Steven Weinberg 现在得克萨斯大学物理系。本文以他 2003年6月在麦克基尔大学科学大会上的讲话为基础。
    
当我得到大学学位的时候 - 那是百八十年前的事了-物理文献在我眼里就象一个未经探索的汪洋大海,我必须在勘测了它的每一个部分之后才能开始自己的研究。做任何事情之前怎么能不先了解所有已经做过了的工作呢?万幸的是,在我做研究生的第一年,我碰到了一些资深的物理学家,他们不顾我忧心忡忡的反对,坚持我应该开始进行研究,而在研究的过程中学习所需的东西。这可是生死悠关的事。我惊讶地发现他们的意见是可行的。我设法很快就拿到了一个博士学位-虽然我拿到博士学位时对物理学还几乎是一无所知。不过,我的确得到了一个很大的教益:

没有人了解所有的知识,你也不必。
~~~~~~~~~~~~~~~~~~~~~~~~~~~

另一个忠告就是,如果继续用我的海洋学的比喻的话,当你在大海中搏击而不是沉没时,应该到波涛汹涌的地方去。19世纪60年代末,我在麻省理工大学教书时,一个学生找我说,他想去做广义相对论领域的研究,而不愿意做我所在的领域-基本粒子物理学-方向的研究,原因是前者的原理已经很清楚,而后者在他看来则是一团乱麻。而在我看来这正是做相反决定的绝好理由。粒子物理学是一个还可以做创造性工作的领域。它在那个时候的确是乱麻一团,但是,从那时起,许多理论物理学家、试验物理学家的工作把这团乱麻梳理出来,将所有的(嗯,几乎所有的)知识纳入一个叫做标准模型的美丽的理论之中。我的忠告是:

到混乱的地方去,那里才是行动所在的地方。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    
我的第三个忠告可能是最难被接受的。这就是要原谅自己虚掷时光。要求学生们解决的问题都是教授们知道可以得到解决的问题(除非教授非常地残酷)。而且,这些问题在科学上是否重要是无关紧要的,-必须解决他们以通过考试。但是在现实生活中,知道哪些问题重要是非常困难的,而且在历史某一特定时刻你根本无从知道某个问题是否有解。二十世纪初,几个重要的物理学家,包括 Lorentz 和 Abraham, 想创立一种电子理论。部分原因是为了理解为什么探测地球相对以太运动的所有尝试都失败了。我们现在知道,他们研究的问题不对。在当时,没有人能够创立一个成功的电子理论,因为量子力学尚未发现。需要到1905年,天才的爱因斯坦认识到正确的问题是运动在时间空间测量上的效应。沿着这条路线,他创立了相对论。因为你总也不能肯定哪个才是要研究的正确问题,你在实验室里,在书桌前的大部分时间是会虚掷的。

如果你想要有创造性,你就必须习惯于大量时间不是创造性的,习惯于在科学知识的海洋上停滞不前。
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    
最后,学一点科学史,起码你所研究的学科的历史。至少学习科学史可能在你自己的科学研究中有点用。比如,科学家会不时因相信从培根到库恩、玻普这些哲学家所提出的过分简化的科学模型而受到桎梏。

科学史的知识是科学哲学的最好解毒剂
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    
更重要的是,科学史的知识可以使你觉得自己的工作更有意义。作为一个科学家,你很可能不会太富裕,你的朋友和亲人可能也不理解你正在做的事情。而如果你研究的是象基本粒子物理学这样的领域,你甚至没有是在从事一种马上就有用的工作所带来的满足。但是,认识到你进行的科学工作是历史的一部分则可以给你带来极大的满足。
    
看看100年前,1903年。谁是1903年大英帝国的首相、谁是1903年美利坚合众国的总统在现在看来有多重要呢?真正凸现出重要性的是 1903年Ernest Rutherford 和Frederick Soddy 在Mxxxxll 大学揭示了放射性的本质。这一工作(当然!)有实际的应用,但更加重要的是其文化含义。对放射性的理解使物理学家能够解释为什么几百万年以后太阳和地心仍是滚烫的。这样,就清除了许多地质学家和古生物学家认为地球和太阳存在了很长年代的最后一个科学上的障碍。从此以后,基督教徒和犹太教徒就不得不或者放弃圣经的直接真理性或者放弃理性。这只是从加利略到牛顿、达尔文,直到现在削弱宗教教条主义桎梏的一系列步伐中的一步。只要读读今天的任何一张报纸,你都会知道这一工作还没有完成。但是,这是一个文明化的工作,对这一工作科学家是可以感到骄傲的。

原文如下:
Nature 426, 389 (27 November 2003); doi:10.1038/426389a
Scientist: Four golden lessons

STEVEN WEINBERG
Steven Weinberg is in the Department of Physics, the University of Texas at Austin, Texas 78712, USA. This essay is based on a commencement talk given by the author at the Science Convocation at McGill University in June 2003.

