MATLAB编程实现,BP神经网络用于系统辨识的问题?

谷歌人工智能写作项目:神经网络伪原创

BP神经网络模型各个参数的选取问题

样本变量不需要那么多,因为神经网络的信息存储能力有限,过多的样本会造成一些有用的信息被丢弃写作猫。如果样本数量过多,应增加隐层节点数或隐层数目,才能增强学习能力。

一、隐层数一般认为,增加隐层数可以降低网络误差(也有文献认为不一定能有效降低),提高精度,但也使网络复杂化,从而增加了网络的训练时间和出现“过拟合”的倾向。

一般来讲应设计神经网络应优先考虑3层网络(即有1个隐层)。一般地,靠增加隐层节点数来获得较低的误差,其训练效果要比增加隐层数更容易实现。

对于没有隐层的神经网络模型,实际上就是一个线性或非线性(取决于输出层采用线性或非线性转换函数型式)回归模型。

因此,一般认为,应将不含隐层的网络模型归入回归分析中,技术已很成熟,没有必要在神经网络理论中再讨论之。

二、隐层节点数在BP网络中,隐层节点数的选择非常重要,它不仅对建立的神经网络模型的性能影响很大,而且是训练时出现“过拟合”的直接原因,但是目前理论上还没有一种科学的和普遍的确定方法。

目前多数文献中提出的确定隐层节点数的计算公式都是针对训练样本任意多的情况,而且多数是针对最不利的情况,一般工程实践中很难满足,不宜采用。事实上,各种计算公式得到的隐层节点数有时相差几倍甚至上百倍。

为尽可能避免训练时出现“过拟合”现象,保证足够高的网络性能和泛化能力,确定隐层节点数的最基本原则是:在满足精度要求的前提下取尽可能紧凑的结构,即取尽可能少的隐层节点数。

研究表明,隐层节点数不仅与输入/输出层的节点数有关,更与需解决的问题的复杂程度和转换函数的型式以及样本数据的特性等因素有关。

一个关于信号源识别的BP神经网络 BP网络看不懂 求大神帮助 20

A是输出结果矩阵。E=T-A;这一句是计算输出与实际的误差。输入、输出不是直接的数学表达式关系,是一个非线性系统,通过训练得到的。

BP(BackPropagation)神经网络是年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hiddenlayer)和输出层(outputlayer)。

什么是BP神经网络?

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。

经反复学习,最终使误差减小到可接受的范围。具体步骤如下:1、从训练集中取出某一样本,把信息输入网络中。2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。

3、计算网络实际输出与期望输出的误差。4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。

5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。

BP神经网络(误差反传网络)

虽然每个人工神经元很简单,但是只要把多个人工神经元按一定方式连接起来就构成了一个能处理复杂信息的神经网络。采用BP算法的多层前馈网络是目前应用最广泛的神经网络,称之为BP神经网络。

它的最大功能就是能映射复杂的非线性函数关系。

对于已知的模型空间和数据空间,我们知道某个模型和他对应的数据,但是无法写出它们之间的函数关系式,但是如果有大量的一一对应的模型和数据样本集合,利用BP神经网络可以模拟(映射)它们之间的函数关系。

一个三层BP网络如图8.11所示,分为输入层、隐层、输出层。它是最常用的BP网络。理论分析证明三层网络已经能够表达任意复杂的连续函数关系了。只有在映射不连续函数时(如锯齿波)才需要两个隐层[8]。

图8.11中,X=(x1,…,xi,…,xn)T为输入向量,如加入x0=-1,可以为隐层神经元引入阀值;隐层输出向量为:Y=(y1,…,yi,…,ym)T,如加入y0=-1,可以为输出层神经元引入阀值;输出层输出向量为:O=(o1,…,oi,…,ol)T;输入层到隐层之间的权值矩阵用V表示,V=(V1,…,Vj,…,Vl)T,其中列向量Vj表示隐层第j个神经元的权值向量;隐层到输出层之间的权值矩阵用W表示,W=(W1,…,Wk,…,Wl)T,其中列向量Wk表示输出层第k个神经元的权值向量。

图8.11三层BP网络[8]BP算法的基本思想是:预先给定一一对应的输入输出样本集。学习过程由信号的正向传播与误差的反向传播两个过程组成。

正向传播时,输入样本从输入层传入,经过各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师信号)不符,则转入误差的反向传播。

