http://www.cnblogs.com/laoyangHJ/archive/2011/08/17/jvm_model.html

JVM内存模型是Java的核心技术之一,之前51CTO曾为大家介绍过JVM分代垃圾回收策略的基础概念,现在很多编程语言都引入了类似Java JVM的内存模型和垃圾收集器的机制,下面我们将主要针对Java中的JVM内存模型及垃圾收集的具体策略进行综合的分析。

一 JVM内存模型

1.1 Java栈

Java栈是与每一个线程关联的,JVM在创建每一个线程的时候,会分配一定的栈空间给线程。它主要用来存储线程执行过程中的局部变量,方法的返回值,以及方法调用上下文。栈空间随着线程的终止而释放。StackOverflowError:如果在线程执行的过程中,栈空间不够用,那么JVM就会抛出此异常,这种情况一般是死递归造成的。

1.2 堆

Java中堆是由所有的线程共享的一块内存区域,堆用来保存各种JAVA对象,比如数组,线程对象等。

1.2.1 Generation

JVM堆一般又可以分为以下三部分:

◆ Perm

Perm代主要保存class,method,filed对象,这部门的空间一般不会溢出,除非一次性加载了很多的类,不过在涉及到热部署的应用服务器的时候,有时候会遇到java.lang.OutOfMemoryError : PermGen space 的错误,造成这个错误的很大原因就有可能是每次都重新部署,但是重新部署后,类的class没有被卸载掉,这样就造成了大量的class对象保存在了perm中,这种情况下,一般重新启动应用服务器可以解决问题。

◆ Tenured

Tenured区主要保存生命周期长的对象,一般是一些老的对象,当一些对象在Young复制转移一定的次数以后,对象就会被转移到Tenured区,一般如果系统中用了application级别的缓存,缓存中的对象往往会被转移到这一区间。

◆ Young

Young区被划分为三部分,Eden区和两个大小严格相同的Survivor区,其中Survivor区间中,某一时刻只有其中一个是被使用的,另外一个留做垃圾收集时复制对象用,在Young区间变满的时候,minor GC就会将存活的对象移到空闲的Survivor区间中,根据JVM的策略,在经过几次垃圾收集后,任然存活于Survivor的对象将被移动到Tenured区间。

1.2.2 Sizing the Generations

JVM提供了相应的参数来对内存大小进行配置。正如上面描述,JVM中堆被分为了3个大的区间,同时JVM也提供了一些选项对Young,Tenured的大小进行控制。

◆ Total Heap

-Xms :指定了JVM初始启动以后初始化内存

-Xmx:指定JVM堆得最大内存,在JVM启动以后,会分配-Xmx参数指定大小的内存给JVM,但是不一定全部使用,JVM会根据-Xms参数来调节真正用于JVM的内存

-Xmx -Xms之差就是三个Virtual空间的大小

◆ Young Generation

-XX:NewRatio=8意味着tenured 和 young的比值8:1,这样eden+2*survivor=1/9

堆内存

-XX:SurvivorRatio=32意味着eden和一个survivor的比值是32:1,这样一个Survivor就占Young区的1/34.

-Xmn 参数设置了年轻代的大小

◆ Perm Generation

-XX:PermSize=16M -XX:MaxPermSize=64M

Thread Stack

-XX:Xss=128K

1.3 堆栈分离的好处

呵呵,其它的先不说了,就来说说面向对象的设计吧,当然除了面向对象的设计带来的维护性,复用性和扩展性方面的好处外,我们看看面向对象如何巧妙的利用了堆栈分离。如果从JAVA内存模型的角度去理解面向对象的设计,我们就会发现对象它完美的表示了堆和栈,对象的数据放在堆中,而我们编写的那些方法一般都是运行在栈中,因此面向对象的设计是一种非常完美的设计方式,它完美的统一了数据存储和运行。