When I received my undergraduate degree — about a hundred years ago — the physics literature seemed to me a vast, unexplored ocean, every part of which I had to chart before beginning any research of my own. How could I do anything without knowing everything that had already been done? Fortunately, in my first year of graduate school, I had the good luck to fall into the hands of senior physicists who insisted, over my anxious objections, that I must start doing research, and pick up what I needed to know as I went along. It was sink or swim. To my surprise, I found that this works. I managed to get a quick PhD — though when I got it I knew almost nothing about physics. But I did learn one big thing: that no one knows everything, and you don't have to.

Another lesson to be learned, to continue using my oceanographic metaphor, is that while you are swimming and not sinking you should aim for rough water. When I was teaching at the Massachusetts Institute of Technology in the late 1960s, a student told me that he wanted to go into general relativity rather than the area I was working on, elementary particle physics, because the principles of the former were well known, while the latter seemed like a mess to him. It struck me that he had just given a perfectly good reason for doing the opposite. Particle physics was an area where creative work could still be done. It really was a mess in the 1960s, but since that time the work of many theoretical and experimental physicists has been able to sort it out, and put everything (well, almost everything) together in a beautiful theory known as the standard model. My advice is to go for the messes — that's where the action is.

My third piece of advice is probably the hardest to take. It is to forgive yourself for wasting time. Students are only asked to solve problems that their professors (unless unusually cruel) know to be solvable. In addition, it doesn't matter if the problems are scientifically important — they have to be solved to pass the course. But in the real world, it's very hard to know which problems are important, and you never know whether at a given moment in history a problem is solvable. At the beginning of the twentieth century, several leading physicists, including Lorentz and Abraham, were trying to work out a theory of the electron. This was partly in order to understand why all attempts to detect effects of Earth's motion through the ether had failed. We now know that they were working on the wrong problem. At that time, no one could have developed a successful theory of the electron, because quantum mechanics had not yet been discovered. It took the genius of Albert Einstein in 1905 to realize that the right problem on which to work was the effect of motion on measurements of space and time. This led him to the special theory of relativity. As you will never be sure which are the right problems to work on, most of the time that you spend in the laboratory or at your desk will be wasted. If you want to be creative, then you will have to get used to spending most of your time not being creative, to being becalmed on the ocean of scientific knowledge.
Finally, learn something about the history of science, or at a minimum the history of your own branch of science. The least important reason for this is that the history may actually be of some use to you in your own scientific work. For instance, now and then scientists are hampered by believing one of the over-simplified models of science that have been proposed by philosophers from Francis Bacon to Thomas Kuhn and Karl Popper. The best antidote to the philosophy of science is a knowledge of the history of science.

More importantly, the history of science can make your work seem more worthwhile to you. As a scientist, you're probably not going to get rich. Your friends and relatives probably won't understand what you're doing. And if you work in a field like elementary particle physics, you won't even have the satisfaction of doing something that is immediately useful. But you can get great satisfaction by recognizing that your work in science is a part of history.

Look back 100 years, to 1903. How important is it now who was Prime Minister of Great Britain in 1903, or President of the United States? What stands out as really important is that at McGill University, Ernest Rutherford and Frederick Soddy were working out the nature of radioactivity. This work (of course!) had practical applications, but much more important were its cultural implications. The understanding of radioactivity allowed physicists to explain how the Sun and Earth's cores could still be hot after millions of years. In this way, it removed the last scientific objection to what many geologists and paleontologists thought was the great age of the Earth and the Sun. After this, Christians and Jews either had to give up belief in the literal truth of the Bible or resign themselves to intellectual irrelevance. This was just one step in a sequence of steps from Galileo through Newton and Darwin to the present that, time after time, has weakened the hold of religious dogmatism. Reading any newspaper nowadays is enough to show you that this work is not yet complete. But it is civilizing work, of which scientists are able to feel proud.

《Nature》上给青年科研工作者的几条忠告 (转载)相关推荐

  1. 科研工作者一般怎么找文献?

    最近微软出了一个学术搜索产品http://academic.research.microsoft.com/,百度出了一个百度学术搜索百度学术 - 保持学习的态度,还有一些其他的优秀的学术搜索产品,但是 ...

  2. 博士生是学生还是科研工作者?

