China 译成密码,分别用putchar和printf函数输出这5个字符
  16. Python之Scikit-Learm
  17. 数据正常运行之后,突然遇见:CiteSpace will re-run the process and keep non-empty intervals only.问题
  18. 打印菱形图案的两种方法
  19. 使用线性回归构建房价预测模型
  20. 一文详解基因组denovo组装原理和实战

热门文章

  1. Unity中玩家的攻击(发射子弹,挥剑)
  2. [4G5G专题-128]:5G培训关键技术篇-1-5G的网络概述
  3. Apache PDFBox 将嵌入文件添加到 PDF 文档
  4. 小图灵少儿编程学习平台使用说明
  5. 打开ftp服务器上的文件夹时发生错误解决方法
  6. Table ‘*.hibernate_sequence‘ doesn‘t exist
  7. 黑马程序员-java就业面试题大全(持续更新)
  8. WinSCP+putty整合基础使用!!!!!!!!!!!!!!!!!!!
  9. Ant Design pro入门教程
  10. windows显示缩略图(重建缩略图)