二 JAVA垃圾收集器

2.1 垃圾收集简史

垃圾收集提供了内存管理的机制,使得应用程序不需要在关注内存如何释放,内存用完后,垃圾收集会进行收集,这样就减轻了因为人为的管理内存而造成的错误,比如在C++语言里,出现内存泄露时很常见的。Java语言是目前使用最多的依赖于垃圾收集器的语言,但是垃圾收集器策略从20世纪60年代就已经流行起来了,比如Smalltalk,Eiffel等编程语言也集成了垃圾收集器的机制。

2.2 常见的垃圾收集策略

所有的垃圾收集算法都面临同一个问题,那就是找出应用程序不可到达的内存块,将其释放,这里面得不可到达主要是指应用程序已经没有内存块的引用了,而在JAVA中,某个对象对应用程序是可到达的是指:这个对象被根(根主要是指类的静态变量,或者活跃在所有线程栈的对象的引用)引用或者对象被另一个可到达的对象引用。

2.2.1 Reference Counting(引用计数)
 
引用计数是最简单直接的一种方式,这种方式在每一个对象中增加一个引用的计数,这个计数代表当前程序有多少个引用引用了此对象,如果此对象的引用计数变为0,那么此对象就可以作为垃圾收集器的目标对象来收集。

优点:

简单,直接,不需要暂停整个应用

缺点:

1.需要编译器的配合,编译器要生成特殊的指令来进行引用计数的操作,比如每次将对象赋值给新的引用,或者者对象的引用超出了作用域等。

2.不能处理循环引用的问题

2.2.2 跟踪收集器

跟踪收集器首先要暂停整个应用程序,然后开始从根对象扫描整个堆,判断扫描的对象是否有对象引用,这里面有三个问题需要搞清楚:

1.如果每次扫描整个堆,那么势必让GC的时间变长,从而影响了应用本身的执行。因此在JVM里面采用了分代收集,在新生代收集的时候minor gc只需要扫描新生代,而不需要扫描老生代。

2.JVM采用了分代收集以后,minor gc只扫描新生代,但是minor gc怎么判断是否有老生代的对象引用了新生代的对象,JVM采用了卡片标记的策略,卡片标记将老生代分成了一块一块的,划分以后的每一个块就叫做一个卡片,JVM采用卡表维护了每一个块的状态,当JAVA程序运行的时候,如果发现老生代对象引用或者释放了新生代对象的引用,那么就JVM就将卡表的状态设置为脏状态,这样每次minor gc的时候就会只扫描被标记为脏状态的卡片,而不需要扫描整个堆。具体如下图:

3.GC在收集一个对象的时候会判断是否有引用指向对象,在JAVA中的引用主要有四种:Strong reference,Soft reference,Weak reference,Phantom reference.

◆ Strong Reference

强引用是JAVA中默认采用的一种方式,我们平时创建的引用都属于强引用。如果一个对象没有强引用,那么对象就会被回收。

  1. public void testStrongReference(){
  2. Object referent = new Object();
  3. Object strongReference = referent;
  4. referent = null;
  5. System.gc();
  6. assertNotNull(strongReference);
  7. }

◆ Soft Reference

软引用的对象在GC的时候不会被回收,只有当内存不够用的时候才会真正的回收,因此软引用适合缓存的场合,这样使得缓存中的对象可以尽量的再内存中待长久一点。

  1. Public void testSoftReference(){
  2. String  str =  "test";
  3. SoftReference<String> softreference = new SoftReference<String>(str);
  4. str=null;
  5. System.gc();
  6. assertNotNull(softreference.get());
  7. }

Weak reference

弱引用有利于对象更快的被回收,假如一个对象没有强引用只有弱引用,那么在GC后,这个对象肯定会被回收。

  1. Public void testWeakReference(){
  2. String  str =  "test";
  3. WeakReference<String> weakReference = new WeakReference<String>(str);
  4. str=null;
  5. System.gc();
  6. assertNull(weakReference.get());
  7. }

Phantom reference

Phantom Reference(幽灵引用) 与 WeakReference 和 SoftReference 有很大的不同,  因为它的 get() 方法永远返回 null, 这也正是它名字的由来.PhantomReference 唯一的用处就是跟踪 referent  何时被 enqueue 到 ReferenceQueue 中.

