文章目录

  • 前言
  • 一、LeNet
    • 1. LeNet介绍
    • 2. LeNet核心代码
    • 3. LeNet在MNIST上测试
  • 二、AlexNet
    • 1. AlexNet介绍
    • 2. AlexNet核心代码
    • 3. AlexNet在MNIST上测试
  • 三、VGGNet
    • 1. VGGNet介绍
    • 2. VGGNet核心代码
    • 3. VGGNet在MNIST上测试
  • 四、GoogLeNet
    • 1. GoogLeNet介绍
    • 2. GoogLeNet核心代码
    • 3. GoogLeNet在MNIST上测试
  • 五、ResNet
    • 1. ResNet介绍
    • 2. ResNet核心代码
  • 六、卷积神经网络的一些说明
    • 1. 卷积层输出维度的计算公式
    • 2. 激励层的实践经验

前言

本文主要介绍了一些经典的卷积神经网络模型,包括LeNet、AlexNet、VGGNet、GoogLeNet和ResNet,其中前三个模型属于单分支网络结构,后两个模型属于多分支网络结构。


一、LeNet

1. LeNet介绍

Yann Lecun在1988年提出的LeNet是早期具有代表性的一个卷积神经网络。LeNet-5网络模型已经使用了近些年卷积神经网络中能见到的几乎所有基础操作,包括卷积层、池化层和反向传播训练方法等。
当时Lecun使用该网络模型帮助银行识别文档中的手写数字,输入的图像仅有32像素×32像素大小而且是灰度图像。该模型结构受限于当时的计算能力,不能用来设计为更加复杂的模型,也不能处理更大的图像。

2. LeNet核心代码

LeNet-5网络结构核心代码如下:

import torch.nn as nn
import torch.nn.functional as F#Lenet network
class Net(nn.Module):def __init__(self):super().__init__()self.conv1 = nn.Conv2d(3, 6, 5) #in_channels, out_channels, kernel_size, stride=1 ...self.conv2 = nn.Conv2d(6, 16, 5)self.fc1 = nn.Linear(16 * 5 * 5, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, num_classes)def forward(self, x):x = F.max_pool2d(F.relu(self.conv1(x)), kernel_size=(2, 2))x = F.max_pool2d(F.relu(self.conv2(x)), kernel_size=(2, 2))x = x.view(x.size()[0], -1)x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return x

3. LeNet在MNIST上测试

LeNet在MNIST上测试代码如下:

