### 前言

理解HashMap和ConcurrentHashMap的重点在于:

(1)理解HashMap的数据结构的设计和实现思路

(2)在(1)的基础上,理解ConcurrentHashMap的并发安全的设计和实现思路

前面的文章已经介绍过Map结构的底层实现,这里我们重点放在其扩容方法,
这里分别对JDK7和JDK8版本的HashMap+ConcurrentHashMap来分析:

### JDK7的HashMap扩容

这个版本的HashMap数据结构还是数组+链表的方式,扩容方法如下:

```void transfer(Entry[] newTable) {      Entry[] src = table;                   //src引用了旧的Entry数组      int newCapacity = newTable.length;      for (int j = 0; j < src.length; j++) { //遍历旧的Entry数组          Entry<K, V> e = src[j];             //取得旧Entry数组的每个元素          if (e != null) {              src[j] = null;//释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象)              do {                  Entry<K, V> next = e.next;                  int i = indexFor(e.hash, newCapacity); //!!重新计算每个元素在数组中的位置                  e.next = newTable[i]; //标记[1]                  newTable[i] = e;      //将元素放在数组上                  e = next;             //访问下一个Entry链上的元素              } while (e != null);          }      }  }```

上面的这段代码不并不难理解,对于扩容操作,底层实现都需要新生成一个数组,然后拷贝旧数组里面的每一个Node链表到新数组里面,这个方法在单线程下执行是没有任何问题的,但是在多线程下面却有很大问题,主要的问题在于基于头插法的数据迁移,会有几率造成链表倒置,从而引发链表闭链,导致程序死循环,并吃满CPU。据说已经有人给原来的SUN公司提过bug,但sun公司认为,这是开发者使用不当造成的,因为这个类本就不是线程安全的,你还偏在多线程下使用,这下好了吧,出了问题这能怪我咯?仔细想想,还有点道理。

### JDK7的ConcurrentHashMap扩容

HashMap是线程不安全的,我们来看下线程安全的ConcurrentHashMap,在JDK7的时候,这种安全策略采用的是分段锁的机制,ConcurrentHashMap维护了一个Segment数组,Segment这个类继承了重入锁ReentrantLock,并且该类里面维护了一个
HashEntry<K,V>[] table数组,在写操作put,remove,扩容的时候,会对Segment加锁,所以仅仅影响这个Segment,不同的Segment还是可以并发的,所以解决了线程的安全问题,同时又采用了分段锁也提升了并发的效率。
![image](http://pic.yupoo.com/goldendoc/Ba4GCFe1/nuEZ0.png)

下面看下其扩容的源码:

```// 方法参数上的 node 是这次扩容后,需要添加到新的数组中的数据。private void rehash(HashEntry<K,V> node) {    HashEntry<K,V>[] oldTable = table;    int oldCapacity = oldTable.length;    // 2 倍    int newCapacity = oldCapacity << 1;    threshold = (int)(newCapacity * loadFactor);    // 创建新数组    HashEntry<K,V>[] newTable =        (HashEntry<K,V>[]) new HashEntry[newCapacity];    // 新的掩码,如从 16 扩容到 32,那么 sizeMask 为 31,对应二进制 ‘000...00011111’    int sizeMask = newCapacity - 1;

    // 遍历原数组,老套路,将原数组位置 i 处的链表拆分到 新数组位置 i 和 i+oldCap 两个位置    for (int i = 0; i < oldCapacity ; i++) {        // e 是链表的第一个元素        HashEntry<K,V> e = oldTable[i];        if (e != null) {            HashEntry<K,V> next = e.next;            // 计算应该放置在新数组中的位置,            // 假设原数组长度为 16,e 在 oldTable[3] 处,那么 idx 只可能是 3 或者是 3 + 16 = 19            int idx = e.hash & sizeMask;            if (next == null)   // 该位置处只有一个元素,那比较好办                newTable[idx] = e;            else { // Reuse consecutive sequence at same slot                // e 是链表表头                HashEntry<K,V> lastRun = e;                // idx 是当前链表的头结点 e 的新位置                int lastIdx = idx;

