如今学习应用数据可视化的渠道有很多,你可以跟踪一些专家博客,但更重要的一点是实践/实操,你必须对目前可用的数据可视化工具有个大致了解。以下是二十大数据可视化工具,无论你是准备制作简单的图表还是复杂的图谱或者信息图,这些工具都能满足你的需要。 更加美妙的是,这些工具大多免费。
  第一部分:入门级工具

1.Excel

Excel的图形化功能并不强大,但Excel是分析数据的理想工具,上图是Excel生成的热力地图

作为一个入门级工具,Excel是快速分析数据的理想工具,也能创建供内部使用的数据图,但是Excel在颜色、线条和样式上可选择的范围有限,这也意味着用Excel很难制作出能符合专业出版物和网站需要的数据图。但是作为一个高效的内部沟通工具,Excel应当是你百宝箱中必备的工具之一。

2.CSV/JSON

CSV(逗号分隔值)和JSON(JavaScript对象注释)虽然并不是真正的可视化工具,但却是常见的数据格式。你必须理解他们的结构,并懂得如何从这些文件中导入或者导出数据。以下将要介绍的所有数据可视化工具都支持CSV、JSON中至少一种格式。

第二部分:在线数据可视化工具

3.Google Chart API

Google Chart API工具集中取消了静态图片功能,目前只提供动态图表工具。能够在所有支持SVGCanvas和VML的浏览器中使用,但是Google Chart的一个大问题是:图表在客户端生成,这意味着那些不支持JavaScript的设备将无法使用,此外也无法离线使用或者将结果另存其他格式,之前的静态图片就不存在这个问题。尽管存在上述问题,不可否认的是Google Chart API的功能异常丰富,如果没有特别的定制化需要,或者对Google视觉风格的抵触,那么你大可以从Google Chart开始。

4.Flot

Flot 是一个优秀的线框图表库,支持所有支持canvas的浏览器(目前主流的浏览器如火狐、IE、Chrome等都支持)。

5.Raphaël

Raphaël 是创建图表和图形的JavaScript库,与其他库最大的不同是输出格式仅限SVG和VML。SVG是矢量格式,在任何分辨率下的显示效果都很好。

6.D3

D3 (Data Driven Documents)是支持SVG渲染的另一种JavaScript库。但是D3能够提供大量线性图和条形图之外的复杂图表样式,例如Voronoi图、树形图、圆形集群和单词云等。虽然D3能够提供非常花哨的互动图表,但你在选择数据可视化工具时,需要牢记的一点是:知道在何时保持简洁。

7.Visual.ly

如果你需要制作信息图而不仅仅是数据可视化,目前也有大把的工具可用。 Visual.ly 就是最流行的一个选择。虽然Visual.ly的主要定位是:“信息图设计师的在线集市”,但是也提供了大量信息图模板。虽然功能还有很多限制,但是Visual.ly绝对是个能激发你灵感的地方。

第三部分:互动图形用户界面(GUI)控制

如果数据可视化的互动性强大到可以作为GUI界面会怎样?随着在线数据可视化的发展,按钮、下拉列表和滑块都在进化成更加复杂的界面元素,例如能够调整数据范围的互动图形元素,推拉这些图形元素时输入参数和输出结果数据会同步改变,在这种情况下,图形控制和内容已经合为一体。以下这些工具能够帮你实现这些功能:

8.Crossfilter

当我们为方便客户浏览数据开发出更加复杂的工具时,我们已经能够创建出既是图表,又是互动图形用户界面的小程序。JavaScript库 Crossfilter 就是这样的工具。

Crossfilter应用:当你调整一个图表中的输入范围时,其他关联图表的数据也会随之改变。

9.Tangle

JavaScript库 Tangle 进一步模糊了内容与控制之间的界限。在下图这个应用实例中,Tangle生成了一个负载的互动方程,读者可以调整输入值获得相应数据。

第四部分:地图工具

地图生成是web上最困难的任务之一。Google Maps的出现完全颠覆了过去人们对在线地图功能的认识。而Google发布的 Maps API 则让所有的开发者都能在自己的网站中植入地图功能。

近年来,在线地图的市场成熟了很多,如果你需要在数据可视化项目中植入定制化的地图方案,目前市场上已经有很多选择,但是知道在何时选择何种地图方案则成了一个很关键的业务决策。地图方案看上去功能都很强大,但是切忌:“有了一把锤子,看什么都像钉子。”

10. Modest Maps

顾名思义, Modest Maps 是一个很小的地图库,只有10KB大小,是目前最小的可用地图库。这似乎意味着Modest Maps只提供一些基本的地图功能,但是不要被这一点迷惑了。在一些扩展库的配合下,例如 Wax ,Modest Maps立刻会变成一个强大的地图工具。

11.Leaflet

CloudMade团队为大家带来了 Leaflet ,这是另外一个小型化的地图框架,通过小型化和轻量化来满足移动网页的需要。Leaflet和Modest Maps都是开源项目,有强大的社区支持,是在网站中整合地图应用的理想选择。