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optimclass Net(torch.nn.Module):def __init__(self):super().__init__()# batch*1*28*28(每次会送入batch个样本,输入通道数1(黑白图像),图像分辨率是28x28)# 下面的卷积层Conv2d的第一个参数指输入通道数,第二个参数指输出通道数,第三个参数指卷积核的大小self.conv1 = torch.nn.Conv2d(1, 6, 5)  # 输入通道数1,输出通道数6,核的大小5self.conv2 = torch.nn.Conv2d(6, 16, 5)  # 输入通道数6,输出通道数16,核的大小5# 下面的全连接层Linear的第一个参数指输入通道数,第二个参数指输出通道数self.fc1 = torch.nn.Linear(16*4*4, 120)  # 输入通道数是16*4*4,输出通道数是120self.fc2 = torch.nn.Linear(120, 84)  # 输入通道数是120,输出通道数是84,即10分类self.fc3 = torch.nn.Linear(84, 10)  # 输入通道数是84,输出通道数是10,即10分类def forward(self, x):in_size = x.size(0)  # 在本例中in_size=512,也就是BATCH_SIZE的值。输入的x可以看成是512*1*28*28的张量。out = self.conv1(x)  # batch*1*28*28 -> batch*6*24*24(28x28的图像经过一次核为5x5的卷积,输出变为24x24)out = F.relu(out)  # batch*6*24*24(激活函数ReLU不改变形状))out = F.avg_pool2d(out, 2, 2)  # batch*6*24*24 -> batch*6*12*12(2*2的池化层会减半)out = self.conv2(out)  # batch*6*12*12 -> batch*16*8*8(再卷积一次,核的大小是5)out = F.relu(out)  # batch*20*10*10out = F.avg_pool2d(out, 2, 2)  # batch*16*8*8 -> batch*16*4*4(2*2的池化层会减半)out = out.view(in_size, -1)  # batch*16*4*4 -> batch*256(out的第二维是-1,说明是自动推算,本例中第二维是16*4*4)out = self.fc1(out)  # batch*256 -> batch*120out = F.relu(out)  # batch*120out = self.fc2(out)  # batch*120 -> batch*84out = F.relu(out)out = self.fc3(out)  # batch*84 -> batch*10out = F.log_softmax(out, dim=1)  # 计算log(softmax(x))return outdef train(model, device, train_loader, optimizer, epoch):model.train()for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()if (batch_idx + 1) % 30 == 0:print('Train Epoch: {} [{}/{} ({:.4f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.item()))def test(model, device, test_loader):model.eval()correct = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)pred = output.max(1, keepdim=True)[1]  # 找到概率最大的下标correct += pred.eq(target.view_as(pred)).sum().item()print('\nAccuracy: {}/{} ({:.4f}%)\n'.format(correct, len(test_loader.dataset),100. * correct / len(test_loader.dataset)))if __name__ == '__main__':BATCH_SIZE = 512  # 大概需要2G的显存EPOCHS = 10  # 总共训练批次DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])train_dataset = datasets.MNIST(root='../dataset/mnist/',train=True,download=True,transform=transform)train_loader = DataLoader(train_dataset,shuffle=True,batch_size=BATCH_SIZE)test_datasets = datasets.MNIST(root='../dataset/mnist/',train=False,download=True,transform=transform)test_loader = DataLoader(test_datasets,shuffle=False,batch_size=BATCH_SIZE)model = Net().to(DEVICE)criterion = torch.nn.CrossEntropyLoss()optimizer = optim.Adam(model.parameters())for epoch in range(1, EPOCHS + 1):train(model, DEVICE, train_loader, optimizer, epoch)test(model, DEVICE, test_loader)

运行10次后模型精度达到98.58%。


二、AlexNet

1. AlexNet介绍

在LeNet之后,随着计算能力的提升,研究者不断地提升模型的表达能力。最明显的是卷积层数的增加,每一层的内部通道数目也在增加。其中的一个经典网络模型就是2012年ImageNet竞赛的冠军AlexNet。AlexNet凭借深度学习方法打败了以往所有传统的特征算法(包括SIFT),并且准确率大幅提高。
AlexNet成功的另一个原因是ImageNet数据集的出现。在大数据时代,深度模型的学习离不开大量数据的训练,而此前一直没有能够让深度模型充分训练的大规模数据。AlexNet以绝对优势取得2012年ImageNet竞赛冠军后,使得深度学习逐渐成为学术研究热点,卷积神经网络称为计算机视觉任务上的主要模型。

2. AlexNet核心代码

AlexNet-7网络结构核心代码如下:

import torch.nn as nn
import torch.nn.functional as Fclass AlexNet(nn.Module):def __init__(self, num_classes=NUM_CLASSES):super(AlexNet, self).__init__()self.features = nn.Sequential(nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2),nn.Conv2d(64, 192, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2),nn.Conv2d(192, 384, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(384, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(256, 256, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.MaxPool2d(kernel_size=2),)self.classifier = nn.Sequential(nn.Dropout(),nn.Linear(256 * 2 * 2, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(inplace=True),nn.Linear(4096, num_classes),)def forward(self, x):x = self.features(x)x = x.view(x.size(0), 256 * 2 * 2)x = self.classifier(x)return x

3. AlexNet在MNIST上测试

AlexNet在MNIST上测试代码如下:

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optimclass Net(torch.nn.Module):def __init__(self):super().__init__()# batch*1*28*28(每次会送入batch个样本,输入通道数1(黑白图像),图像分辨率是28x28)# 下面的卷积层Conv2d的第一个参数指输入通道数,第二个参数指输出通道数,第三个参数指卷积核的大小self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5, stride=1, padding=2)self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=3, stride=1, padding=1)self.conv3 = torch.nn.Conv2d(20, 40, kernel_size=3, stride=1, padding=1)self.conv4 = torch.nn.Conv2d(40, 40, kernel_size=3, stride=1, padding=1)self.conv5 = torch.nn.Conv2d(40, 20, kernel_size=3, stride=1, padding=1)# 下面的全连接层Linear的第一个参数指输入通道数,第二个参数指输出通道数self.fc1 = torch.nn.Linear(20*7*7, 400)self.fc2 = torch.nn.Linear(400, 100)self.fc3 = torch.nn.Linear(100, 10)self.droupout = torch.nn.Dropout(p=0.5)def forward(self, x):in_size = x.size(0)out = self.conv1(x)out = F.relu(out)out = F.max_pool2d(out, 2, 2)out = self.conv2(out)out = F.relu(out)out = F.max_pool2d(out, 2, 2)out = self.conv3(out)out = F.relu(out)out = self.conv4(out)out = F.relu(out)out = self.conv5(out)out = F.relu(out)out = out.view(in_size, -1)out = self.droupout(out)out = self.fc1(out)out = F.relu(out)out = self.droupout(out)out = self.fc2(out)out = F.relu(out)out = self.fc3(out)out = F.log_softmax(out, dim=1)return outdef train(model, device, train_loader, optimizer, epoch):model.train()for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()if (batch_idx + 1) % 30 == 0:print('Train Epoch: {} [{}/{} ({:.4f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.item()))def test(model, device, test_loader):model.eval()correct = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)pred = output.max(1, keepdim=True)[1]  # 找到概率最大的下标correct += pred.eq(target.view_as(pred)).sum().item()print('\nAccuracy: {}/{} ({:.4f}%)\n'.format(correct, len(test_loader.dataset),100. * correct / len(test_loader.dataset)))if __name__ == '__main__':BATCH_SIZE = 512  # 大概需要2G的显存EPOCHS = 10  # 总共训练批次DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])train_dataset = datasets.MNIST(root='../dataset/mnist/',train=True,download=True,transform=transform)train_loader = DataLoader(train_dataset,shuffle=True,batch_size=BATCH_SIZE)test_datasets = datasets.MNIST(root='../dataset/mnist/',train=False,download=True,transform=transform)test_loader = DataLoader(test_datasets,shuffle=False,batch_size=BATCH_SIZE)model = Net().to(DEVICE)criterion = torch.nn.CrossEntropyLoss()optimizer = optim.Adam(model.parameters())for epoch in range(1, EPOCHS + 1):train(model, DEVICE, train_loader, optimizer, epoch)test(model, DEVICE, test_loader)

运行10次后模型精度达到99.08%。


三、VGGNet

1. VGGNet介绍

Simonyan和Zisserman在2014年的ImageNet竞赛中使用了19层的网络结构VGGNet,比AlexNet的7层网络结构增加两倍多。尽管VGGNet使用了如此多的参数,其依然没有夺得ImageNet竞赛的冠军。但是该网络结构的16层版本在学术界被广泛使用,并在其他如目标检测、目标语义分割等视觉任务上取得了显著的效果。

2. VGGNet核心代码

VGGNet网络结构核心代码如下:

import torch.nn as nn
import torch.nn.functional as Fdef VGGNet():def VGGLayers(configs):channels = 1  # 输入通道数layers = []# 根据配置,将多个VGGBlock串联在一起组成VGGNetfor (N, C) in configs:# 每个block指定N个卷积层,每层通道数是C个for _ in range(N):conv = torch.nn.Conv2d(channels, C, kernel_size=3, padding=1)layers += [conv, torch.nn.ReLU(inplace=True)]channels = Clayers += [torch.nn.MaxPool2d(kernel_size=2, stride=2)]return torch.nn.Sequential(*layers)net = nn.Sequential(VGGLayers(configs=[(2, 64), (2, 128), (3, 256), (3, 512), (3, 512)]),nn.Flatten(),nn.Linear(512*7*7, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(inplace=True),nn.Dropout(),nn.Linear(4096, 1000))return net

3. VGGNet在MNIST上测试

VGGNet在MNIST上测试代码如下:

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optimdef VGGLayers(configs):channels = 1  # 输入通道数layers = []# 根据配置,将多个VGGBlock串联在一起组成VGGNetfor (N, C) in configs:# 每个block指定N个卷积层,每层通道数是C个for _ in range(N):conv = torch.nn.Conv2d(channels, C, kernel_size=3, padding=1)layers += [conv, torch.nn.ReLU(inplace=True)]channels = Clayers += [torch.nn.MaxPool2d(kernel_size=2, stride=2)]return torch.nn.Sequential(*layers)class Net(torch.nn.Module):def __init__(self):super().__init__()# batch*1*28*28(每次会送入batch个样本,输入通道数1(黑白图像),图像分辨率是28x28)# 下面的卷积层Conv2d的第一个参数指输入通道数,第二个参数指输出通道数,第三个参数指卷积核的大小self.VGG = VGGLayers(configs=[(2, 6), (3, 16)])# 下面的全连接层Linear的第一个参数指输入通道数,第二个参数指输出通道数self.fc1 = torch.nn.Linear(16*7*7, 500)self.fc2 = torch.nn.Linear(500, 200)self.fc3 = torch.nn.Linear(200, 10)self.droupout = torch.nn.Dropout(p=0.5)def forward(self, x):in_size = x.size(0)  # 在本例中in_size=512,也就是BATCH_SIZE的值。输入的x可以看成是512*1*28*28的张量。out = self.VGG(x)out = out.view(in_size, -1)out = self.fc1(out)out = F.relu(out)out = self.droupout(out)out = self.fc2(out)out = F.relu(out)out = self.droupout(out)out = self.fc3(out)out = F.log_softmax(out, dim=1)  # 计算log(softmax(x))return outdef train(model, device, train_loader, optimizer, epoch):model.train()for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()if (batch_idx + 1) % 30 == 0:print('Train Epoch: {} [{}/{} ({:.4f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.item()))def test(model, device, test_loader):model.eval()correct = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)pred = output.max(1, keepdim=True)[1]  # 找到概率最大的下标correct += pred.eq(target.view_as(pred)).sum().item()print('\nAccuracy: {}/{} ({:.4f}%)\n'.format(correct, len(test_loader.dataset),100. * correct / len(test_loader.dataset)))if __name__ == '__main__':BATCH_SIZE = 512  # 大概需要2G的显存EPOCHS = 10  # 总共训练批次DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])train_dataset = datasets.MNIST(root='../dataset/mnist/',train=True,download=True,transform=transform)train_loader = DataLoader(train_dataset,shuffle=True,batch_size=BATCH_SIZE)test_datasets = datasets.MNIST(root='../dataset/mnist/',train=False,download=True,transform=transform)test_loader = DataLoader(test_datasets,shuffle=False,batch_size=BATCH_SIZE)model = Net().to(DEVICE)criterion = torch.nn.CrossEntropyLoss()optimizer = optim.Adam(model.parameters())for epoch in range(1, EPOCHS + 1):train(model, DEVICE, train_loader, optimizer, epoch)test(model, DEVICE, test_loader)

运行10次后模型精度达到99.07%。


四、GoogLeNet

1. GoogLeNet介绍

GoogLeNet在2014年的ImageNet竞赛中夺冠并取得了6.7%的Top-5分类错误率。目前在ImageNet数据集上人类识别的Top-5错误率为5.1%,GoogLeNet的结果表明卷积神经网络模型在该数据集上已经逼近人类的识别能力。GoogLeNet网络结构如下图所示:

GoogLeNet网络使用多个基本组成模块组成最终的卷积神经网络,该基本组成模块被GoogLeNet提出者称为Inception模块。GoogLeNet提出者之后又提出多个改进版本的网络结构,主要也是在Inception模块的基础上改进。原始的Inception模块如下图所示,包含几种不同大小的卷积层,即1×1卷积层、3×3卷积层和5×5卷积层,还包括一个3×3的最大池化层。这些卷积层和池化层得到的特征拼接在一起作为最终的输出,同时也是下一个模块的输入。

