信号量概念

信号量本质上是一个计数器(不设置全局变量是因为进程间是相互独立的,而这不一定能看到,看到也不能保证++引用计数为原子操作),用于多进程对共享数据对象的读取,它和管道有所不同,它不以传送数据为主要目的,它主要是用来保护共享资源(信号量也属于临界资源),使得资源在一个时刻只有一个进程独享。

信号量分类

因为各种原因,Linux下有多种信号量实现机制,可以分别应用于不同的场合,分类如下:

用户信号量主要运行于用户态,比如进程间都要访问某个文件,那么只有获得信号量的进程才能打开文件,其他进程会进入休眠,我们也可以查看当前信号量的值,以判断是否要进入临界区。

内核信号量主要运行于Linux内核,主要实现对内核临界资源的互斥使用,比如某个设备只能被某一个进程打开,无法打开设备的例程会导致用户空间的进程休眠。

POSIX有名信号量

主要应用于线程。

 sem_t *sem_open(const char *name, int oflag, mode_t mode, int val);int sem_wait(sem_t *sem);int sem_trywait(sem_t *sem);int sem_post(sem_t *sem);int sem_close(sem_t *sem);int sem_unlink(const char *name);

每个open的位置都要close和unlink,但只有最后执行的unlink生效

POSIX无名信号量

主要应用于线程。

#include<semaphore.h>
sem_t sem;
int sem_init(sem_t *sem, int pshared, unsigned int val); //pshared为0则线程间共享,pshared为1则父子进程共享
int sem_wait(sem_t *sem); //阻塞
int sem_trywait(sem_t *sem); //非阻塞
int sem_post(sem_t *sem);
int sem_destroy(sem_t *sem);
进程间共享则sem必须放在共享内存区域(mmap, shm_open, shmget),父进程的全局变量、堆、栈中存储是不行的

内核信号量:

#include<asm/semaphore.h>
void sema_init(struct semaphore *sem, int val);
void down(struct semaphore *sem); //可睡眠
int down_interruptible(struct semaphore *sem); //可中断
int down_trylock(struct semaphore *sem); //m非阻塞
void up(struct semaphore *sem);

除此之外信号量还有一种分类方法

二值信号量(binary semaphore)和计数信号量(counting semaphore)。
二值信号量:
顾名思义,其值只有两种0或1,相当于互斥量,当值为1时资源可用;而当值为0时,资源被锁住,进程阻塞无法继续执行。
计数信号量:
其值是在0到某个限制值之间的信号量。

信号量的工作原理

信号量只能进行两种操作等待和发送信号,信号量操作总结起来,其核心是PV操作,P(sv)和V(sv),他们的行为是这样的:

(1)P(sv):
如果sv的值大于零,就给它减1;如果它的值为零,就挂起该进程的执行

(2)V(sv):
如果有其他进程因等待sv而被挂起,就让它恢复运行,如果没有进程因等待sv而挂起,就给它加1.

在信号量进行PV操作时都为原子操作(因为它需要保护临界资源)

注:原子操作:单指令的操作称为原子的,单条指令的执行是不会被打断的

System V IPC

讲解System V信号量之前,先了解下什么是System V IPC。

System V IPC一共有三种类型的IPC合称为System V IPC:

  1. System V信号量
  2. System V消息队列
  3. System V共享内存

System V IPC在访问它们的函数和内核为它们维护的信息上有一些类似点,主要包括:

  1. IPC键和ftok函数
  2. ipc_perm结构
  3. 创建或打开时指定的用户访问权限
  4. ipcs和ipcrm命令

下表汇总了所有System V IPC函数。

信号量 消息队列 共享内存
头文件 sys/sem.h sys/msg.h sys/shm.h
创建或打开IPC的函数 semget msgget shmget
控制IPC操作的函数 semctl msgctl shmctl
IPC操作函数 semop msgsnd msgrcv shmat shmdt

IPC键和ftok函数

三种类型的System V IPC都使用IPC键作为它们的标识,IPC键是一个key_t类型的整数,该类型在sys/types.h中定义。
IPC键通常是由ftok函数赋予的,该函数把一个已存在的路径名pathname和一个非0整数id组合转换成一个key_t值,即IPC键。

