发明十大算法的其中几位算法大师

一、1946 蒙特卡洛方法

[1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis algorithm, also known as the Monte Carlo method.]

蒙特卡洛方法的应用场景很多,横跨物理、金融、计算机。拿计算机科学来举例,自然语言处理中的LDA模型,hinton较早提出的深度学习模型DBN都用到了蒙特卡洛方法。

1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam 和 Nick Metropolis共同发明,被称为蒙特卡洛方法。

它的具体定义是:

在广场上画一个边长一米的正方形,在正方形内部随意用粉笔画一个不规则的形状,现在要计算这个不规则图形的面积,怎么计算列?蒙特卡洛(Monte Carlo)方法告诉我们,均匀的向该正方形内撒N(N 是一个很大的自然数)个黄豆,随后数数有多少个黄豆在这个不规则几何形状内部,比如说有M个,那么,这个奇怪形状的面积便近似于M/N,N越大,算出来的值便越精确。在这里我们要假定豆子都在一个平面上,相互之间没有重叠。

蒙特卡洛方法可用于近似计算圆周率:让计算机每次随机生成两个0到1之间的数,看这两个实数是否在单位圆内。生成一系列随机点,统计单位圆内的点数与总点数,(圆面积和正方形面积之比为PI:1,PI为圆周率),当随机点取得越多(但即使取10的9次方个随机点时,其结果也仅在前4位与圆周率吻合)时,其结果越接近于圆周率。

二、1947 单纯形法

[1947: George Dantzig, at the RAND Corporation, creates the simplex method for linear programming.]

单纯形法是一种非常实用的寻找最优基本可行解的方法。它的基本思想是:先找到一个基本可行解,然后判断其是否为最优解;如果不是,则转换到相邻且能改善当前目标函数的基本可行解,一直找到最优解为止。

1947年,兰德公司的,Grorge Dantzig,发明了单纯形方法。单纯形法,此后成为了线性规划学科的重要基石。所谓线性规划,简单的说,就是给定一组线性(所有变量都是一次幂)约束条件(例如a1*x1+b1*x2+c1*x3>0),求一个给定的目标函数的极值。

这么说似乎也太太太抽象了,但在现实中能派上用场的例子可不罕见——比如对于一个公司而言,其能够投入生产的人力物力有限(“线性约束条件”),而公司的目标是利润最大化(“目标函数取最大值”),看,线性规划并不抽象吧!

线性规划作为运筹学(operation research)的一部分,成为管理科学领域的一种重要工具。

而Dantzig提出的单纯形法便是求解类似线性规划问题的一个极其有效的方法。

三、1950 Krylov子空间迭代法

[1950: Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, all from the Institute for Numerical Analysis at the National Bureau of Standards, initiate the development of Krylov subspace iteration methods.]

Krylov子空间方法在提高大型科学和工程计算效率上起着重要作用。

1950年:美国国家标准局数值分析研究所的,马格努斯Hestenes,爱德华施蒂费尔和科尼利厄斯的Lanczos,发明了Krylov子空间迭代法。

Krylov子空间迭代法是用来求解大型方程组,当n充分大时,直接计算变得非常困难,而Krylov方法则巧妙地将其变为Kxi+1=Kxi+b-Axi的迭代形式来求解。这里的K(来源于作者俄国人Nikolai Krylov姓氏的首字母)是一个构造出来的接近于A的矩阵,而迭代形式的算法的妙处在于,它将复杂问题化简为阶段性的易于计算的子步骤。

四、1951 矩阵计算的分解方法

[1951: Alston Householder of Oak Ridge National Laboratory formalizes the decompositional approach to matrix computations.]

1951年,阿尔斯通橡树岭国家实验室的Alston Householder提出,矩阵计算的分解方法。这个算法证明了任何矩阵都可以分解为三角、对角、正交和其他特殊形式的矩阵,该算法的意义使得开发灵活的矩阵计算软件包成为可能。

五、1957 优化的Fortran编译器

[1957: John Backus leads a team at IBM in developing the Fortran optimizing compiler.]