2. GoogLeNet核心代码

GoogLeNet网络结构核心代码如下:

import torch
import torch.nn as nn
import torch.nn.functional as Ffrom torch.autograd import Variableclass Inception(nn.Module):"""1、输入通过Inception模块的4个分支分别计算,得到的输出宽和高相同(因为使用了padding),而通道不同。2、将4个分支的通道进行简单的合并,即得到Inception模块的输出。3、每次卷积之后都使用批正则化`BatchNorm2d`,并使用relu函数进行激活。"""def __init__(self, in_planes, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes):super(Inception, self).__init__()# 1x1 conv branchself.b1 = nn.Sequential(nn.Conv2d(in_planes, n1x1, kernel_size=1),nn.BatchNorm2d(n1x1),nn.ReLU(True),)# 1x1 conv -> 3x3 conv branchself.b2 = nn.Sequential(nn.Conv2d(in_planes, n3x3red, kernel_size=1),nn.BatchNorm2d(n3x3red),nn.ReLU(True),nn.Conv2d(n3x3red, n3x3, kernel_size=3, padding=1),nn.BatchNorm2d(n3x3),nn.ReLU(True),)# 1x1 conv -> 5x5 conv branchself.b3 = nn.Sequential(nn.Conv2d(in_planes, n5x5red, kernel_size=1),nn.BatchNorm2d(n5x5red),nn.ReLU(True),# 2个3x3卷积代替1个5x5卷积nn.Conv2d(n5x5red, n5x5, kernel_size=3, padding=1),nn.BatchNorm2d(n5x5),nn.ReLU(True),nn.Conv2d(n5x5, n5x5, kernel_size=3, padding=1),nn.BatchNorm2d(n5x5),nn.ReLU(True),)# 3x3 pool -> 1x1 conv branchself.b4 = nn.Sequential(nn.MaxPool2d(3, stride=1, padding=1),nn.Conv2d(in_planes, pool_planes, kernel_size=1),nn.BatchNorm2d(pool_planes),nn.ReLU(True),)def forward(self, x):y1 = self.b1(x)y2 = self.b2(x)y3 = self.b3(x)y4 = self.b4(x)return torch.cat([y1, y2, y3, y4], 1)class GoogLeNet(nn.Module):def __init__(self):super(GoogLeNet, self).__init__()self.pre_layers = nn.Sequential(nn.Conv2d(3, 192, kernel_size=3, padding=1),nn.BatchNorm2d(192),nn.ReLU(True),)self.a3 = Inception(192, 64, 96, 128, 16, 32, 32)self.b3 = Inception(256, 128, 128, 192, 32, 96, 64)self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)self.a4 = Inception(480, 192, 96, 208, 16, 48, 64)self.b4 = Inception(512, 160, 112, 224, 24, 64, 64)self.c4 = Inception(512, 128, 128, 256, 24, 64, 64)self.d4 = Inception(512, 112, 144, 288, 32, 64, 64)self.e4 = Inception(528, 256, 160, 320, 32, 128, 128)self.a5 = Inception(832, 256, 160, 320, 32, 128, 128)self.b5 = Inception(832, 384, 192, 384, 48, 128, 128)self.avgpool = nn.AvgPool2d(8, stride=1)self.linear = nn.Linear(1024, 10)def forward(self, x):out = self.pre_layers(x)out = self.a3(out)out = self.b3(out)out = self.maxpool(out)out = self.a4(out)out = self.b4(out)out = self.c4(out)out = self.d4(out)out = self.e4(out)out = self.maxpool(out)out = self.a5(out)out = self.b5(out)out = self.avgpool(out)out = out.view(out.size(0), -1)out = self.linear(out)return out

3. GoogLeNet在MNIST上测试

GoogLeNet在MNIST上测试代码如下:

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optimclass Inception(torch.nn.Module):#  Inception模块# 输入ninput:输入通道数# 输入n1:第一个1×1卷积核分支的输出通道数# 输入n3pre和n3:第二个3×3卷积核分支的输出通道数# 输入n5pre和n5:第三个5×5卷积核分支的输出通道数# 输入npool:第四个池化层分支的输出通道数def __init__(self, ninput, n1, n3pre, n3, n5pre, n5, npool):super(Inception, self).__init__()self.b1 = torch.nn.Sequential(torch.nn.Conv2d(ninput, n1, kernel_size=1),torch.nn.ReLU(inplace=True))self.b2 = torch.nn.Sequential(torch.nn.Conv2d(ninput, n3pre, kernel_size=1),torch.nn.ReLU(inplace=True),torch.nn.Conv2d(n3pre, n3, kernel_size=3, padding=1))self.b3 = torch.nn.Sequential(torch.nn.Conv2d(ninput, n5pre, kernel_size=1),torch.nn.ReLU(inplace=True),torch.nn.Conv2d(n5pre, n5, kernel_size=5, padding=2),torch.nn.ReLU(inplace=True))self.b4 = torch.nn.Sequential(torch.nn.MaxPool2d(kernel_size=3, stride=1, padding=1),torch.nn.ReLU(inplace=True))def forward(self, x):outpus = [self.b1(x), self.b2(x), self.b3(x), self.b4(x)]return torch.cat(outpus, dim=1)class Net(torch.nn.Module):def __init__(self):super().__init__()self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)self.conv2 = torch.nn.Conv2d(74, 20, kernel_size=5)self.incep1 = Inception(10, 16, 16, 24, 16, 24, 24)self.incep2 = Inception(20, 16, 16, 24, 16, 24, 24)self.mp = torch.nn.MaxPool2d(2)self.fc = torch.nn.Linear(1344, 10)def forward(self, x):in_size = x.size(0)out = F.relu(self.mp(self.conv1(x)))out = self.incep1(out)out = self.conv2(out)out = self.mp(out)out = F.relu(out)out = self.incep2(out)out = out.view(in_size, -1)out = self.fc(out)return outdef train(model, device, train_loader, optimizer, epoch):model.train()for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()if (batch_idx + 1) % 30 == 0:print('Train Epoch: {} [{}/{} ({:.4f}%)]\tLoss: {:.6f}'.format(epoch, batch_idx * len(data), len(train_loader.dataset),100. * batch_idx / len(train_loader), loss.item()))def test(model, device, test_loader):model.eval()correct = 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)pred = output.max(1, keepdim=True)[1]  # 找到概率最大的下标correct += pred.eq(target.view_as(pred)).sum().item()print('\nAccuracy: {}/{} ({:.4f}%)\n'.format(correct, len(test_loader.dataset),100. * correct / len(test_loader.dataset)))if __name__ == '__main__':BATCH_SIZE = 512  # 大概需要2G的显存EPOCHS = 10  # 总共训练批次DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])train_dataset = datasets.MNIST(root='../dataset/mnist/',train=True,download=True,transform=transform)train_loader = DataLoader(train_dataset,shuffle=True,batch_size=BATCH_SIZE)test_datasets = datasets.MNIST(root='../dataset/mnist/',train=False,download=True,transform=transform)test_loader = DataLoader(test_datasets,shuffle=False,batch_size=BATCH_SIZE)# for i, img_data in enumerate(train_loader, 1):#     images, labels = img_data#     print('batch{0}:images shape info-->{1} labels-->{2}'.format(i, images.shape, labels))model = Net().to(DEVICE)criterion = torch.nn.CrossEntropyLoss()optimizer = optim.Adam(model.parameters())for epoch in range(1, EPOCHS + 1):train(model, DEVICE, train_loader, optimizer, epoch)test(model, DEVICE, test_loader)

运行10次后模型精度达到99.26%。


五、ResNet

1. ResNet介绍

从LeNet到AlexNet再到VGGNet,在ImageNet竞赛上网络深度有逐渐加深的趋势。在2015年的ImageNet竞赛上就出现了152层的网络结构,即ResNet,这远远超出GoogLeNet的22层和VGGNet的16层。ImageNet数据集的识别精度上,ResNet网络的表现超出了人类的认识水平,获得了3.57%的Top-5分类错误率。为了解决由于网络变深导致梯度小时/爆炸的问题,ResNet引入了跳层连接,该结构能够将网络加深到任意深度。
ResNet主要采用跳层连接组成残差模块,包括一个跳层连接和若干卷积层等操作。其中卷积层等操作主要学习一个原始输入x的补充值,参考资料中称为残差值。这样就可将单分支网络结构中的每几层变为双分支结构,增加的跳层连接分支是简单的Identity映射,即f(x)=x操作。残差模块如下图所示:

2. ResNet核心代码

网络结构核心代码如下:

import torch
import torch.nn as nn# 3x3 convolution
def conv3x3(in_channels, out_channels, stride=1):return nn.Conv2d(in_channels, out_channels, kernel_size=3,stride=stride, padding=1, bias=False)# Residual block
class ResidualBlock(nn.Module):def __init__(self, in_channels, out_channels, stride=1, downsample=None):super(ResidualBlock, self).__init__()self.conv1 = conv3x3(in_channels, out_channels, stride)self.bn1 = nn.BatchNorm2d(out_channels)self.relu = nn.ReLU(inplace=True)self.conv2 = conv3x3(out_channels, out_channels)self.bn2 = nn.BatchNorm2d(out_channels)self.downsample = downsampledef forward(self, x):residual = xout = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)if self.downsample:residual = self.downsample(x)out += residualout = self.relu(out)return out
# ResNet
class Net(nn.Module):def __init__(self, block, layers, num_classes=10):super(Net, self).__init__()self.in_channels = 16self.conv = conv3x3(3, 16)self.bn = nn.BatchNorm2d(16)self.relu = nn.ReLU(inplace=True)self.layer1 = self.make_layer(block, 16, layers[0])self.layer2 = self.make_layer(block, 32, layers[1], 2)self.layer3 = self.make_layer(block, 64, layers[2], 2)self.avg_pool = nn.AvgPool2d(8)self.fc = nn.Linear(64, num_classes)def make_layer(self, block, out_channels, blocks, stride=1):downsample = Noneif (stride != 1) or (self.in_channels != out_channels):downsample = nn.Sequential(conv3x3(self.in_channels, out_channels, stride=stride),nn.BatchNorm2d(out_channels))layers = []layers.append(block(self.in_channels, out_channels, stride, downsample))self.in_channels = out_channelsfor i in range(1, blocks):layers.append(block(out_channels, out_channels))return nn.Sequential(*layers)def forward(self, x):out = self.conv(x)out = self.bn(out)out = self.relu(out)out = self.layer1(out)out = self.layer2(out)out = self.layer3(out)out = self.avg_pool(out)out = out.view(out.size(0), -1)out = self.fc(out)return out

六、卷积神经网络的一些说明

1. 卷积层输出维度的计算公式

如果你的步幅为 1,而且把零填充设置为:
Z e r o P a d d i n g = ( k − 1 ) / 2 Zero Padding=(k-1)/2 ZeroPadding=(k−1)/2
K 是过滤器尺寸,那么输入和输出就能保持一致的空间维度。
计算任意给定卷积层的输出的大小的公式是:
O = ( W − K + 2 P ) / S + 1 O=(W-K+2P)/S+1 O=(W−K+2P)/S+1
其中 O 是输出尺寸,K 是过滤器尺寸,P 是填充,S 是步幅。

2. 激励层的实践经验

①不要用sigmoid!不要用sigmoid!不要用sigmoid!
② 首先试RELU,因为快,但要小心点。
③ 如果2失效,请用Leaky ReLU或者Maxout。
④ 某些情况下tanh倒是有不错的结果,但是很少。

经典CNN模型介绍及Pytorch实现相关推荐

  1. 2020-12-09 深度学习 经典CNN模型计算量与内存需求分析

    经典CNN模型计算量与内存需求分析 表1 CNN经典模型的内存,计算量和参数数量对比 AlexNet VGG16 Inception-v3 模型内存(MB) >200 >500 90-10 ...

  2. GAT: 图注意力模型介绍及PyTorch代码分析

    文章目录 GAT: 图注意力模型介绍及代码分析 原理 图注意力层(Graph Attentional Layer) 情境一:节点和它的一个邻居 情境二:节点和它的多个邻节点 聚合(Aggregatio ...