    博士生的身份界定是一个系统工程,涉及到延迟退休政策.当下劳动力人口规模.博士点增设.博士生生活保障等各个方面,涉及人社.教育.人口等多个部门,值得系统性研究. >>>> 202 ...

  3. 起步难、评职称难、压力大!青年科研人员“心病”问题亟待关注!

    一项针对我国超过1万名科技工作者的调查数据显示:有24.0%的科技工作者可能存在一定程度的抑郁,其中6.4%的科技工作者属于高风险人群:有一定比例的科技工作者可能有不同程度的焦虑,其中部分科技工作者属 ...

  4. “科学学”视角下的科研工作者行为研究

    "科学学"视角下的科研工作者行为研究 贾韬1, 夏锋2 1 西南大学计算机与信息科学学院,重庆 400715 2 大连理工大学软件学院,辽宁 大连 116620 摘要:科学的复杂性 ...

  5. 院士:科研工作者也得养家,非升即走压力下,不得不做短平快的研究

    点击上方"视学算法",选择加"星标"或"置顶" 重磅干货,第一时间送达 本文来源:募格课堂综合自上游新闻.澎湃新闻.百度百科 如今,58岁的 ...

  6. 新冠研究数据哪里找?科研工作者必看(附链接)

    来源:志阳创谈 本文约4500字,建议阅读9分钟 本文为你整理了"新冠病毒数据资源和全球研究项目"在内的一些数据类型.数据来源.数据库和平台. 标签:数据收集 当下,新冠病毒已经全 ...

  7. 刘知远、赵鑫、施柏鑫:AI青年科研人员成长之路

    整理 | 刘冰一 在6月2日举办的智源大会青源学术年会举办的一个圆桌"青年科研人员成长之路与经验分享"上,清华大学计算机系副教授刘知远.中国人民大学高瓴人工智能学院长聘副教授赵鑫. ...

  8. 科研工作者的神器-zotero论文管理工具

    一.Zotero简介 Zotero作为一款协助科研工作者收集.管理以及引用研究资源的免费软件,如今已被广泛使用.此篇使用说明主要分享引用研究资源功能,其中研究资源可以包括期刊.书籍等各类文献和网页.图 ...

  9. 关于我们-找学术会议,上MeetConf!科研人都在看的学术会议网站

    学术会议作为学术活动中最重要.最高效的一种交流方式,仅2019-2020 年,我国召开的全国性学术会议就达16043场.国际性学术会议48129场.面对数量庞大的学术会议市场,如何挑选到合适的学术会议 ...

最新文章

  1. STM32 HAL库--串口的DMA(发送、接收)和esp8266 wifi模组发送和接收封装函数
  2. 身为网络安全的,连BlackMatter勒索软件都不知道,说出去丢不丢人啊
  3. 20211130 正定矩阵的几个不等式
  4. python 按从小到大的顺序组合成一个字典_Python实现字典排序、按照list中字典的某个key排序的方法示例...
  5. CNN几种经典模型比较
  6. 最近比较火的一款字节产品
  7. 免费python网络课程-python网络课程
  8. Linux 中的包管理器是什么?它是如何工作的?
  9. OPTIMIZE TABLE的作用--转载
  10. 阶段1 语言基础+高级_1-3-Java语言高级_06-File类与IO流_09 序列化流_4_transient关键字_瞬态关键字...
  11. 获得CPU利用率(python调用top命令实现)
  12. html5show()函数怎么写,实例:用JavaScript来操作字符串(一些字符串函数)_基础知识...
  13. 谷歌离线地图WMS/WMTS服务
  14. 小米笔记本PRO BIOS忘记密码后重置教程
  15. Visual Studio 2017中找不到商业智能(Business Intelligence)模块 |
  16. 零零后Java架构师斗胆挑战下一个传智播客,你怎么看?
  17. 极简步骤试玩Ant Design Pro myapp demo
  18. 网站变灰,首页变灰怎么实现?
  19. 编程实战:C语言制作垃圾回收器
  20. XP系统进不了服务器,xp系统电脑打不开网页的图文技巧

热门文章

  1. ustc小道消息20220112
  2. 科大星云诗社动态20210304
  3. 1-2 小程序适合做什么样的应用
  4. 如何将hive与mysql连接_hive连接mysql配置
  5. Delphi如果要追赶C#,最应该做的
  6. Delphi中类型转换函数
  7. 常用:javascript字符串函数 收藏
  8. OpenGL从入门到精通--纹理
  9. 常用的开源视音频解码软件库
  10. 取得 Git 仓库 —— Git 学习笔记 04