#include <sys/ipc.h>//成功返回IPC键,失败返回-1
key_t ftok(const char *pathname, int id);

参数说明:

  • pathname在是程序运行期间必须稳定存在,不能反复创建与删除
  • id不能为0,可以是正数或者负数

ipc_perm结构

内核给每个IPC对象维护一个信息结构,即struct ipc_perm结构,该结构及System V IPC函数经常使用的常值定义在sys/ipc.h头文件中。

struct ipc_perm
{uid_t   uid;   //owner's user idgid_t   gid;   //owner's group iduid_t   cuid;  //creator's group idgid_t   cgid;  //creator's group idmode_t  mode;  //read-write permissionsulong_t seq;   //slot usage sequence numberkey_t   key;   //IPC key
};

创建与打开IPC对象

创建或打开一个IPC对象使用相应的xxxget函数,它们都有两个共同的参数:

  • 参数key,key_t类型的IPC键
  • 参数oflag,用于指定IPC对象的读写权限(ipc_perm.mode),并选择是创建一个新的IPC对象还是打开一个已存在的IPC对象

对于参数key,应用程序有两种选择:

  • 调用ftok,给它传pathname和id
  • 指定key为IPC_PRIVATE,这将保证会创建一个新的、唯一的IPC对象,但该标志不能用于打开已存在的IPC对象,只能是新建

对于参数oflag,如上所述,它包含读写权限、创建或打开这两方面信息:

  • 可以指定IPC_CREAT标志,其含义和Posix IPC的O_CREAT一样
  • 还可以设置为下表所示的常值来指定读写权限

ipcs和ipcrm命令

由于System V IPC的三种类型不是以文件系统路径名标识的,因此无法使用ls和rm命令查看与删除它们
ipcs和ipcrm分别用于查看与删除系统中的System V IPC
usage : ipcs -asmq -tclup ipcs [-s -m -q] -i idipcs -h for help.
usage: ipcrm [ [-q msqid] [-m shmid] [-s semid][-Q msgkey] [-M shmkey] [-S semkey] ... ]

SYSTEM V 信号量

SystemV信号量并不如Posix信号量那样“好用”,但相比之下它的年代更加久远,但是SystemV使用的却更加广泛(尤其是在老系统中)。

System V信号量是指的计数信号量集(set of counting semaphores),是一个或多个信号量的集合,其中每个都是计数信号量。(注:System V 信号量是计数信号量集,Posix 信号量是单个计数信号量。)

所有函数共用头文件

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

创建信号量

int semget(key_t key,int nsems,int flags)
//返回:成功返回信号集ID,出错返回-1
  • (1)第一个参数key是长整型(唯一非零),系统建立IPC通讯 ( 消息队列、 信号量和 共享内存) 时必须指定一个ID值。通常情况下,该id值通过ftok函数得到,由内核变成标识符,要想让两个进程看到同一个信号集,只需设置key值不变就可以。

  • (2)第二个参数nsem指定信号量集中需要的信号量数目,它的值几乎总是1。

  • (3)第三个参数flag是一组标志,当想要当信号量不存在时创建一个新的信号量,可以将flag设置为IPC_CREAT与文件权限做按位或操作。
    设置了IPC_CREAT标志后,即使给出的key是一个已有信号量的key,也不会产生错误。而IPC_CREAT | IPC_EXCL则可以创建一个新的,唯一的信号量,如果信号量已存在,返回一个错误。一般我们会还或上一个文件权限

删除和初始化信号量

int semctl(int semid, int semnum, int cmd, ...);

功能:
信号量控制操作。
参数:
semid标示操作的信号量集;semnum标示该信号量集内的某个成员(0,1等,直到nsems-1),semnum值仅仅用于GETVAL,SETVAL,GETNCNT,GETZCNT,GETPID,通常取值0,也就是第一个信号量;cmd:指定对单个信号量的各种操作,IPC_STAT,IPC_GETVAL,IPC_SETVAL,IPC_RMID;arg: 可选参数,取决了第三个参数cmd。
返回值:
若成功,根据cmd不同返回不同的值,IPC_STAT,IPC_SETVAL,IPC_RMID返回0,IPC_GETVAL返回信号量当前值;出错返回-1.