                // 下面这个 for 循环会找到一个 lastRun 节点,这个节点之后的所有元素是将要放到一起的                for (HashEntry<K,V> last = next;                     last != null;                     last = last.next) {                    int k = last.hash & sizeMask;                    if (k != lastIdx) {                        lastIdx = k;                        lastRun = last;                    }                }                // 将 lastRun 及其之后的所有节点组成的这个链表放到 lastIdx 这个位置                newTable[lastIdx] = lastRun;                // 下面的操作是处理 lastRun 之前的节点,                //    这些节点可能分配在另一个链表中,也可能分配到上面的那个链表中                for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {                    V v = p.value;                    int h = p.hash;                    int k = h & sizeMask;                    HashEntry<K,V> n = newTable[k];                    newTable[k] = new HashEntry<K,V>(h, p.key, v, n);                }            }        }    }    // 将新来的 node 放到新数组中刚刚的 两个链表之一 的 头部    int nodeIndex = node.hash & sizeMask; // add the new node    node.setNext(newTable[nodeIndex]);    newTable[nodeIndex] = node;    table = newTable;}```

注意这里面的代码,外部已经加锁,所以这里面是安全的,我们看下具体的实现方式:先对数组的长度增加一倍,然后遍历原来的旧的table数组,把每一个数组元素也就是Node链表迁移到新的数组里面,最后迁移完毕之后,把新数组的引用直接替换旧的。此外这里这有一个小的细节优化,在迁移链表时用了两个for循环,第一个for的目的是为了,判断是否有迁移位置一样的元素并且位置还是相邻,根据HashMap的设计策略,首先table的大小必须是2的n次方,我们知道扩容后的每个链表的元素的位置,要么不变,要么是原table索引位置+原table的容量大小,举个例子假如现在有三个元素(3,5,7)要放入map里面,table的的容量是2,简单的假设元素位置=元素的值 % 2,得到如下结构:

```[0]=null[1]=3->5->7```

现在将table的大小扩容成4,分布如下:

```[0]=null[1]=5->7[2]=null[3]=3```

因为扩容必须是2的n次方,所以HashMap在put和get元素的时候直接取key的hashCode然后经过再次均衡后直接采用&位运算就能达到取模效果,这个不再细说,上面这个例子的目的是为了说明扩容后的数据分布策略,要么保留在原位置,要么会被均衡在旧的table位置,这里是1加上旧的table容量这是是2,所以是3。基于这个特点,第一个for循环,作的优化如下,假设我们现在用0表示原位置,1表示迁移到index+oldCap的位置,来代表元素:

```[0]=null[1]=0->1->1->0->0->0->0```

第一个for循环的会记录lastRun,比如要迁移[1]的数据,经过这个循环之后,lastRun的位置会记录第三个0的位置,因为后面的数据都是0,代表他们要迁移到新的数组中同一个位置中,所以就可以把这个中间节点,直接插入到新的数组位置而后面附带的一串元素其实都不需要动。

接着第二个循环里面在此从第一个0的位置开始遍历到lastRun也就是第三个元素的位置就可以了,只循环处理前面的数据即可,这个循环里面根据位置0和1做不同的链表追加,后面的数据已经被优化的迁移走了,但最坏情况下可能后面一个也没优化,比如下面的结构:

```[0]=null[1]=1->1->0->0->0->0->1->0```

这种情况,第一个for循环没多大作用,需要通过第二个for循环从头开始遍历到尾部,按0和1分发迁移,这里面使用的是还是头插法的方式迁移,新迁移的数据是追加在链表的头部,但这里是线程安全的所以不会出现循环链表,导致死循环问题。迁移完成之后直接将最新的元素加入,最后将新的table替换旧的table即可。

### JDK8的HashMap扩容

在JDK8里面,HashMap的底层数据结构已经变为数组+链表+红黑树的结构了,因为在hash冲突严重的情况下,链表的查询效率是O(n),所以JDK8做了优化对于单个链表的个数大于8的链表,会直接转为红黑树结构算是以空间换时间,这样以来查询的效率就变为O(logN),图示如下:

[img]https://www.javadoop.com/blogimages/map/2.png[/img]