<插入部分>

RererenceQueue

当一个 WeakReference 开始返回 null 时, 它所指向的对象已经准备被回收, 这时可以做一些合适的清理工作.   将一个 ReferenceQueue 传给一个 Reference 的构造函数, 当对象被回收时, 虚拟机会自动将这个对象插入到 ReferenceQueue 中, WeakHashMap 就是利用 ReferenceQueue 来清除 key 已经没有强引用的 entries.
Java代码

  1. 1.@Test
  2. 2.public void referenceQueue() throws InterruptedException {
  3. 3.    Object referent = new Object();
  4. 4.    ReferenceQueue<Object> referenceQueue = new ReferenceQueue<Object>();
  5. 5.    WeakReference<Object> weakReference = new WeakReference<Object>(referent, referenceQueue);
  6. 6.
  7. 7.    assertFalse(weakReference.isEnqueued());
  8. 8.    Reference<? extends Object> polled = referenceQueue.poll();
  9. 9.    assertNull(polled);
  10. 10.
  11. 11.    referent = null;
  12. 12.    System.gc();
  13. 13.
  14. 14.    assertTrue(weakReference.isEnqueued());
  15. 15.    Reference<? extends Object> removed = referenceQueue.remove();
  16. 16.    assertNotNull(removed);
  17. 17.}

复制代码

6.  PhantomReference  vs WeakReference

PhantomReference  有两个好处, 其一, 它可以让我们准确地知道对象何时被从内存中删除, 这个特性可以被用于一些特殊的需求中(例如 Distributed GC,  XWork 和 google-guice 中也使用 PhantomReference 做了一些清理性工作).

其二, 它可以避免 finalization 带来的一些根本性问题, 上文提到 PhantomReference 的唯一作用就是跟踪 referent 何时被 enqueue 到 ReferenceQueue 中,  但是 WeakReference 也有对应的功能, 两者的区别到底在哪呢 ?
这就要说到 Object 的 finalize 方法, 此方法将在 gc 执行前被调用, 如果某个对象重载了 finalize 方法并故意在方法内创建本身的强引用,  这将导致这一轮的 GC 无法回收这个对象并有可能
引起任意次 GC, 最后的结果就是明明 JVM 内有很多 Garbage 却 OutOfMemory, 使用 PhantomReference 就可以避免这个问题, 因为 PhantomReference 是在 finalize 方法执行后回收的,也就意味着此时已经不可能拿到原来的引用,  也就不会出现上述问题,  当然这是一个很极端的例子, 一般不会出现.

<插入部分/>

2.2.2.1 Mark-Sweep Collector(标记-清除收集器)

标记清除收集器最早由Lisp的发明人于1960年提出,标记清除收集器停止所有的工作,从根扫描每个活跃的对象,然后标记扫描过的对象,标记完成以后,清除那些没有被标记的对象。

优点:

1 解决循环引用的问题

2 不需要编译器的配合,从而就不执行额外的指令

缺点:

1.每个活跃的对象都要进行扫描,收集暂停的时间比较长。

2.2.2.2 Copying Collector(复制收集器)复制收集器将内存分为两块一样大小空间,某一个时刻,只有一个空间处于活跃的状态,当活跃的空间满的时候,GC就会将活跃的对象复制到未使用的空间中去,原来不活跃的空间就变为了活跃的空间。复制收集器具体过程可以参考下图:

优点:

1 只扫描可以到达的对象,不需要扫描所有的对象,从而减少了应用暂停的时间

缺点:

1.需要额外的空间消耗,某一个时刻,总是有一块内存处于未使用状态

2.复制对象需要一定的开销

2.2.2.3 Mark-Compact Collector(标记-整理收集器)标记整理收集器汲取了标记清除和复制收集器的优点,它分两个阶段执行,在第一个阶段,首先扫描所有活跃的对象,并标记所有活跃的对象,第二个阶段首先清除未标记的对象,然后将活跃的的对象复制到堆得底部。标记整理收集器的过程示意图请参考下图:Mark-compact策略极大的减少了内存碎片,并且不需要像Copy Collector一样需要两倍的空间。