1957年:约翰巴库斯领导开发的IBM的团队,创造了Fortran优化编译器。Fortran,亦译为福传,是由Formula Translation两个字所组合而成,意思是“公式翻译”。它是世界上第一个被正式采用并流传至今的高级编程语言。这个语言现在,已经发展到了,Fortran 2008,并为人们所熟知。

六、1959-61 计算矩阵特征值的QR算法

[1959–61: J.G.F. Francis of Ferranti Ltd, London, finds a stable method for computingeigenvalues, known as the QR algorithm.]

1959-61:伦敦费伦蒂有限公司的J.G.F. Francis,找到了一种稳定的特征值的计算方法,这就是著名的QR算法。

这也是一个和线性代数有关的算法,学过线性代数的应该记得“矩阵的特征值”,计算特征值是矩阵计算的最核心内容之一,传统的求解方案涉及到高次方程求根,当问题规模大的时候十分困难。QR算法把矩阵分解成一个正交矩阵与一个上三角矩阵的积,是一个迭代算法,它把复杂的高次方程求根问题化简为阶段性的易于计算的子步骤,使得用计算机求解大规模矩阵特征值成为可能。

这个算法的作者是来自英国伦敦的J.G.F. Francis。

七、1962 快速排序算法

[1962: Tony Hoare of Elliott Brothers, Ltd., London, presents Quicksort.]

1962年:托尼埃利奥特兄弟有限公司,伦敦,霍尔提出了快速排序。

哈哈,恭喜你,终于看到了可能是你第一个比较熟悉的算法~。

快速排序算法作为排序算法中的经典算法,它被应用的影子随处可见。

快速排序算法最早由Tony Hoare爵士设计,它的基本思想是将待排序列分为两半,左边的一半总是“小的”,右边的一半总是“大的”,这一过程不断递归持续下去,直到整个序列有序。说起这位Tony Hoare爵士,快速排序算法其实只是他不经意间的小小发现而已,他对于计算机贡献主要包括形式化方法理论,以及ALGOL60 编程语言的发明等,他也因这些成就获得1980 年图灵奖。

八、1965 快速傅立叶变换

[1965: James Cooley of the IBM T.J. Watson Research Center and John Tukey of PrincetonUniversity and AT&T Bell Laboratories unveil the fast Fourier transform.]

1965年:IBM 华生研究院的James Cooley,和普林斯顿大学的John Tukey,AT&T贝尔实验室共同推出了快速傅立叶变换。

快速傅立叶算法是离散傅立叶算法(这可是数字信号处理的基石)的一种快速算法,其时间复杂度仅为O(Nlog(N));比时间效率更为重要的是,快速傅立叶算法非常容易用硬件实现,因此它在电子技术领域得到极其广泛的应用。

九、1977 整数关系探测算法

[1977: Helaman Ferguson and Rodney Forcade of Brigham Young University advance an integerrelation detection algorithm.]

1977年:Helaman Ferguson和 伯明翰大学的Rodney Forcade,提出了Forcade检测算法的整数关系。

整数关系探测是个古老的问题,其历史甚至可以追溯到欧几里德的时代。具体的说:给定—组实数X1,X2,...,Xn,是否存在不全为零的整数a1,a2,...an,使得:a1 x 1 +a2 x2 + . . . + an xn =0?这一年BrighamYoung大学的Helaman Ferguson 和Rodney Forcade解决了这一问题。该算法应用于“简化量子场论中的Feynman图的计算”。

十、1987 快速多极算法

[1987: Leslie Greengard and Vladimir Rokhlin of Yale University invent the fast multipolealgorithm.]

1987年:莱斯利的Greengard,和耶鲁大学的Rokhlin发明了快速多极算法。

此快速多极算法用来计算“经由引力或静电力相互作用的N 个粒子运动的精确计算——例如银河系中的星体,或者蛋白质中的原子间的相互作用”。ok,了解即可。

二十世纪最伟大的十大算法相关推荐

  1. 细数二十世纪最伟大的十大算法

    参考文献: The Best of the 20th Century: Editors Name Top 10 Algorithms. By Barry A. Cipra.地址:http://www. ...