12. PolyMaps

Polymaps 是另外一个地图库,但主要面向数据可视化用户。Polymaps在地图风格化方面有独到之处,类似CSS样式表的选择器,是不可错过的好东西。

13.OpenLayers

OpenLayers 可能是所有地图库中可靠性最高的一个。虽然文档注释并不完善,且学习曲线非常陡峭,但是对于一些特定的任务来说,OpenLayers无可匹敌。例如能够提供一些其他地图库都没有的特殊工具。

14.Kartograph

Kartograph的标记线是对地图绘制的重新思考,我们都已经习惯了莫卡托投影( Mercator projection ),但是Kartograph为我们带来了更多的选择。如果你不需要调用全球数据,而仅仅是生成某一区域的地图,那么Kartogaph将使你脱颖而出。

15.CartoDB

CartoDB 是一个不可错过的网站。你可以用CartoDB很轻易就把表格数据和地图关联起来,这方面CartoDB是最优秀的选择。例如,你可以输入CSV通讯地址文件,CartDB能将地址字符串自动转化成经度/维度数据并在地图上标记出来。目前CartoDB支持免费生成五张地图数据表,更多使用需要支付月费。

Charting Fonts

(随着iPad3等高清移动设备的普及)web开发的一个最新趋势是将符号字体与字体整合(把符号变成字体),创建出漂亮的矢量化图标。在这些新型字体中,例如 FF Chartwell 和 Chartjunk 是专门用来显示图表和图形的。他们与OpenType碰到的问题一样,就是不能被所有的浏览器支持,但是不久的未来这些矢量字体将是数据可视化工作中需要考虑到的因素。

第五部分:进阶工具

如果你准备用数据可视化做一些“严肃”的工作,那么你可能不会对在线可视化工具或者web小程序有太大兴趣,你需要的是桌面应用和编程环境。

16. Processing

Processing 是数据可视化的招牌工具。你只需要编写一些简单的代码,然后编译成Java。目前还有一个 Processing.js 项目,可以让网站在没有Java Applets的情况下更容易地使用Processing。由于端口支持Objective-C,你也可以在iOS上使用Processing。虽然Processing是一个桌面应用,但也可以在几乎所有平台上运行,此外经过数年发展,Processing社区目前已近拥有大量实例和代码。

17.NodeBox

NodeBox 是OS X上创建二维图形和可视化的应用程序。你需要了解Python程序,NodeBox与Processing类似,但是没有Processing的互动功能。

第六部分:专家级工具

与Excel相对的是专业数据分析工具。如果你是一个专业的数据分析师,那么你就必须对下面将要介绍的工具有所了解(如果不是精通的话)。众所周知, SPSS 和 SAS 是数据分析行业的标准工具,但是这些工具的费用不菲,只有大型组织和学术机构才有机会使用,下面我们介绍几种免费的替代工具,这些开源工具的共同特征是都有强大的社区支持。开源分析工具性能不输老牌专业工具,插件的支持甚至更好。

18.R

作为用来分析大数据集的统计组件包,R是一个非常复杂的工具,需要较长的学习实践,学习曲线也是本文所介绍工具中最陡峭的。但是R拥有强大的社区和组件库,而且还在不断成长。当你能驾驭R的时候,一切付出都是物有所值的。

19.Weka

当你成长成一名数据科学家的时候,你需要将个人能力从数据可视化扩展到数据挖掘领域。Weka是一个能根据属性分类和集群大量数据的优秀工具,Weka不但是数据分析的强大工具,还能生成一些简单的图表。

20. Gephi

Gephi 是进行社交图谱数据可视化分析的工具,不但能处理大规模数据集并生成漂亮的可视化图形,还能对数据进行清洗和分类。Gephi是一种非常特殊的软件,也非常复杂,先于他人掌握Gephi将使你一骑绝尘
  人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:
1.在学习大数据之前,需要具备什么基础
http://www.duozhishidai.com/article-12916-1.html
2.大数据工程师培训,需要学习的有哪些课程?
http://www.duozhishidai.com/article-15081-1.html
3.大数据的特点是什么,大数据与Hadoop有什么关系?
http://www.duozhishidai.com/article-13276-1.html


多智时代-人工智能和大数据学习入门网站|人工智能、大数据、物联网、云计算的学习交流网站

大数据可视化分析,主要有哪些大数据可视化工具?相关推荐

  1. 数据与分析领域的十大技术趋势

    来源:人工智能与大数据 近日,Gartner发布了数据与分析领域的十大技术趋势,为数据和分析领导者的新冠疫情(COVID-19)响应和恢复工作提供指导,并为疫情后的重启做好准备. 数据和分析领导者如果 ...

  2. python爬虫beautifulsoup爬当当网_利用python爬虫可视化分析当当网的图书数据!