将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有神经元,获得各层的误差信号,用它们可以对各层的神经元的权值进行调整(关于如何修改权值参见韩立群著作[8]),循环不断地利用输入输出样本集进行权值调整,以使所有输入样本的输出误差都减小到满意的精度。

这个过程就称为网络的学习训练过程。当网络训练完毕后,它相当于映射(表达)了输入输出样本之间的函数关系。

在地球物理勘探中,正演过程可以表示为如下函数:d=f(m)(8.31)它的反函数为m=f-1(d)(8.32)如果能够获得这个反函数,那么就解决了反演问题。

一般来说,难以写出这个反函数,但是我们可以用BP神经网络来映射这个反函数m=f-1(d)。

对于地球物理反问题,如果把观测数据当作输入数据,模型参数当作输出数据,事先在模型空间随机产生大量样本进行正演计算,获得对应的观测数据样本,利用它们对BP网络进行训练,则训练好的网络就相当于是地球物理数据方程的反函数。

可以用它进行反演,输入观测数据,网络就会输出它所对应的模型。BP神经网络在能够进行反演之前需要进行学习训练。训练需要大量的样本,产生这些样本需要大量的正演计算,此外在学习训练过程也需要大量的时间。

但是BP神经网络一旦训练完毕,在反演中的计算时间可以忽略。要想使BP神经网络比较好地映射函数关系,需要有全面代表性的样本,但是由于模型空间的无限性,难以获得全面代表性的样本集合。

用这样的样本训练出来的BP网络,只能反映样本所在的较小范围数据空间和较小范围模型空间的函数关系。对于超出它们的观测数据就无法正确反演。

目前BP神经网络在一维反演有较多应用,在二维、三维反演应用较少,原因就是难以产生全面代表性的样本空间。

BP神经网络的原理的BP什么意思

人工神经网络有很多模型,但是日前应用最广、基本思想最直观、最容易被理解的是多层前馈神经网络及误差逆传播学习算法(ErrorBack-Prooaeation),简称为BP网络。

在1986年以Rumelhart和McCelland为首的科学家出版的《ParallelDistributedProcessing》一书中,完整地提出了误差逆传播学习算法,并被广泛接受。

多层感知网络是一种具有三层或三层以上的阶层型神经网络。

典型的多层感知网络是三层、前馈的阶层网络(图4.1),即:输入层、隐含层(也称中间层)、输出层,具体如下:图4.1三层BP网络结构(1)输入层输入层是网络与外部交互的接口。

一般输入层只是输入矢量的存储层,它并不对输入矢量作任何加工和处理。输入层的神经元数目可以根据需要求解的问题和数据表示的方式来确定。

一般而言,如果输入矢量为图像,则输入层的神经元数目可以为图像的像素数,也可以是经过处理后的图像特征数。

(2)隐含层1989年,RobertHechtNielsno证明了对于任何在闭区间内的一个连续函数都可以用一个隐层的BP网络来逼近,因而一个三层的BP网络可以完成任意的n维到m维的映射。

增加隐含层数虽然可以更进一步的降低误差、提高精度,但是也使网络复杂化,从而增加了网络权值的训练时间。

误差精度的提高也可以通过增加隐含层中的神经元数目来实现,其训练效果也比增加隐含层数更容易观察和调整,所以一般情况应优先考虑增加隐含层的神经元个数,再根据具体情况选择合适的隐含层数。

(3)输出层输出层输出网络训练的结果矢量,输出矢量的维数应根据具体的应用要求来设计,在设计时,应尽可能减少系统的规模,使系统的复杂性减少。

如果网络用作识别器,则识别的类别神经元接近1,而其它神经元输出接近0。

以上三层网络的相邻层之间的各神经元实现全连接,即下一层的每一个神经元与上一层的每个神经元都实现全连接,而且每层各神经元之间无连接,连接强度构成网络的权值矩阵W。

BP网络是以一种有教师示教的方式进行学习的。首先由教师对每一种输入模式设定一个期望输出值。然后对网络输入实际的学习记忆模式,并由输入层经中间层向输出层传播(称为“模式顺传播”)。

