1 设备驱动模型简介

参考 以下内容:

  1. Linux 笔记:
    https://xuesong.blog.csdn.net/article/details/109522945?spm=1001.2014.3001.5502
  2. 正点原子-左盟主 驱动开发
  3. 网络资料:https://www.cnblogs.com/lizhuming/category/1859545.html

1.1 概念

  • 开发过程中,一般驱动已经由半导体厂家编写好了,而设备驱动一般也由设备器件的厂家编写好了,我们只需要提供设备信息即可,比如 I2C设备的话提供设备连接到了哪个 I2C 接口上,I2C 的速度是多少等等。
  • 相当于将设备信息从设备驱动中剥离开来,驱动使用标准方法去获取到设备信息(比如从设备树中获取到设备信息),然后根据获取到的设备信息来初始化设备。这样就相当于驱动只负责驱动,设备只负责设备,想办法将两者进行匹配即可。这个就是 Linux中的总线(bus)、驱动(driver)和设备(device)模型,也就是常说的驱动分离。总线就是驱动和设备信息的月老,负责给两者牵线搭桥,如下图所示;

1.2 总线-设备-驱动

总线(bus):负责管理挂载对应总线的设备以及驱动;
设备(device):挂载在某个总线的物理设备;
驱动(driver):与特定设备相关的软件,负责初始化该设备以及提供一些操作该设备的操作方式;
以下只说 总线-设备-驱动 模式下的操作

  1. 总线管理着两个链表:设备链表 和 驱动链表。
  2. 当我们向内核注册一个驱动时,便插入到总线的驱动链表。
  3. 当我们向内核注册一个设备时,便插入到总线的设备链表。
  4. 在插入的同时,总线会执行一个 bus_type 结构体中的 match 方法对新插入的 设备/驱动进行匹配。(例如以名字的方式匹配。方式有很多总,下面再详细分析。)
  5. 匹配成功后,会调用 驱动 device_driver 结构体中的 probe 方法。(通常在 probe中获取设备资源。具体有开发人员决定。)
  6. 在移除设备或驱动时,会调用 device_driver 结构体中的 remove 方法;

2 总线

2.1 介绍:

总线是连接处理器和设备之间的桥梁
代表着同类设备需要共同遵循的工作时序。
总线驱动:

负责实现总线行为,管理两个链表。

struct bus_type {const char              *name;const struct attribute_group **bus_groups;const struct attribute_group **dev_groups;const struct attribute_group **drv_groups;int (*match)(struct device *dev, struct device_driver *drv);int (*uevent)(struct device *dev, struct kobj_uevent_env *env);int (*probe)(struct device *dev);int (*remove)(struct device *dev);int (*suspend)(struct device *dev, pm_message_t state);int (*resume)(struct device *dev);const struct dev_pm_ops *pm;struct subsys_private *p;
};
  • name:指定总线的名称,当新注册一种总线类型时,会在 /sys/bus 目录创建一个新的目录,目录名就是该参数的值;
  • bus_groups、dev_groups、drv_groups:分别表示 总线、设备、驱动的属性。
    通常会在对应的 /sys 目录下在以文件的形式存在,对于驱动而言,在目录 /sys/bus//driver/ 存放了驱动的默认属性;设备则在目录 /sys/bus//devices/ 中。这些文件一般是可读写的,用户可以通过读写操作来获取和设置这些 attribute 的值。
  • match:当向总线注册一个新的设备或者是新的驱动时,会调用该回调函数。该设备主要负责匹配工作。
  • uevent:总线上的设备发生添加、移除或者其它动作时,就会调用该函数,来通知驱动做出相应的对策。
  • probe:当总线将设备以及驱动相匹配之后,执行该回调函数,最终会调用驱动提供的probe 函数。
  • remove:当设备从总线移除时,调用该回调函数。
  • suspend、resume:电源管理的相关函数,当总线进入睡眠模式时,会调用suspend回调函数;而resume回调函数则是在唤醒总线的状态下执行。
  • pm:电源管理的结构体,存放了一系列跟总线电源管理有关的函数,与 device_driver 结构体中的 pm_ops 有关。
  • p:该结构体用于存放特定的私有数据,其成员 klist_devices 和 klist_drivers 记录了挂载在该总线的设备和驱动。