如有需要第四个参数一般设置为union semnu arg;定义如下

union semun
{ int val;  //使用的值struct semid_ds *buf;  //IPC_STAT、IPC_SET 使用的缓存区unsigned short *arry;  //GETALL,、SETALL 使用的数组struct seminfo *__buf; // IPC_INFO(Linux特有) 使用的缓存区
};
  • (1)sem_id是由semget返回的信号量标识符
  • (2)semnum当前信号量集的哪一个信号量
  • (3)cmd通常是下面两个值中的其中一个
    SETVAL:用来把信号量初始化为一个已知的值。p 这个值通过union semun中的val成员设置,其作用是在信号量第一次使用前对它进行设置。
    IPC_RMID:用于删除一个已经无需继续使用的信号量标识符,删除的话就不需要缺省参数,只需要三个参数即可。

结构体

由于system v信号量是伴随着内核的启动而生成,我们可以在源码文件sem.c中看到static struct ipc_ids sem_ids;它是system v信号量的入口,因此在系统运行过程中是一直存在的。它所保存的信息是资源(在sem中是信号量集,也可以是msg,shm)的信息。如:

   struct ipc_ids {int in_use;//说明已分配的资源个数int max_id;/在使用的最大的位置索引unsigned short seq;//下一个分配的位置序列号unsigned short seq_max;//最大位置使用序列struct semaphore sem; //保护 ipc_ids的信号量struct ipc_id_ary nullentry;//如果IPC资源无法初始化,则entries字段指向伪数据结构struct ipc_id_ary* entries;//指向资源ipc_id_ary数据结构的指针};

它的最后一个元素 entries指向struct ipc_id_ary这样一个数据结构,它有两个成员:

 struct ipc_id_ary {int size;//保存的是数组的长度值struct kern_ipc_perm *p[0];//它是个指针数组 ,数组长度可变,内核初始化后它的值为128
};

正如我们在上图看到的,sem_ids.entries->p指向sem_array这个数据结构,为什么呢?

我们看信号量集sem_array这个数据结构:

/* One sem_array data structure for each set of semaphores in the system. */
struct sem_array {struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */time_t   sem_otime; /* last semop time */time_t   sem_ctime; /* last change time */struct sem  *sem_base; /* ptr to first semaphore in array */指向信号量队列struct sem_queue *sem_pending; /* pending operations to be processed */指向挂起队列的首部struct sem_queue **sem_pending_last; /* last pending operation */指向挂起队列的尾部struct sem_undo  *undo;  /* undo requests on this array */信号量集上的 取消请求unsigned long  sem_nsems; /* no. of semaphores in array */信号量集中的信号量的个数
};

这样sem_ids.entries就跟信号量集sem_array关联起来了,但是为什么要通过kern_ipc_perm关联呢,为什么不直接由sem_ids指向sem_array呢,这是因为信号量,消息队列,共享内存实现的机制基本差不多,所以他们都是通过ipc_id_ary这个数据结构管理,而通过kern_ipc_perm,他们与各自的数据结构关联起来。这样就清楚了!在后面我们来看内核函数sys_semget()是如何进行创建信号量集,并将其加入到sem_ids.entries中的。

改变信号量的值

int semop(int semid, struct sembuf *sops, size_t nops);

功能:
操作信号量,P,V 操作

参数:
semid:信号量集标识符;nops是opstr数组中元素数目,通常取值为1;opstr指向一个结构数组
nsops:进行操作信号量的个数,即sops结构变量的个数,需大于或等于1。最常见设置此值等于1,只完成对一个信号量的操作
sembuf的定义如下:

struct sembuf{ short sem_num;   //除非使用一组信号量,否则它为0 short sem_op; //信号量在一次操作中需要改变的数据,通   //常是两个数,一个是-1,即P(等待)操作, //一个是+1,即V(发送信号)操作。 short sem_flg; //通常为SEM_UNDO,使操作系统跟踪 //信号量,并在进程没有释放该信号量而终止时,操作系统释放信号量
};

返回值:
成功返回信号量标识符,出错返回-1

一般编程步骤:

  1. 创建信号量或获得在系统中已存在的信号量
    1). 调用semget().
    2). 不同进程使用同一个信号量键值来获得同个信号量
  2. 初始化信号量
    1).使用semctl()函数的SETVAL操作
    2).当使用二维信号量时,通常将信号量初始化为1
  3. 进行信号量PV操作
    1). 调用semop()函数
    2). 实现进程之间的同步和互斥
  4. 如果不需要该信号量,从系统中删除
    1).使用semctl()函数的IPC_RMID操作

实例

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/sem.h>
#include <sys/ipc.h>
#define USE_SYSTEMV_SEM 1
#define DELAY_TIME 2
union semun {int val;struct semid_ds *buf;unsigned short *array;
};
// 将信号量sem_id设置为init_value
int init_sem(int sem_id,int init_value) {union semun sem_union;sem_union.val=init_value;if (semctl(sem_id,0,SETVAL,sem_union)==-1) {perror("Sem init");exit(1);}return 0;
}
// 删除sem_id信号量
int del_sem(int sem_id) {union semun sem_union;if (semctl(sem_id,0,IPC_RMID,sem_union)==-1) {perror("Sem delete");exit(1);}return 0;
}
// 对sem_id执行p操作
int sem_p(int sem_id) {struct sembuf sem_buf;sem_buf.sem_num=0;//信号量编号sem_buf.sem_op=-1;//P操作sem_buf.sem_flg=SEM_UNDO;//系统退出前未释放信号量,系统自动释放if (semop(sem_id,&sem_buf,1)==-1) {perror("Sem P operation");exit(1);}return 0;
}
// 对sem_id执行V操作
int sem_v(int sem_id) {struct sembuf sem_buf;sem_buf.sem_num=0;sem_buf.sem_op=1;//V操作sem_buf.sem_flg=SEM_UNDO;if (semop(sem_id,&sem_buf,1)==-1) {perror("Sem V operation");exit(1);}return 0;
}
int main() {pid_t pid;
#if USE_SYSTEMV_SEMint sem_id;key_t sem_key;sem_key=ftok(".",'A');printf("sem_key=%x\n",sem_key);//以0666且create mode创建一个信号量,返回给sem_idsem_id=semget(sem_key,1,0666|IPC_CREAT);printf("sem_id=%x\n",sem_id);//将sem_id设为1init_sem(sem_id,1);
#endifif ((pid=fork())<0) {perror("Fork error!\n");exit(1);} else if (pid==0) {#if USE_SYSTEMV_SEMsem_p(sem_id); //    P操作
#endifprintf("Child running...\n");sleep(DELAY_TIME);printf("Child %d,returned value:%d.\n",getpid(),pid);
#if USE_SYSTEMV_SEMsem_v(sem_id); //    V操作
#endifexit(0);} else {#if USE_SYSTEMV_SEMsem_p(sem_id); //    P操作
#endifprintf("Parent running!\n");sleep(DELAY_TIME);printf("Parent %d,returned value:%d.\n",getpid(),pid);
#if USE_SYSTEMV_SEMsem_v(sem_id); //    V操作waitpid(pid,0,0);del_sem(sem_id);
#endifexit(0);}
}

运行结果如下:

获取更多关于Linux的资料,请关注公众号「一口Linux」

Linux信号量(1)-SYSTEM V相关推荐

  1. linux进程间通信:system V 信号量 生产者和消费者模型编程案例

    生产者和消费者模型: 有若干个缓冲区,生产者不断向里填数据,消费者不断从中取数据 两者不冲突的前提: 缓冲区有若干个,且是固定大小,生产者和消费者各有若干个 生产者向缓冲区中填数据前需要判断缓冲区是否 ...

  2. Linux进程间通信三 System V 信号量简介与示例

    1. System V信号量简介 SystemV信号量主要用于解决生产者和消费者问题,一个信号量能够控制多个资源,说它是信号量集也不为过. 2. API接口介绍 2.1 创建或打开信号量集 #incl ...

  3. linux进程间通信:system V 信号量和共享内存实现进程间同步

    关于信号量和共享内存的相关描述已经在前几篇提到过: 信号量:即内核维护的一个正整数,可以使用内核提供的p/v接口进行该正整数的+/-操作,它主要用来表示系统中可用资源的个数,协调各个进程有序访问资源, ...