实际输出与期望输出的差即是误差。按照误差平方最小这一规则,由输出层往中间层逐层修正连接权值,此过程称为“误差逆传播”(陈正昌,2005)。

所以误差逆传播神经网络也简称BP(BackPropagation)网。随着“模式顺传播”和“误差逆传播”过程的交替反复进行。

网络的实际输出逐渐向各自所对应的期望输出逼近,网络对输入模式的响应的正确率也不断上升。通过此学习过程,确定下各层间的连接权值后。

典型三层BP神经网络学习及程序运行过程如下(标志渊,2006):(1)首先,对各符号的形式及意义进行说明:网络输入向量Pk=(a1,a2,...,an);网络目标向量Tk=(y1,y2,...,yn);中间层单元输入向量Sk=(s1,s2,...,sp),输出向量Bk=(b1,b2,...,bp);输出层单元输入向量Lk=(l1,l2,...,lq),输出向量Ck=(c1,c2,...,cq);输入层至中间层的连接权wij,i=1,2,...,n,j=1,2,...p;中间层至输出层的连接权vjt,j=1,2,...,p,t=1,2,...,p;中间层各单元的输出阈值θj,j=1,2,...,p;输出层各单元的输出阈值γj,j=1,2,...,p;参数k=1,2,...,m。

(2)初始化。给每个连接权值wij、vjt、阈值θj与γj赋予区间(-1,1)内的随机值。(3)随机选取一组输入和目标样本提供给网络。

(4)用输入样本、连接权wij和阈值θj计算中间层各单元的输入sj,然后用sj通过传递函数计算中间层各单元的输出bj。

基坑降水工程的环境效应与评价方法bj=f(sj)j=1,2,...,p(4.5)(5)利用中间层的输出bj、连接权vjt和阈值γt计算输出层各单元的输出Lt,然后通过传递函数计算输出层各单元的响应Ct。

基坑降水工程的环境效应与评价方法Ct=f(Lt)t=1,2,...,q(4.7)(6)利用网络目标向量,网络的实际输出Ct,计算输出层的各单元一般化误差。

基坑降水工程的环境效应与评价方法(7)利用连接权vjt、输出层的一般化误差dt和中间层的输出bj计算中间层各单元的一般化误差。

基坑降水工程的环境效应与评价方法(8)利用输出层各单元的一般化误差与中间层各单元的输出bj来修正连接权vjt和阈值γt。

基坑降水工程的环境效应与评价方法(9)利用中间层各单元的一般化误差,输入层各单元的输入Pk=(a1,a2,...,an)来修正连接权wij和阈值θj。

基坑降水工程的环境效应与评价方法(10)随机选取下一个学习样本向量提供给网络,返回到步骤(3),直到m个训练样本训练完毕。

(11)重新从m个学习样本中随机选取一组输入和目标样本,返回步骤(3),直到网路全局误差E小于预先设定的一个极小值,即网络收敛。如果学习次数大于预先设定的值,网络就无法收敛。(12)学习结束。

可以看出,在以上学习步骤中,(8)、(9)步为网络误差的“逆传播过程”,(10)、(11)步则用于完成训练和收敛过程。通常,经过训练的网络还应该进行性能测试。

测试的方法就是选择测试样本向量,将其提供给网络,检验网络对其分类的正确性。测试样本向量中应该包含今后网络应用过程中可能遇到的主要典型模式(宋大奇,2006)。

这些样本可以直接测取得到,也可以通过仿真得到,在样本数据较少或者较难得到时,也可以通过对学习样本加上适当的噪声或按照一定规则插值得到。

为了更好地验证网络的泛化能力,一个良好的测试样本集中不应该包含和学习样本完全相同的模式(董军,2007)。

BP神经网络需要训练的参数,BP神经网络图像识别相关推荐

  1. BP神经网络需要训练的参数,bp神经网络训练时间

    bp神经网络如何用于预测 谷歌人工智能写作项目:神经网络伪原创 BP神经网络完成预测 5 好文案. 下面是几个仿真实验,用了不同的训练函数:1.创建BP网络的学习函数,训练函数和性能函数都采用defa ...

  2. 神经网络越训练准确率越低,神经网络训练的优势

    人工神经网络算法的学习率有什么作用? 1.神经网络的结构(例如2输入3隐节点1输出)建好后,一般就要求神经网络里的权值和阈值.现在一般求解权值和阈值,都是采用梯度下降之类的搜索算法(梯度下降法.牛顿法 ...

