linux top命令详解

下面详细介绍它的使用方法。

top - 01:06:48 up 1:22, 1 user, load average: 0.06, 0.60, 0.48

Tasks: 29 total, 1 running, 28 sleeping, 0 stopped, 0 zombie

Cpu(s): 0.3% us, 1.0% sy, 0.0% ni, 98.7% id, 0.0% wa, 0.0% hi, 0.0% si

Mem: 191272k total, 173656k used, 17616k free, 22052k buffers

Swap: 192772k total, 0k used, 192772k free, 123988k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

1379 root 16 0 7976 2456 1980 S 0.7 1.3 0:11.03 sshd

14704 root 16 0 2128 980 796 R 0.7 0.5 0:02.72 top

1 root 16 0 1992 632 544 S 0.0 0.3 0:00.90 init

2 root 34 19 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/0

3 root RT 0 0 0 0 S 0.0 0.0 0:00.00 watchdog/0

统计信息区前五行是系统整体的统计信息。第一行是任务队列信息,同 uptime 命令的执行结果。其内容如下:

01:06:48 当前时间

up 1:22 系统运行时间,格式为时:分

1 user 当前登录用户数

load average: 0.06, 0.60, 0.48 系统负载,即任务队列的平均长度。

三个数值分别为 1分钟、5分钟、15分钟前到现在的平均值。

第二、三行为进程和CPU的信息。当有多个CPU时,这些内容可能会超过两行。内容如下:

Tasks: 29 total 进程总数

1 running 正在运行的进程数

28 sleeping 睡眠的进程数

0 stopped 停止的进程数

0 zombie 僵尸进程数

Cpu(s): 0.3% us 用户空间占用CPU百分比

1.0% sy 内核空间占用CPU百分比

0.0% ni 用户进程空间内改变过优先级的进程占用CPU百分比

98.7% id 空闲CPU百分比

0.0% wa 等待输入输出的CPU时间百分比

0.0% hi

0.0% si

最后两行为内存信息。内容如下:

Mem: 191272k total 物理内存总量

173656k used 使用的物理内存总量

17616k free 空闲内存总量

22052k buffers 用作内核缓存的内存量

Swap: 192772k total 交换区总量

0k used 使用的交换区总量

192772k free 空闲交换区总量

123988k cached 缓冲的交换区总量。

内存中的内容被换出到交换区,而后又被换入到内存,但使用过的交换区尚未被覆盖,

该数值即为这些内容已存在于内存中的交换区的大小。

相应的内存再次被换出时可不必再对交换区写入。

进程信息区统计信息区域的下方显示了各个进程的详细信息。首先来认识一下各列的含义。

列名 含义

PID 进程id

PPID 父进程id

RUSER Real user name

UID 进程所有者的用户id

USER 进程所有者的用户名

GROUP 进程所有者的组名

TTY 启动进程的终端名。不是从终端启动的进程则显示为 ?

PR 优先级

NI nice值。负值表示高优先级,正值表示低优先级

P 最后使用的CPU,仅在多CPU环境下有意义

%CPU 上次更新到现在的CPU时间占用百分比

TIME 进程使用的CPU时间总计,单位秒

TIME+ 进程使用的CPU时间总计,单位1/100秒

%MEM 进程使用的物理内存百分比

VIRT 进程使用的虚拟内存总量,单位kb。VIRT=SWAP+RES

SWAP 进程使用的虚拟内存中,被换出的大小,单位kb。

RES 进程使用的、未被换出的物理内存大小,单位kb。RES=CODE+DATA

CODE 可执行代码占用的物理内存大小,单位kb

DATA 可执行代码以外的部分(数据段+栈)占用的物理内存大小,单位kb

SHR 共享内存大小,单位kb

nFLT 页面错误次数

nDRT 最后一次写入到现在,被修改过的页面数。

S 进程状态。

D=不可中断的睡眠状态

R=运行

S=睡眠

T=跟踪/停止

Z=僵尸进程

COMMAND 命令名/命令行

WCHAN 若该进程在睡眠,则显示睡眠中的系统函数名

Flags 任务标志,参考 sched.h

三、调试

转载至linux load average 解析

在查看了top命令所显示的状态后,需要依据其来做优化,但top命令显示的只是表象,所以我们可以通过iostat或者vmstat命令进一步的观察。

3.1:查看系统负载vmstat

vmstat

procs -------memory-------- ----swap-- -----io---- --system-- ----cpu----

r b swpd free buff cache si so bi bo in cs us sy id wa

0 0 100152 2436 97200 289740 0 1 34 45 99 33 0 0 99 0

procs

r 列表示运行和等待cpu时间片的进程数,如果长期大于1,说明cpu不足,需要增加cpu。

b 列表示在等待资源的进程数,比如正在等待I/O、或者内存交换等。

cpu 表示cpu的使用状态

us 列显示了用户方式下所花费 CPU 时间的百分比。us的值比较高时,说明用户进程消耗的cpu时间多,但是如果长期大于50%,需要考虑优化用户的程序。

sy 列显示了内核进程所花费的cpu时间的百分比。这里us + sy的参考值为80%,如果us+sy 大于 80%说明可能存在CPU不足。

wa 列显示了IO等待所占用的CPU时间的百分比。这里wa的参考值为30%,如果wa超过30%,说明IO等待严重,这可能是磁盘大量随机访问造成的,也可能磁盘或者磁盘访问控制器的带宽瓶颈造成的(主要是块操作)。