match 函数,此函数很重要,单词 match 的意思就是“匹配、相配”,因此此函数就是完成设备和驱动之间匹配的,总线就是使用 match 函数来根据注册的设备来查找对应的驱动,或者根据注册的驱动来查找相应的设备,因此每一条总线都必须实现此函数。match 函数有两个参数:dev 和 drv,这两个参数分别为 device 和 device_driver 类型,也就是设备和驱动。

platform 总线是 bus_type 的一个具体实例,定义在文件 drivers/base/platform.c,platform 总
线定义如下

struct bus_type platform_bus_type = {.name = "platform",.dev_groups = platform_dev_groups,.match = platform_match,.uevent = platform_uevent,.pm = &platform_dev_pm_ops,
};

platform_bus_type 就是 platform 平台总线,其中 platform_match 就是匹配函数。我们来看
一下驱动和设备是如何匹配的,platform_match 函数定义在文件 drivers/base/platform.c 中,函
数内容如下所示:

1 static int platform_match(struct device *dev,struct device_driver *drv)
2 {3 struct platform_device *pdev = to_platform_device(dev);
4 struct platform_driver *pdrv = to_platform_driver(drv);
5
6 /*When driver_override is set,only bind to the matching driver*/
7 if (pdev->driver_override)
8 return !strcmp(pdev->driver_override, drv->name);
9
10 /* Attempt an OF style match first */
11 if (of_driver_match_device(dev, drv))
12 return 1;
13
14 /* Then try ACPI style match */
15 if (acpi_driver_match_device(dev, drv))
16 return 1;
/* Then try to match against the id table */
19 if (pdrv->id_table)
20 return platform_match_id(pdrv->id_table, pdev) != NULL;
21
22 /* fall-back to driver name match */
23 return (strcmp(pdev->name, drv->name) == 0);
24 }

驱动和设备的匹配有四种方法:

  1. 第一种匹配方式, OF 类型的匹配,也就是设备树采用的匹配方式, of_driver_match_device 函数定义在文件 include/linux/of_device.h 中。device_driver 结构体(表示设备驱动)中有个名为of_match_table的成员变量,此成员变量保存着驱动的compatible匹配表,设备树中的每个设备节点的compatible 属性会和 of_match_table 表中的所有成员比较,查看是否有相同的条目,如果有的话就表示设备和此驱动匹配,设备和驱动匹配成功以后 probe 函数 就会执行。
  2. 第二种匹配方式,ACPI 匹配方式。 第 19~20 行,
  3. 第三种匹配方式,id_table 匹配,每个 platform_driver 结构体有一个 id_table成员变量,顾名思义,保存了很多 id 信息。这些 id 信息存放着这个 platformd 驱动所支持的驱 动类型。
  4. 第四种匹配方式,如果第三种匹配方式的 id_table 不存在的话就直接比较驱动和 设备的 name字段,看看是不是相等,如果相等的话就匹配成功。

对于支持设备树的 Linux 版本号,一般设备驱动为了兼容性都支持设备树和无设备树两种匹配方式。也就是第一种匹配方式一般都会存在,第三种和第四种只要存在一种就可以,一般用的最多的还是第四种,也就是直接比较驱动和设备的 name 字段,毕竟这种方式最简单了。

其实,我看这个还是主要因为设备树;

当我们成功注册总线时,会在 /sys/bus/ 目录下创建一个新目录,目录名为我们新注册的总线名。

3 devices

在 /sys/devices 目录记录了系统中所有的设备。
/sys 下的所有设备文件和 /sys/dev 下的所有设备节点都是链接文件,实际上都指向了对应的设备文件。

device 结构体:

struct device
{const char *init_name;struct device           *parent;struct bus_type *bus;struct device_driver *driver;void            *platform_data;void            *driver_data;struct device_node      *of_node;dev_t                   devt;struct class            *class;void (*release)(struct device *dev);const struct attribute_group **groups;  /* optional groups */struct device_private   *p;
};