2.3 JVM的垃圾收集策略
 
GC的执行时要耗费一定的CPU资源和时间的,因此在JDK1.2以后,JVM引入了分代收集的策略,其中对新生代采用"Mark-Compact"策略,而对老生代采用了“Mark-Sweep"的策略。其中新生代的垃圾收集器命名为“minor gc”,老生代的GC命名为"Full Gc 或者Major GC".其中用System.gc()强制执行的是Full Gc.

2.3.1 Serial Collector

Serial Collector是指任何时刻都只有一个线程进行垃圾收集,这种策略有一个名字“stop the whole world",它需要停止整个应用的执行。这种类型的收集器适合于单CPU的机器。

Serial Copying Collector

此种GC用-XX:UseSerialGC选项配置,它只用于新生代对象的收集。1.5.0以后。-XX:MaxTenuringThreshold来设置对象复制的次数。当eden空间不够的时候,GC会将eden的活跃对象和一个名叫From survivor空间中尚不够资格放入Old代的对象复制到另外一个名字叫To Survivor的空间。而此参数就是用来说明到底From survivor中的哪些对象不够资格,假如这个参数设置为31,那么也就是说只有对象复制31次以后才算是有资格的对象。这里需要注意几个个问题:

◆  From Survivor和To survivor的角色是不断的变化的,同一时间只有一块空间处于使用状态,这个空间就叫做From Survivor区,当复制一次后角色就发生了变化。

◆  如果复制的过程中发现To survivor空间已经满了,那么就直接复制到old generation.

◆  比较大的对象也会直接复制到Old generation,在开发中,我们应该尽量避免这种情况的发生。

Serial  Mark-Compact Collector

串行的标记-整理收集器是JDK5 update6之前默认的老生代的垃圾收集器,此收集使得内存碎片最少化,但是它需要暂停的时间比较长。

2.3.2 Parallel Collector

Parallel Collector主要是为了应对多CPU,大数据量的环境。Parallel Collector又可以分为以下两种:

Parallel Copying Collector

此种GC用-XX:UseParNewGC参数配置,它主要用于新生代的收集,此GC可以配合CMS一起使用。1.4.1以后Parallel Mark-Compact Collector,此种GC用-XX:UseParallelOldGC参数配置,此GC主要用于老生代对象的收集。1.6.0

Parallel scavenging Collector

此种GC用-XX:UseParallelGC参数配置,它是对新生代对象的垃圾收集器,但是它不能和CMS配合使用,它适合于比较大新生代的情况,此收集器起始于jdk 1.4.0。它比较适合于对吞吐量高于暂停时间的场合,Serial gc和Parallel gc可以用如下的图来表示:

2.3.3 Concurrent Collector

Concurrent Collector通过并行的方式进行垃圾收集,这样就减少了垃圾收集器收集一次的时间,这种GC在实时性要求高于吞吐量的时候比较有用。此种GC可以用参数-XX:UseConcMarkSweepGC配置,此GC主要用于老生代和Perm代的收集。

JVM内存模型及垃圾收集策略解析(一)相关推荐

  1. 深度解析JVM内存模型

    下图总体概括了JVM的内存模型                    Java内存区域 一:JVM类加载机制详解 首先通过编译器把 Java 代码转换成字节码,类加载器(ClassLoader)再把字 ...

  2. JVM内存模型、指令重排、内存屏障概念解析

    在高并发模型中,无是面对物理机SMP系统模型,还是面对像JVM的虚拟机多线程并发内存模型,指令重排(编译器.运行时)和内存屏障都是非常重要的概念,因此,搞清楚这些概念和原理很重要.否则,你很难搞清楚哪 ...

  3. Java JVM内存模型

    简述JVM内存模型 线程私有的运行时数据区: 程序计数器.Java 虚拟机栈.本地方法栈. 线程共享的运行时数据区:Java 堆.方法区. 简述程序计数器 程序计数器表示当前线程所执行的字节码的行号指 ...