id 列显示了cpu处在空闲状态的时间百分比

system 显示采集间隔内发生的中断数

in 列表示在某一时间间隔中观测到的每秒设备中断数。

cs列表示每秒产生的上下文切换次数,如当 cs 比磁盘 I/O 和网络信息包速率高得多,都应进行进一步调查。

memory

swpd 切换到内存交换区的内存数量(k表示)。如果swpd的值不为0,或者比较大,比如超过了100m,只要si、so的值长期为0,系统性能还是正常

free 当前的空闲页面列表中内存数量(k表示)

buff 作为buffer cache的内存数量,一般对块设备的读写才需要缓冲。

cache: 作为page cache的内存数量,一般作为文件系统的cache,如果cache较大,说明用到cache的文件较多,如果此时IO中bi比较小,说明文件系统效率比较好。

swap

si 由内存进入内存交换区数量。

so由内存交换区进入内存数量。

IO

bi 从块设备读入数据的总量(读磁盘)(每秒kb)。

bo 块设备写入数据的总量(写磁盘)(每秒kb)

这里我们设置的bi+bo参考值为1000,如果超过1000,而且wa值较大应该考虑均衡磁盘负载,可以结合iostat输出来分析。

3.2:查看磁盘负载iostat

每隔2秒统计一次磁盘IO信息,直到按Ctrl+C终止程序,-d 选项表示统计磁盘信息, -k 表示以每秒KB的形式显示,-t 要求打印出时间信息,2 表示每隔 2 秒输出一次。第一次输出的磁盘IO负载状况提供了关于自从系统启动以来的统计信息。随后的每一次输出则是每个间隔之间的平均IO负载状况。

iostat -x 1 10

Linux 2.6.18-92.el5xen 02/03/2009

avg-cpu: %user %nice %system %iowait %steal %idle

1.10 0.00 4.82 39.54 0.07 54.46

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s avgrq-sz avgqu-sz await svctm %util

sda 0.00 3.50 0.40 2.50 5.60 48.00 18.48 0.00 0.97 0.97 0.28

sdb 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

sdc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

sdd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

sde 0.00 0.10 0.30 0.20 2.40 2.40 9.60 0.00 1.60 1.60 0.08

sdf 17.40 0.50 102.00 0.20 12095.20 5.60 118.40 0.70 6.81 2.09 21.36

sdg 232.40 1.90 379.70 0.50 76451.20 19.20 201.13 4.94 13.78 2.45 93.16

rrqm/s: 每秒进行 merge 的读操作数目。即 delta(rmerge)/s

wrqm/s: 每秒进行 merge 的写操作数目。即 delta(wmerge)/s

r/s: 每秒完成的读 I/O 设备次数。即 delta(rio)/s

w/s: 每秒完成的写 I/O 设备次数。即 delta(wio)/s

rsec/s: 每秒读扇区数。即 delta(rsect)/s

wsec/s: 每秒写扇区数。即 delta(wsect)/s

rkB/s: 每秒读K字节数。是 rsect/s 的一半,因为每扇区大小为512字节。(需要计算)

wkB/s: 每秒写K字节数。是 wsect/s 的一半。(需要计算)

avgrq-sz: 平均每次设备I/O操作的数据大小 (扇区)。delta(rsect+wsect)/delta(rio+wio)

avgqu-sz: 平均I/O队列长度。即 delta(aveq)/s/1000 (因为aveq的单位为毫秒)。

await: 平均每次设备I/O操作的等待时间 (毫秒)。即 delta(ruse+wuse)/delta(rio+wio)

svctm: 平均每次设备I/O操作的服务时间 (毫秒)。即 delta(use)/delta(rio+wio)

%util: 一秒中有百分之多少的时间用于 I/O 操作,或者说一秒中有多少时间 I/O 队列是非空的。即 delta(use)/s/1000 (因为use的单位为毫秒)

如果 %util 接近 100%,说明产生的I/O请求太多,I/O系统已经满负荷,该磁盘

可能存在瓶颈。

idle小于70% IO压力就较大了,一般读取速度有较多的wait.