内核源码路径:内核源码/include/linux/device.h。

  • init_name:指定该设备的名称,总线匹配时,一般会根据比较名字来进行配对。
  • parent:表示该设备的父对象,旧版本的设备之间没有任何联系,引入 Linux 设备驱动模块后,设备之间呈现树状结构,便于管理各种设备。
  • bus:归属与哪个总线。当我们注册设备时,内核便会将该设备注册到对应的总线。
  • of_node:存放设备树中匹配的设备节点。当内核使能设备树,总线负责将驱动的 of_match_table 以及设备树的
    compatible 属性进行比较之后,将匹配的节点保存到该变量。
  • platform_data:特定设备的私有数据,通常定义在板级文件中。
  • driver_data:驱动层可以通过 dev_set/get_drvdata 函数来获取该成员变量。
  • class:指向该设备对应类。
  • dev:设备号。dev_t 类型。
  • release:回调函数。当设备被注销时,该函数被调用。
  • group:指向 struct attribute_group 类型指针指定该设备属性。

driver 结构体:


struct device_driver
{const char              *name;struct bus_type         *bus;struct module           *owner;const char              *mod_name;      /* used for built-in modules */bool suppress_bind_attrs;       /* disables bind/unbind via sysfs */const struct of_device_id       *of_match_table;const struct acpi_device_id     *acpi_match_table;int (*probe) (struct device *dev);int (*remove) (struct device *dev);const struct attribute_group **groups;struct driver_private *p;
};

内核源码路径:内核源码/include/linux/device.h

  • name:指定驱动名称,总线进行匹配时,利用该成员与设备名进行比较。
  • bus:归属与哪个总线。内核需要保证在驱动执行之前,对应的总线能够正常工作。
  • suppress_bind_attrs:布尔量,用于指定是否通过 sysfs 导出 bind 与 unbind文件,bind 与
    unbind 文件是驱动用于绑定/解绑关联的设备。
  • owner:表示该驱动的拥有者,一般设置为 THIS_MODULE。
  • of_match_table:指定该驱动支持的设备类型。当内核使能设备树时,会利用该成员与设备树中的 compatible 属性进行比较。
  • remove:当设备从操作系统中拔出或者是系统重启时,会调用该回调函数。
  • probe:当驱动以及设备匹配后,会执行该回调函数,对设备进行初始化。通常的代码,都是以main函数开始执行的,但是在内核的驱动代码,都是从
    probe 函数开始的。
  • group:指向 struct attribute_group 类型的指针,指定该驱动的属性。

调用关系

platform_device_register
platform_device_adddevice_addbus_add_device // 放入链表bus_probe_device // probe 枚举设备,即找到匹配的(dev, drv)device_initial_probe__device_attachbus_for_each_drv(...,__device_attach_driver,...)__device_attach_driverdriver_match_device(drv, dev) // 是否匹配driver_probe_device // 调用 drv 的 probe
platform_driver_register
__platform_driver_registerdriver_registerbus_add_driver // 放入链表driver_attach(drv)bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);__driver_attachdriver_match_device(drv, dev) // 是否匹配driver_probe_device // 调用 drv 的 probe

设备驱动模型:总线-设备-驱动相关推荐

  1. linux一个spi总线挂多个设备,Linux SPI总线设备驱动模型详解

    随着技术不断进步,系统的拓扑结构越来越复杂,对热插拔.跨平台移植性的要求越来越高,早期的内核难以满足这些要求,从linux2.6内核开始,引入了总线设备驱动模型.其实在linux2.4总线的概念就已经 ...

  2. linux用户空间flash驱动,全面掌握Linux驱动框架——字符设备驱动、I2C驱动、总线设备驱动、NAND FLASH驱动...

    原标题:全面掌握Linux驱动框架--字符设备驱动.I2C驱动.总线设备驱动.NAND FLASH驱动 字符设备驱动 哈~ 这几天都在发图,通过这种方式,我们希望能帮大家梳理学过的知识,全局的掌握Li ...

  3. Linux驱动模型之注册驱动

    前言 驱动的话我们关心几个点: 驱动是怎么添加到总线管理的设备链表上的? 注册驱动后,它是怎么和设备匹配,并最终调用驱动中的probe()函数的? 数据结构 首先看下数据结构: struct devi ...