  3. 详细解释CNN卷积神经网络各层的参数和链接个数的计算

    卷积神经网络是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成. 图:卷积神经网络的概念示范:输入图像通过和三个可训练的滤波器和可加偏置进行卷积,滤波过程如图一,卷积后在C1 ...

  4. 8.3 TensorFlow BP神经网络构建与超参数的选取

    前言 之前的8.1 构建回归模型的重点在于计算图概念,8.2则介绍一些在整个流程中更靠后的部分:损失函数,优化函数,以及一些其他常用的函数.而本片中的重点在于构建计算图,与模型的训练与测试BP 代码与 ...

  5. MATLAB神经网络编程(六)——BP神经网络的训练函数

    <MATLAB神经网络编程> 化学工业出版社 读书笔记 第四章 前向型神经网络 4.3 BP传播网络 本文是<MATLAB神经网络编程>书籍的阅读笔记,其中涉及的源码.公式.原 ...

  6. BP神经网络语音训练

    下面来介绍一下BP神经网络及其关于语音训练学习的知识: BP神经网络:BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一 ...

  7. bp神经网络训练函数选择,BP神经网络训练过程

    BP神经网络的训练集需要大样本吗?一般样本个数为多少? BP神经网络的训练集需要大样本吗?一般样本个数为多少? BP神经网络样本数有什么影响学习神经网络这段时间,有一个疑问,BP神经网络中训练的次数指 ...

  8. BP算法作为一种常用的神经网络训练算法有哪些优势

    BP(Back Propagation)算法是一种常用的神经网络训练算法,主要用于识别分类和预测.常用于图像识别.语音识别.文本分类等场景.它的原理是通过对误差进行反向传播来更新网络的参数,使得模型的 ...

  9. matlab 神经网络 参数,BP神经网络matlab详细参数

    基于matlab BP 神经网络参数详解 (1)生成BP 网络 (,[1 2...],{ 1 2...},,,)net newff PR S S SNl TF TF TFNl BTF BLF PF = ...

  10. bp神经网络的训练过程,BP神经网络图像识别

    MATLAB中BP神经网络的训练算法具体是怎么样的 BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成.正向传播时,输入样本从输入层传入,经各隐层逐层处理后,传向输出层. 若输 ...

最新文章

  1. virtual hust 2013.6.20 数论基础题目 D - Just the Facts
  2. linux shell 数组倒序
  3. LiveBins缔造者
  4. NYOJ-99 单词拼接(欧拉+回溯)
  5. 记一次对学校的渗透测试
  6. why in GM0 our extension component this.sPath is not correct
  7. inet_pton函数和inet_ntop函数的用法及简单实现
  8. 修复 IE 的文本3像素偏移Bug
  9. php从头部添加,php如何向header头添加Authorization信息?
  10. mysql横向扩展_高可用MySQL学习笔记-面向横向扩展的MYSQL复制
  11. 农村大学生的出路或许是读个真才实学的博士
  12. microsoft excel 正在等待其他某个应用程序_(Mac常见问题)都有哪些应用程序可以在M1 Mac上运行?...
  13. JSch连接不上Linux服务器,JSch链接linux服务器问题解决方案:Session.connect: java.io.IOException: End of IO Stream Read...
  14. 解决:The proxy server received an invalid response from an upstream server
  15. Ubuntu联网问题解决
  16. 上海浦东生育津贴领取记录
  17. Javascrpt测试
  18. 企业内部短信模板大全分析
  19. django后台搜索显示Related Field got invalid lookup: icontains
  20. 身体传感器 android,小米人体传感器手机客户端-小米人体传感器app下载v4.3.11 安卓版-西西软件下载...

热门文章

  1. WPF 第三方控件学习使用——可停靠布局控件(AvalonDock)
  2. 网页视频html转换ppt,ppt转web ppt可以转换为视频文件?
  3. 局域网计算机名和ip扫描工具,局域网IP扫描器(Advanced IP Scanner)
  4. macOS Windows版本 Photoshop 下载 AI下载
  5. IT服务管理的实施过程
  6. 无盘服务器 免费,免费无广告的网咖专用云无盘安装图文教程
  7. Linux环境安装ghostscript-9.25
  8. python实训总结泰坦尼克号重建_Python之泰坦尼克号生存率分析
  9. c语言能编程病毒吗,这个人用C语言写了个简单的“病毒”!
  10. CUDA核函数share memory