  3. 【从零开始学习深度学习】25.卷积神经网络之LeNet模型介绍及其Pytorch实现【含完整代码】

    目录 1. LeNet模型介绍与实现 2. 输入为Fashion-MNIST时各层输出形状 3. 获取Fashion-MNIST数据和并使用LeNet模型进行训练 4.完整代码 之前我们对Fashio ...

  4. 【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】

    目录 1. NiN块介绍 2. 构建NiN模型 3.NIN模型每层输出形状 4. 获取Fashion-MNIST数据和训练NiN模型 5. 总结 前几篇文章介绍的LeNet.AlexNet和VGG在设 ...

  5. GAT:图注意力模型介绍及PyTorch代码分析

    文章目录 1.计算注意力系数 2.聚合 2.1 附录--GAT代码 2.2 附录--相关代码 3.完整实现 3.1 数据加载和预处理 3.2 模型训练 1.计算注意力系数 对于顶点 iii ,通过计算 ...

  6. 经典CNN模型特点总结

    参考文章地址:https://www.cnblogs.com/skyfsm/p/8451834.html 1.LeNet 定义了CNN的最基本的架构:卷积层.池化层.全连接层. 2.AlexNet 特 ...

  7. 经典CNN模型及其特点

    AlexNet网络(2012年) AlexNet含有五个卷积层,三个池化层和三个全连接层. 特点 1.首次使用非线性激活函数ReLU,验证其在较深的网络中效果远超Sigmoid函数,不仅避免了在较深网 ...

  8. 常见的CNN模型介绍

    第一次写博客 目的是练习一下那种感觉,不足之处还望见谅 LeNet模型 用途: LeNet主要用来进行手写字符的识别与分类 特点 每个卷积层包括三部分:卷积.池化和非线性激活函数(sigmoid激活函 ...

  9. CNN模型的计算量、参数、显存占用

    经典CNN模型的计算量.参数.显存占用 文章目录 经典CNN模型的计算量.参数.显存占用 1. 深度学习复杂度 2. FLOPS概念 3.参数量计算 4. 输出特征图尺寸 5. 常用模型的FlOPs和 ...

最新文章

  1. python之XML文件解析
  2. sealos包管理使用
  3. 图片自动播放和动态添加
  4. 关于Java序列化你应该知道的一切
  5. python语法笔记(五)
  6. 遍历lucene索引库的字段名
  7. C案例:打印斐波拉契数列
  8. 关于Scalability的一些思考与疑问
  9. java虚拟机:虚拟机栈
  10. python编译 pyd 工具_python如何编译py文件生成pyc、pyo、pyd以及如何和C语言结合使用...
  11. excel冻结窗口_excel怎么冻结窗口?excel冻结窗口怎么设置?
  12. win8能发挥服务器性能吗,win10系统和win8.1系统哪个更好用?windows10和windows8.1性能对比解析...
  13. 卸载landesk的方法
  14. 北京大学可视化发展前沿研究生暑期学校Day5
  15. 蓝牙核心技术概述(三): 蓝牙协议规范(射频、基带链路控制、链路管理)
  16. java毕业设计线上办公工作流系统mybatis+源码+调试部署+系统+数据库+lw
  17. “人生苦短,我用Python“——拒绝服务攻击
  18. 35搜索插入位置之Leecode—《数组篇》(二分法)
  19. 如果想进入IT行业工作,需要做准备吗?
  20. Unity 发布到IOS,Android的各种坑

热门文章

  1. 林达华-和机器学习和计算机视觉相关的数学
  2. [安装fastfds中的nginx执行make命令报错]src/core/ngx_murmurhash.c:37:11: error
  3. 【笔试面试考点】PreparedStatement和Statement的区别与联系批量插入数据的优化
  4. 搜索技术-全文检索概述
  5. hdu 5473 There was a kingdom(dp+几何)
  6. 串行进位加法器和超前进位加法器代码实现及性能对比
  7. git commit规范 、CHANGELOG生成 和版本发布的标准自动化
  8. 浅谈2023年Android开发技术趋势,什么值得学?
  9. excel VBA 字典与集合(Dictionary与Collection)
  10. C\C++中头文件string与string.h的区别