    导语 这周末就分享个小爬虫吧.利用Python爬取并简单地可视化分析当当网的图书数据. 开发工具 Python版本:3.6.4 相关模块: requests模块: bs4模块: wordcloud模块 ...

  3. 利用python爬虫可视化分析当当网的图书数据

    导语 这周末就分享个小爬虫吧.利用Python爬取并简单地可视化分析当当网的图书数据. 开发工具 **Python版本:**3.6.4 相关模块: requests模块: bs4模块: wordclo ...

  4. 可视化分析中国500强排行榜数据后,我发现了...

    1 前言 今天来跟大家分析一下2020年中国500强企业排行榜数据,从不同角度去对数据进行统计分析,可视化展示. 主要分析内容: 中国500强企业-省份分布. 中国500强企业-营业收入年增率. 中国 ...

  5. 智慧零售数据可视化分析_零售行业大数据分析应用

    今年的双11和往年相比似乎有一点冷清,各大电商平台在数据披露上都低调了起来.在这样的氛围下,各位电商运营更要自己"支楞起来",用心做好自家活动的复盘总结. 这个时候数据分析的技能就 ...

  6. 数据可视化和可视化分析:你能看到数据世界

    看了很多介绍数据可视化的文章,但是解释的可能都比较片面,数据可视化的用途在于辅助数据分析,那么数据可视化和可视化分析又具体是什么? 在一个日益以数据为主导的世界中,各种各样的用户正在以多种方式收集数据 ...

  7. OpenStreetMap数据Qt5分析实战(基于2020数据)

    openstreetmap是一种完全开放的地理信息系统,数据由个人.公司免费捐赠.维护.本文在2019年的基础上,利用新的数据样本,展示Qt5作为棒哒哒的C++重量级框架的强悍.OpenStreetM ...

  8. python大数据读取分析_python如何读取大数据

    {"moduleinfo":{"card_count":[{"count_phone":1,"count":1}],&q ...

  9. 金融数据python分析实例_Python金融大数据分析-蒙特卡洛仿真

    1.简单的例子 了解一点金融工程的对这个公式都不会太陌生,是用现在股价预测T时间股价的公式,其背后是股价符合几何布朗运动,也就是大名鼎鼎的BSM期权定价模型的基础. 我们假设现在一个股票的价值是100 ...

  10. R语言数据可视化分析案例:探索BRFSS数据

    最近我们被客户要求撰写关于BRFSS数据的研究报告,包括一些图形和统计输出. 加载包 library(tidyr) library(knitr) opts_chunk$set(echo = TRUE, ...

最新文章

  1. northstar机器人编程_《机器人构建实战》——导读
  2. 如何解决python中编码错误的问题_【总结】Python 2.x中常见字符编码和解码方面的错误及其解决办法...
  3. Asp.Net中WebForm与MVC,Web API模式对比
  4. c语言主函数名用户指定,C语言允许main函数带形参,且形参个数和形参名均可由用户指定。()...
  5. 成为一个优秀的前端工程师,其实你也可以!
  6. 1.请求安全-- MD5的必要性以及实际应用场景
  7. Media Queries移动设备样式
  8. python虚拟环境virtualenv、virtualenv下运行IDLE、powershell 运行脚本由执行策略引起的问题...
  9. AES攻击方法 :差分密码分析 boomerang attack飞去来器攻击
  10. 计算机表格函数公式在表格中人数,计算机办公自动化常用公式和函数在电子表格中的应用...
  11. 计算机网络连接无线局域网,无线局域网的连接方法
  12. 统计学第一类错误和第二类错误
  13. *TEST 6 for NOIP + NOIP初赛
  14. MATLAB——更换主题颜色
  15. 用python求圆的表面积_【用python写一组类(class)对应各种几何体(正方体,长方体,球,圆柱)的表面积和体积的编码】作业帮...
  16. Ubuntu配置locale
  17. 学习 stm32(TTL)串口通信控制16路舵机控制板(维特智能)
  18. 前端实现QQ聊天气泡
  19. 数据库 之带子查询的操作--插入子查询结果、带子查询的修改语句、带子查询的删除语句
  20. The bean ‘Xxx‘ could not be injected as a ‘Xxx‘ because it is a JDK dynamic proxy that implements:x

热门文章

  1. IP信息解析和地理定位,以及免费GeoLite2-City.mmdb的使用教程
  2. 单元测试工具Numega BoundsChecker
  3. PCB Layout的10个细节
  4. arm linux嵌入式系统教程课后答案,ARM嵌入式系统基础教程课后习题答案及练习题__周立功...
  5. 空域、频域、时域的解释
  6. 每周分享第 18 期
  7. 贴片电阻电容标称换算
  8. 【电子书资源】数值方法最优化理论算法凸优化 ---书籍调研(附网盘下载地址)...
  9. 系统研发类项目标书制作流程--标书该怎么做?
  10. ic卡识别程序c语言,求ID/IC卡的原理与C语言读取程序?