同时可以结合vmstat 查看查看b参数(等待资源的进程数)和wa参数(IO等待所占用的CPU时间的百分比,高过30%时IO压力高)

另外还可以参考

一般:

svctm < await (因为同时等待的请求的等待时间被重复计算了),

svctm的大小一般和磁盘性能有关:CPU/内存的负荷也会对其有影响,请求过多也会间接导致 svctm 的增加。

await: await的大小一般取决于服务时间(svctm) 以及 I/O 队列的长度和 I/O 请求的发出模式。

如果 svctm 比较接近 await,说明I/O 几乎没有等待时间;

如果 await 远大于 svctm,说明 I/O队列太长,应用得到的响应时间变慢,

如果响应时间超过了用户可以容许的范围,这时可以考虑更换更快的磁盘,调整内核 elevator算法,优化应用,或者升级 CPU。

队列长度(avgqu-sz)也可作为衡量系统 I/O 负荷的指标,但由于 avgqu-sz 是按照单位时间的平均值,所以不能反映瞬间的 I/O 洪水。

别人一个不错的例子.(I/O 系统 vs. 超市排队)

举一个例子,我们在超市排队 checkout 时,怎么决定该去哪个交款台呢? 首当是看排的队人数,5个人总比20人要快吧?除了数人头,我们也常常看看前面人购买的东西多少,如果前面有个采购了一星期食品的大妈,那么可以考虑换个队排了。还有就是收银员的速度了,如果碰上了连钱都点不清楚的新手,那就有的等了。另外,时机也很重要,可能 5分钟前还人满为患的收款台,现在已是人去楼空,这时候交款可是很爽啊,当然,前提是那过去的 5 分钟里所做的事情比排队要有意义(不过我还没发现什么事情比排队还无聊的)。

I/O 系统也和超市排队有很多类似之处:

r/s+w/s 类似于交款人的总数

平均队列长度(avgqu-sz)类似于单位时间里平均排队人的个数

平均服务时间(svctm)类似于收银员的收款速度

平均等待时间(await)类似于平均每人的等待时间

平均I/O数据(avgrq-sz)类似于平均每人所买的东西多少

I/O 操作率 (%util)类似于收款台前有人排队的时间比例。

我们可以根据这些数据分析出 I/O 请求的模式,以及 I/O 的速度和响应时间。

下面是别人写的这个参数输出的分析

iostat -x 1

avg-cpu: %user %nice %sys %idle

16.24 0.00 4.31 79.44

Device: rrqm/s wrqm/s r/s w/s rsec/s wsec/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util

/dev/cciss/c0d0

0.00 44.90 1.02 27.55 8.16 579.59 4.08 289.80 20.57 22.35 78.21 5.00 14.29

/dev/cciss/c0d0p1

0.00 44.90 1.02 27.55 8.16 579.59 4.08 289.80 20.57 22.35 78.21 5.00 14.29

/dev/cciss/c0d0p2

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

上面的 iostat 输出表明秒有 28.57 次设备 I/O 操作: 总IO(io)/s = r/s(读) +w/s(写) = 1.02+27.55 = 28.57 (次/秒) 其中写操作占了主体 (w:r = 27:1)。

平均每次设备 I/O 操作只需要 5ms 就可以完成,但每个 I/O 请求却需要等上 78ms,为什么? 因为发出的 I/O 请求太多 (每秒钟约 29 个),假设这些请求是同时发出的,那么平均等待时间可以这样计算:

平均等待时间 = 单个 I/O 服务时间 ( 1 + 2 + ... + 请求总数-1) / 请求总数

应用到上面的例子: 平均等待时间 = 5ms (1+2+...+28)/29 = 70ms,和 iostat 给出的78ms 的平均等待时间很接近。这反过来表明 I/O 是同时发起的。

每秒发出的 I/O 请求很多 (约 29 个),平均队列却不长 (只有 2 个 左右),这表明这 29 个请求的到来并不均匀,大部分时间 I/O 是空闲的。

一秒中有 14.29% 的时间 I/O 队列中是有请求的,也就是说,85.71% 的时间里 I/O 系统无事可做,所有 29 个 I/O 请求都在142毫秒之内处理掉了。

delta(ruse+wuse)/delta(io) = await = 78.21 => delta(ruse+wuse)/s=78.21 delta(io)/s = 78.2128.57 =2232.8,表明每秒内的I/O请求总共需要等待2232.8ms。所以平均队列长度应为 2232.8ms/1000ms = 2.23,而iostat 给出的平均队列长度 (avgqu-sz) 却为 22.35,为什么?! 因为 iostat 中有 bug,avgqu-sz值应为 2.23,而不是 22.35。

linux top命令看磁盘,linux top命令详解相关推荐

  1. linux 查看磁盘信息命令行,Linux系统中查看磁盘空间信息的命令

    Linux系统中磁盘空间的信息我们要怎么查看呢?下面由学习啦小编为大家整理了Linux系统中查看磁盘空间信息的命令,希望对大家有帮助! Linux系统中查看磁盘空间信息的命令:一.df -lh 命令 ...