  4. Linux进程间通信一 System V 共享内存简介与示例

    目录 1. System V共享内存简介 2. API介绍 2.0 key_t和标识符 2.1  创建system v共享内存 2.2 映射共享内存并使用 2.3 取消共享内存映射 2.4 控制共享内 ...

  5. 【linux】进程间通信——system V

    system V 一.system V介绍 二 .共享内存 2.1 共享内存的原理 2.2 共享内存接口 2.2.1 创建共享内存shmget 2.2.2 查看IPC资源 2.2.3 共享内存的控制s ...

  6. linux进程间通信:system V消息队列

    文章目录 基本介绍 编程接口 代码实例 消息队列的发送和接收 消息队列中的消息对象的属性控制 基本介绍 支持不同进程之间以消息(messages)的形式进行数据交换,消息能够拥有自己的标识,且内核使用 ...

  7. linux进程间通信:system V 信号量

    文章目录 概念描述 通信原理 编程接口 使用流程 编程案例 概念描述 英文:semaphore 简称SEM,主要用来进行进程间同步 本质:内核维护的一个正整数,可对其进行各种+/-操作 分类:syst ...

  8. Linux进程间通信二 System V 消息队列简介与示例

    1. SystemV消息队列简介 消息队列,顾名思义即是存放消息的队列,内核为每个SystemV 维护了一个msg_queue的结构体,里面记录了每个消息队列的信息. struct msg_queue ...

  9. linux进程通信system v,【linux高级程序设计】(第十一章)System V进程间通信 4

    共享内存 共享内存主要用于实现进程间大量数据传输. 共享内存的数据结构定义: 系统对共享内存的限制: 共享内存与管道的对比: 可以看到,共享内存的优势: 1.共享内存只需复制2次,而管道需要4次 2. ...

  10. linux进程间通信:system V 共享内存

    文章目录 思维导图如下 通信原理 优势 运行流程 编程接口 编程实例 思维导图如下 通信原理 多个进程共享物理内存的同一块区域(通常称之为"段":segment) 抛弃了内核态消息 ...

最新文章

  1. 2019计算机科学论文研讨大会,2019年中华口腔医学会口腔医学计算机专业委员会第十七次全国口腔医学数字化学术会议第一轮会议通知...
  2. UIView的AddChildViewCtroller的用法(4中页面切换方式)
  3. 性能测试应该怎么做?
  4. win10系统用户访问ftp服务器被拒绝,关于windows2003下ftp用户名无法访问FTP服务器的问题...
  5. 判断单链表中的元素是否递增_检测单链表中是否有环(C语言)
  6. ubuntu for win10 里运行apache+php
  7. Elasticsearch--springcloud整合 high-level-client-测试-复杂检索---全文检索引擎ElasticSearch工作笔记025
  8. exchange2010 取消OWA内更改密码选项
  9. cnpm安装失败及解决方案
  10. 看着自己参与的自测,我简直要疯了…………
  11. python办公自动化练习——体温
  12. 数字电视 机顶盒原理
  13. FPGA基础知识13(二级D触发器应用于同步器,减少亚稳态)
  14. C#替换Word中的文本内容
  15. 网易互联网产品运营管培生面试经历--从群面到终面面试经验分享
  16. 【OSX】MAC下能用的炒股软件
  17. 获取电影天堂电视剧下载页面所有url地址
  18. 汇编语言自定义int9中断程序
  19. JAVA word转pdf高清无乱码版本(图片也可以的)
  20. 粘贴应变片步骤及注意事项

热门文章

  1. keras 回归预测_Keras-使用MPL进行回归预测
  2. 机器学习——KNN算法
  3. jmeter模拟多用户并发
  4. php construct 使用,构造方法(__construct)到底该如何使用呢?
  5. 初识PHP设计模式--外观模式
  6. 拒绝无效练习~分享一些速写有效临摹小方法~
  7. 不会做人,不善于沟通怎么办?
  8. 浅谈机器视觉系统的构成
  9. Git 重置/修改密码埋坑
  10. 踩坑之Linux top监控进程%CPU超过100%