我们看下其扩容代码:

```    final Node<K,V>[] resize() {        Node<K,V>[] oldTab = table;        int oldCap = (oldTab == null) ? 0 : oldTab.length;        int oldThr = threshold;        int newCap, newThr = 0;        if (oldCap > 0) {            if (oldCap >= MAXIMUM_CAPACITY) {                threshold = Integer.MAX_VALUE;                return oldTab;            }            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&                     oldCap >= DEFAULT_INITIAL_CAPACITY)                newThr = oldThr << 1; // double threshold        }        else if (oldThr > 0) // initial capacity was placed in threshold            newCap = oldThr;        else {               // zero initial threshold signifies using defaults            newCap = DEFAULT_INITIAL_CAPACITY;            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);        }        if (newThr == 0) {            float ft = (float)newCap * loadFactor;            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?                      (int)ft : Integer.MAX_VALUE);        }        threshold = newThr;        @SuppressWarnings({"rawtypes","unchecked"})            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];        table = newTab;        if (oldTab != null) {            for (int j = 0; j < oldCap; ++j) {                Node<K,V> e;                if ((e = oldTab[j]) != null) {                    oldTab[j] = null;                    if (e.next == null)                        newTab[e.hash & (newCap - 1)] = e;                    else if (e instanceof TreeNode)                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);                    else {                         //重点关注区域                        // preserve order                        Node<K,V> loHead = null, loTail = null;                        Node<K,V> hiHead = null, hiTail = null;                        Node<K,V> next;                        do {                            next = e.next;                            if ((e.hash & oldCap) == 0) {                                if (loTail == null)                                    loHead = e;                                else                                    loTail.next = e;                                loTail = e;                            }                            else {                                if (hiTail == null)                                    hiHead = e;                                else                                    hiTail.next = e;                                hiTail = e;                            }                        } while ((e = next) != null);                        if (loTail != null) {                            loTail.next = null;                            newTab[j] = loHead;                        }                        if (hiTail != null) {                            hiTail.next = null;                            newTab[j + oldCap] = hiHead;                        }                    }                }            }        }        return newTab;    }

```

在JDK8中,单纯的HashMap数据结构增加了红黑树是一个大的优化,此外根据上面的迁移扩容策略,我们发现JDK8里面HashMap没有采用头插法转移链表数据,而是保留了元素的顺序位置,新的代码里面采用:

```                        //按原始链表顺序,过滤出来扩容后位置不变的元素(低位=0),放在一起                        Node<K,V> loHead = null, loTail = null;                        //按原始链表顺序,过滤出来扩容后位置改变到(index+oldCap)的元素(高位=0),放在一起                        Node<K,V> hiHead = null, hiTail = null;```

把要迁移的元素分类之后,最后在分别放到新数组对应的位置上:

```                        //位置不变                            if (loTail != null) {                            loTail.next = null;                            newTab[j] = loHead;                        }                        //位置迁移(index+oldCap)                        if (hiTail != null) {                            hiTail.next = null;                            newTab[j + oldCap] = hiHead;                        }```

JDK7里面是先判断table的存储元素的数量是否超过当前的threshold=table.length*loadFactor(默认0.75),如果超过就先扩容,在JDK8里面是先插入数据,插入之后在判断下一次++size的大小是否会超过当前的阈值,如果超过就扩容。

### JDK8的ConcurrentHashMap扩容

在JDK8中彻底抛弃了JDK7的分段锁的机制,新的版本主要使用了Unsafe类的CAS自旋赋值+synchronized同步+LockSupport阻塞等手段实现的高效并发,代码可读性稍差。

ConcurrentHashMap的JDK8与JDK7版本的并发实现相比,最大的区别在于JDK8的锁粒度更细,理想情况下talbe数组元素的大小就是其支持并发的最大个数,在JDK7里面最大并发个数就是Segment的个数,默认值是16,可以通过构造函数改变一经创建不可更改,这个值就是并发的粒度,每一个segment下面管理一个table数组,加锁的时候其实锁住的是整个segment,这样设计的好处在于数组的扩容是不会影响其他的segment的,简化了并发设计,不足之处在于并发的粒度稍粗,所以在JDK8里面,去掉了分段锁,将锁的级别控制在了更细粒度的table元素级别,也就是说只需要锁住这个链表的head节点,并不会影响其他的table元素的读写,好处在于并发的粒度更细,影响更小,从而并发效率更好,但不足之处在于并发扩容的时候,由于操作的table都是同一个,不像JDK7中分段控制,所以这里需要等扩容完之后,所有的读写操作才能进行,所以扩容的效率就成为了整个并发的一个瓶颈点,好在Doug lea大神对扩容做了优化,本来在一个线程扩容的时候,如果影响了其他线程的数据,那么其他的线程的读写操作都应该阻塞,但Doug lea说你们闲着也是闲着,不如来一起参与扩容任务,这样人多力量大,办完事你们该干啥干啥,别浪费时间,于是在JDK8的源码里面就引入了一个ForwardingNode类,在一个线程发起扩容的时候,就会改变sizeCtl这个值,其含义如下:

```sizeCtl :默认为0,用来控制table的初始化和扩容操作,具体应用在后续会体现出来。-1 代表table正在初始化-N 表示有N-1个线程正在进行扩容操作其余情况:1、如果table未初始化,表示table需要初始化的大小。2、如果table初始化完成,表示table的容量,默认是table大小的0.75倍```

扩容时候会判断这个值,如果超过阈值就要扩容,首先根据运算得到需要遍历的次数i,然后利用tabAt方法获得i位置的元素f,初始化一个forwardNode实例fwd,如果f == null,则在table中的i位置放入fwd,否则采用头插法的方式把当前旧table数组的指定任务范围的数据给迁移到新的数组中,然后
给旧table原位置赋值fwd。直到遍历过所有的节点以后就完成了复制工作,把table指向nextTable,并更新sizeCtl为新数组大小的0.75倍 ,扩容完成。在此期间如果其他线程的有读写操作都会判断head节点是否为forwardNode节点,如果是就帮助扩容。

扩容源码如下:

```    private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {        int n = tab.length, stride;        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)            stride = MIN_TRANSFER_STRIDE; // subdivide range        if (nextTab == null) {            // initiating            try {                @SuppressWarnings("unchecked")                Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];                nextTab = nt;            } catch (Throwable ex) {      // try to cope with OOME                sizeCtl = Integer.MAX_VALUE;                return;            }            nextTable = nextTab;            transferIndex = n;        }        int nextn = nextTab.length;        ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);        boolean advance = true;        boolean finishing = false; // to ensure sweep before committing nextTab        for (int i = 0, bound = 0;;) {            Node<K,V> f; int fh;            while (advance) {                int nextIndex, nextBound;                if (--i >= bound || finishing)                    advance = false;                else if ((nextIndex = transferIndex) <= 0) {                    i = -1;                    advance = false;                }                else if (U.compareAndSwapInt                         (this, TRANSFERINDEX, nextIndex,                          nextBound = (nextIndex > stride ?                                       nextIndex - stride : 0))) {                    bound = nextBound;                    i = nextIndex - 1;                    advance = false;                }            }            if (i < 0 || i >= n || i + n >= nextn) {                int sc;                if (finishing) {                    nextTable = null;                    table = nextTab;                    sizeCtl = (n << 1) - (n >>> 1);                    return;                }                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)                        return;                    finishing = advance = true;                    i = n; // recheck before commit                }            }            else if ((f = tabAt(tab, i)) == null)                advance = casTabAt(tab, i, null, fwd);            else if ((fh = f.hash) == MOVED)                advance = true; // already processed            else {                synchronized (f) {                    if (tabAt(tab, i) == f) {                        Node<K,V> ln, hn;                        if (fh >= 0) {                            int runBit = fh & n;                            Node<K,V> lastRun = f;                            for (Node<K,V> p = f.next; p != null; p = p.next) {                                int b = p.hash & n;                                if (b != runBit) {                                    runBit = b;                                    lastRun = p;                                }                            }                            if (runBit == 0) {                                ln = lastRun;                                hn = null;                            }                            else {                                hn = lastRun;                                ln = null;                            }                            for (Node<K,V> p = f; p != lastRun; p = p.next) {                                int ph = p.hash; K pk = p.key; V pv = p.val;                                if ((ph & n) == 0)                                    ln = new Node<K,V>(ph, pk, pv, ln);                                else                                    hn = new Node<K,V>(ph, pk, pv, hn);                            }                            setTabAt(nextTab, i, ln);                            setTabAt(nextTab, i + n, hn);                            setTabAt(tab, i, fwd);                            advance = true;                        }                        else if (f instanceof TreeBin) {                            TreeBin<K,V> t = (TreeBin<K,V>)f;                            TreeNode<K,V> lo = null, loTail = null;                            TreeNode<K,V> hi = null, hiTail = null;                            int lc = 0, hc = 0;                            for (Node<K,V> e = t.first; e != null; e = e.next) {                                int h = e.hash;                                TreeNode<K,V> p = new TreeNode<K,V>                                    (h, e.key, e.val, null, null);                                if ((h & n) == 0) {                                    if ((p.prev = loTail) == null)                                        lo = p;                                    else                                        loTail.next = p;                                    loTail = p;                                    ++lc;                                }                                else {                                    if ((p.prev = hiTail) == null)                                        hi = p;                                    else                                        hiTail.next = p;                                    hiTail = p;                                    ++hc;                                }                            }                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :                                (hc != 0) ? new TreeBin<K,V>(lo) : t;                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :                                (lc != 0) ? new TreeBin<K,V>(hi) : t;                            setTabAt(nextTab, i, ln);                            setTabAt(nextTab, i + n, hn);                            setTabAt(tab, i, fwd);                            advance = true;                        }                    }                }            }        }    }```