  4. linux设备模型——总线,驱动,设备间的关系

    设备模型之kobject,kset及其关系 关于linux设备模型kobject,kset,ktype 设备驱动基础0:设备模型之kobject,kset及其关系 设备模型之总线,驱动,设备 Linu ...

  5. linux 内核驱动模型,linux设备驱动模型架构分析 一

    linux设备驱动模型架构分析 一 发布时间:2018-07-04 15:14, 浏览次数:584 , 标签: linux 概述 LDD3中说:"Linux内核需要一个对系统结构的一般性描述 ...

  6. LINUX设备驱动模型分析之三 驱动(DRIVER)接口分析

    上一章我们分析了bus-driver-device模型中bus接口部分,本章我们将分析driver接口,在bus-driver-device模型中,driver接口是依附于bus上,而不像device ...

  7. 【嵌入式Linux】嵌入式Linux驱动开发基础知识之总线设备驱动模型

    文章目录 前言 1.驱动编写的三种方法 1.1.传统写法 1.2.总线驱动模型 1.3.设备树驱动模型 2.Linux实现分离:Bus/Dev/Drv模型 2.1.Bus/Dev/Drv模型 2.2. ...

  8. Linux SPI总线设备驱动模型详解

    随着技术不断进步,系统的拓扑结构越来越复杂,对热插拔.跨平台移植性的要求越来越高,早期的内核难以满足这些要求,从linux2.6内核开始,引入了总线设备驱动模型.其实在linux2.4总线的概念就已经 ...

  9. 设备驱动,字符设备驱动、(总线)设备驱动模型、sysfs文件系统、平台设备驱动

    以下内容转载于微信公众号:嵌入式企鹅圈.如有侵权,请告知删除. 学习Linux设备驱动开发的过程中自然会遇到字符设备驱动.平台设备驱动.设备驱动模型和sysfs等相关概念和技术. 对于初学者来说会非常 ...

  10. LINUX I2C设备驱动模型分析之二 总线部分分析

    上一章我们对I2C模块做了总体框架的分析,本章我们主要分析下I2C模块的总线部分,主要涉 及总线初始化.总线相关属性.总线相关接口函数处理等几部分 I2c bus的定义 I2c bus的定义如下,主要 ...

最新文章

  1. 性能测试,负载测试,压力测试以及容量测试的联系与区别--网搜及总结
  2. Android智能手机屏蔽电话与屏蔽安装软件功能
  3. java和c++的区别大吗_安徽成人高考和自考区别大吗?为什么推荐选成人高考?
  4. Hive到SparkSql
  5. HDU - 2222 Keywords Search(AC自动机)
  6. python1~10阶乘_小练习 python3 阶乘运算
  7. linux版本 如何查kali_000_Kali Linux版本查看和apt源配置
  8. 蓝桥杯练习系统历届试题 翻硬币
  9. windwos开机自启动脚本
  10. java类中各成员初始化的顺序
  11. Summernote个性化定制使用帮助(二)
  12. 收银系统源码,又又升级最新下载sass版了
  13. itchat获取群聊用户的信息
  14. 快速排序 C语言实现
  15. 计算机四级数据库工程师考什么,计算机四级《数据库工程师》考试大纲
  16. html5辨别音高,音理知识基础:音高和时值
  17. mfc与win32区别
  18. 【UE4】pawn 和 Character 的区别
  19. 最完整Android Studio插件整理
  20. Android HAL层浅析

热门文章

  1. Python入门基础知识点 (初识函数)
  2. Unity 树叶透明的地方会错误地遮挡水体问题
  3. 120帧手机动态壁纸_OPPO Find X2支持独立芯片视频动态插帧,30帧以下可升至120帧...
  4. oracle grid需要安装,Oracle GridControl 安装教程
  5. linux中shutdown命令,Linux中shutdown命令起什么作用呢?
  6. 浅谈系统性能提升的经验和方法
  7. LIDC肺结节的下载
  8. 遍赏各国“佳丽”——玩家侃老镜头
  9. 任务栏怎么还原?|任务栏设置|任务栏变宽的解决方案
  10. 《Java SE实战指南》13-03:构造器和继承