  4. JVM内存模型与垃圾回收GC

    Java开发有个很基础的问题,虽然我们平时接触的不多,但是了解它却成为Java开发的必备基础--这就是JVM.在C++中我们需要手动申请内存然后释放内存,否则就会出现对象已经不再使用内存却仍被占用的情 ...

  5. JVM内存模型和类加载运行机制

    JVM内存模型和类加载运行机制 JVM内存模型 运行一个 Java 应用程序,必须要先安装 JDK 或者 JRE 包.因为 Java 应用在编译后会变成字节码,通过字节码运行在 JVM 中,而 JVM ...

  6. JVM(Java虚拟机)详解(JVM 内存模型、堆、GC、直接内存、性能调优)

    JVM(Java虚拟机) JVM 内存模型 结构图 jdk1.8 结构图(极简) jdk1.8 结构图(简单) JVM(Java虚拟机): 是一个抽象的计算模型. 如同一台真实的机器,它有自己的指令集 ...

  7. 膜拜大佬!JVM性能调优——JVM内存模型和类加载运行机制

    一.JVM内存模型 运行一个 Java 应用程序,必须要先安装 JDK 或者 JRE 包.因为 Java 应用在编译后会变成字节码,通过字节码运行在 JVM 中,而 JVM 是 JRE 的核心组成部分 ...

  8. 详细分析JVM内存模型

    JVM内存模型 JAVA的主要特点是其著名的WOTA(write once, run anywhere):"编写一次,随处运行".为了应用它,Sun Microsystems创建了 ...

  9. 【深入理解JVM】JVM内存模型

    JVM定义了若干个程序执行期间使用的数据区域.这个区域里的一些数据在JVM启动的时候创建,在JVM退出的时候销毁.而其他的数据依赖于每一个线程,在线程创建时创建,在线程退出时销毁. 1.程序计数器 程 ...

最新文章

  1. 详解Java解析XML的四种方法
  2. 自己珍藏一些有趣的Python子程序
  3. python【力扣LeetCode算法题库】912- 排序数组
  4. 散列表查找的一个实例
  5. java poi jar maven_导出maven项目依赖的jar包(图文教程)
  6. mysql创建表时显示错误_MYSQL创建表出现错误 ERROR Code 1118如何解决
  7. 线段 LibreOJ - 10007(贪心)
  8. cordova监听事件中调用其他方法_Laravel模型事件的实现原理详解
  9. 捕获Wscript.Quit的退出码
  10. 阿里AI解锁车场景:达摩院技术输出,天猫精灵进驻奔驰、奥迪和沃尔沃
  11. java调用linux系统命令_java 调用linux系统命令
  12. ORACLE 中通过证件号码获取性别
  13. 关于VMD相关介绍(一)
  14. Hyperledger/FireFly
  15. java统计在线人数_java实现在线人数统计
  16. java去掉首尾字符_去掉字符串首尾指定的字符或空格
  17. 健与美杂志健与美杂志社健与美编辑部2022年第7期目录
  18. 动态gif图如何在线制作?gif动图制作在线如何操作?
  19. 网页中常见的元素有哪些
  20. 两部苹果手机同步照片_手机小常识:手机照片删除如何恢复?安卓、苹果用户必备小知识!...

热门文章

  1. java error与exception_Java中Error与Exception的区别
  2. 二十二、面试必备:final、finally、finalize有什么不同?
  3. django的环境搭建(一)
  4. TNNLS 22|分数不是关键,排名才是关键:针对排行榜的模型“行为”保持与灾难性遗忘的克服...
  5. 中科院自动化所:最新视觉-语言预训练综述
  6. Transformer升级之路:博采众长的旋转式位置编码
  7. 知识表示学习神器OpenKE:快速获取KG表示
  8. “非自回归”也不差:基于MLM的阅读理解问答
  9. 飞桨全新发布,核心框架首次完整公开解读
  10. 边缘和智能,是谁在借谁上位?