  2. [算法] 当今世界最为经典的十大算法--投票进行时

    当今世界最为经典的十大算法--投票进行时 ---------------------------------------- 第一部分.来自圣经的十大算法 第十名:Huffman coding(霍夫曼编 ...

  3. 细数二十世纪最伟大的10大算法

    导读:作者July总结了一篇关于计算方法的文章< 细数二十世纪最伟大的10大算法 >. 一.1946 蒙特卡洛方法 [1946: John von Neumann, Stan Ulam, ...

  4. 十大算法,描述+代码+演示+分析+改进(赶紧收藏!)

    十大算法 1.冒泡排序 ​ (1)算法描述 ​ 冒泡排序是一种简单的排序算法.它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来.走访数列的工作是重复地进行直到没有再需要 ...

  5. java培训:Java的十大算法

    想要学好java语言,就要打好基础,java要学习的东西有很多,今天小编就来和大家说下java的十大算法. 算法一:快速排序算法 快速排序是由东尼·霍尔所发展的一种排序算法.在平均状况下,排序 n 个 ...

  6. 二十世纪最伟大的10大算法

    来源:数学中国 发明十大算法的其中几位算法大师 1.1946 蒙特卡洛方法 [1946: John von Neumann, StanUlam, and Nick Metropolis, all at ...

  7. 新手入门机器学习十大算法

    新手入门机器学习十大算法 2018年9月17日 磐石 TensorFlowNews, 机器学习 0 在机器学习的世界中,有一种被称为"无免费午餐"的定理. 它意在说明没有哪种算法能 ...

  8. 统治世界的十大算法(转)

    原文:http://www.ctocio.com/ccnews/15714.html 软件正在吃掉世界,而软件的核心则是算法.算法千千万万,又有哪些算法属于"皇冠上的珍珠"呢?Ma ...

  9. 数据挖掘经典十大算法_对基本概念的理解

    数据挖掘经典十大算法 一.十大经典算法 二.信息量 信息量是对信息的度量,例如时间的度量是秒,我们考虑一个离散的随机变量x时,当我们观察到的这个变量的一个具体值的时候,我们接收到的多少信息 用信息量来 ...

最新文章

  1. php laravel用的多不,php-Laravel多个可选参数不起作用
  2. python数据文件读写
  3. php 插入2个数组,用PHP将2个数组插入mysql
  4. 关注点分离之RestTemplate的错误处理
  5. 解决输入法图标不见了,控制面板里面也无法设置
  6. spring 全局变量_精华:关于Spring的15点总结
  7. 学容器必须懂 bridge 网络 - 每天5分钟玩转 Docker 容器技术(32)
  8. Java 程序中使用 MongoDB教程
  9. es6 --- 使用生成器交替执行
  10. java空格 逗号_Java将字符串中的空格换为逗号
  11. 位图bitmap应用
  12. 2017 年全球十大突破技术:逼格很高很难懂
  13. Android应用保活方案的另类出路,让你应用长生不老,实战案例
  14. 谷歌电子市场学习笔记第一天之上
  15. Windows系统 卸载 flash助手推荐弹窗
  16. VUE生成二维码或条形码
  17. 2020最新Ubutu18.04安装NVIDIA出现如下报错解决方法[亲测可用]
  18. FPGA基础之cyclone_iv资源概述
  19. window与linux双系统文件互通解决方案
  20. 3.7V转1.5V超简单的LDO芯片

热门文章

  1. ViewPager写的三字经程序,外加三字经朗读,用了MediaPlayer
  2. 2021最新! Springboot 2.X集成ElasticSearch 7.6.2(入门版)
  3. esxi时间服务器在哪配置文件,如何使用vSphere Web Client配置 ESXi时间同步?
  4. Homekit智能灯泡
  5. 矩阵的乘法口诀(一)
  6. Unity 游戏存档框架实现
  7. 零空间维数的几何意义
  8. Vmotion迁移要求
  9. Python herhan学习 day1
  10. JDK、JER、JVM是什么