  2. dd linux 格式化u盘启动盘_linux dd命令刻录启动U盘详解

    linux dd命令刻录启动U盘详解 dd命令做usb启动盘十分方便,只须:sudo dd if=xxx.iso of=/dev/sdb bs=1M 用以上命令前必须卸载u盘,sdb是你的u盘,bs= ...

  3. linux 脚本编写基本命令,Linux Shell命令行及脚本编程实例详解

    <Linux典藏大系:Linux Shell命令行及脚本编程实例详解>共15章,分为两篇.主要内容包括:Linux 及Linux Shell简介.初识Linux Shell.常用Shell ...

  4. linux环境下blastn命令怎么用,Linux环境下通配符及特殊符号使用详解

    Linux环境下通配符及特殊符号使用详解 我们现在来介绍通配符的使用,通过通配符的过滤,快速找到想找的文件和目录,比如/etc/目录下有上千个目录和文件,不使用通配符想找一个目录和文件是非常麻烦的和花 ...

  5. unix/linux命令“ls -l”选项输出结果详解

    from: http://hi.baidu.com/hoxily/item/12e2a02d03f77e0942634a8e unix/linux命令"ls -l"选项输出结果详解 ...

  6. linux里sh命令是做什么的?详解!

    linux里sh命令是做什么的?详解! cs_jiao | 浏览 49759 次  2010-08-20 12:05  2010-08-20 12:29 最佳答案 sh或是执行脚本,或是切换到sh这个 ...

  7. Linux中head和tail命令作用,Linux 命令head和tail常见用法详解

    head和tail是一组想对应的命令,默认分别显示文件的开头和末尾10行记录. head head 命令可以将一段文本的开头一部分输出到标准输出. head命令既可以处理文本文件也可以处理标准输入. ...

  8. linux系统编程笔记02——Linux命令:修改文件权限命令chmod、chgrp、chown详解

    Linux命令:修改文件权限命令chmod.chgrp.chown详解 Linux系统中的每个文件和目录都有访问许可权限,用它来确定谁可以通过何种方式对文件和目录进行访问和操作. 文件或目录的访问权限 ...

  9. linux 子域dns,linux下搭建DNS子域及相关授权详解

    linux下搭建DNS子域及相关授权详解forward功能是本地无法解析的域名,转发给指定DNS服务器 forward only; 所有无法解析的域名,都转发给指定DNS服务器,必须有解析结果 for ...

最新文章

  1. PHP常见的字符串方法
  2. Ubuntu 之 atom 安装以及 常用配置
  3. 中国滤清器制造行业竞争格局分析与发展战略规划研究报告2022年版
  4. 七个你没用过的炫酷开发工具推荐
  5. linux root邮箱地址,linux – 如何将root的电子邮件转发到外部电子邮件地址?
  6. python必考面试题目
  7. nginx 多个root_nginx虚拟主机配置
  8. 非功能性需求_非接触式喷射自动点胶机的优势在哪儿?
  9. python 类的使用基础
  10. 菜鸟学Linux 第031篇笔记 script,控制,while,function
  11. SQL Server 2019中的证书管理
  12. selenium webdriver 右键另存为下载文件(结合robot and autoIt)
  13. 开启win7笔记本自带无线功能
  14. 7z 7Zip 命令行压缩,解压缩文件
  15. n1盒子救砖_N1不能通过网络刷机后拆机救砖
  16. 博客9-12css2
  17. 练习电脑键盘打字最好的网站
  18. Amnesia失忆症攻略(本篇+later+crowd)
  19. Pytorch搭建EfficientNet网络和Openmax
  20. AM5728高性能SOC,满足工业协议支持、大数据计算、实时控制等需求,适用于图像处理、电力协议管理

热门文章

  1. Android12安装报错:Targeting S+ (version 31 and above) requires that an explicit value for android:export
  2. android glide图片灰色,glide 显示 加载不出来 图片 - CSDN博客
  3. 学生请假,班主任回复话术
  4. 嗨,躺在床上刷剧的你!
  5. 【论文阅读记录】基于视觉SLAM建图的无人机路径规划 作者:王海
  6. ChatGPT来了,英语不能丢,但我不想上班
  7. 【新型幻灯片制作软件】Focusky教程 | 输出的EXE幻灯片刚打开时的窗口大小怎么设置?
  8. 图像颜色迁移专题介绍(三): Deep Examplar-based Colorization
  9. SQL server关联字段中出现中英文括号导致数据翻倍
  10. xp系统打开计算机硬盘分区,如何对XP硬盘进行分区? xp系统中的硬盘分区方法...