### 在扩容时读写操作如何进行

(1)对于get读操作,如果当前节点有数据,还没迁移完成,此时不影响读,能够正常进行。

如果当前链表已经迁移完成,那么头节点会被设置成fwd节点,此时get线程会帮助扩容。

(2)对于put/remove写操作,如果当前链表已经迁移完成,那么头节点会被设置成fwd节点,此时写线程会帮助扩容,如果扩容没有完成,当前链表的头节点会被锁住,所以写线程会被阻塞,直到扩容完成。

### 对于size和迭代器是弱一致性

volatile修饰的数组引用是强可见的,但是其元素却不一定,所以,这导致size的根据sumCount的方法并不准确。

同理Iteritor的迭代器也一样,并不能准确反映最新的实际情况

### 总结

本文主要了介绍了HashMap+ConcurrentHashMap的扩容策略,扩容的原理是新生成大于原来1倍大小的数组,然后拷贝旧数组数据到新的数组里面,在多线程情况下,这里面如果注意线程安全问题,在解决安全问题的同时,我们也要关注其效率,这才是并发容器类的最出色的地方。

理解Java7和8里面HashMap+ConcurrentHashMap的扩容策略相关推荐

  1. Redis的字典扩容与ConcurrentHashMap的扩容策略比较

    本文介绍Redis的字典(是种Map)扩容与ConcurrentHashMap的扩容策略,并比较它们的优缺点. (不讨论它们的实现细节) 首先Redis的字典采用的是一种''单线程渐进式rehash' ...

  2. Java7/8 中的 HashMap 和 ConcurrentHashMap

    Java7 HashMap  数组+链表 Java7 ConcurrentHashMap   Segment数组+HashEntry数组链表+ReenTrantLock分段锁 Java8 HashMa ...

  3. HashMap, ConcurrentHashMap 原理及源码

    阅读文本大概需要3分钟. 原文:https://javadoop.com/post/hashma 网上关于 HashMap 和 ConcurrentHashMap 的文章确实不少,不过缺斤少两的文章比 ...

  4. HashMap——ConcurrentHashMap

    HashMap--ConcurrentHashMap 姚博文 文章出处:飞诺网(www.firnow.com):http://dev.firnow.com/course/3_program/java/ ...

  5. 并发编程三:深入理解并发List、Set、ConcurrentHashMap底层原理

    深入理解并发List.Set.ConcurrentHashMap底层原理 之前两篇分析了并发的三大特性和JMM模型,从硬件.jvm.java层面分别进行分析.JMM模型是并发当中最难理解的部分,涉及到 ...

  6. Java 集合深入理解(17):HashMap 在 JDK 1.8 后新增的红黑树结构

    点击查看 Java 集合框架深入理解 系列, - ( ゜- ゜)つロ 乾杯~ 上篇文章我们介绍了 HashMap 的主要特点和关键方法源码解读,这篇文章我们介绍 HashMap 在 JDK1.8 新增 ...

  7. Java 集合深入理解(16):HashMap 主要特点和关键方法源码解读

    >点击查看 Java 集合框架深入理解 系列, - ( ゜- ゜)つロ 乾杯~ 前面我们介绍了 哈希相关概念:哈希 哈希函数 冲突解决 哈希表,这篇文章我们来根据 JDK 1.8 源码,深入了解 ...

  8. 浅谈HashTable, HashMap, ConcurrentHashMap 之间的区别

           大家好,今天为大家带来新的知识,  HashTable, HashMap, ConcurrentHashMap 之间的区别                                ...

  9. 认真学习jdk1.8下ConcurrentHashMap的扩容机制

    关联博文: 认真学习jdk1.7下ConcurrentHashMap的实现原理 认真学习jdk1.8下ConcurrentHashMap的实现原理 认真学习jdk1.8下ConcurrentHashM ...

最新文章

  1. Ecplise切换项目里面的包的显示样式
  2. 如何设置Windows server 2008 R2登陆密码?
  3. Github、Jekyll 搭建及优化静态博客方法指南
  4. Java基础day23
  5. 2019 年 8 月编程语言排行榜,C#重回增长之路
  6. CoreAnimation编程指南(九)图层布局
  7. ArrayList实现线程的几种方法
  8. Swift - 计算次方(2的N次方,2的随机次方)
  9. SAP License:你是怎么理解ERP的?
  10. 学习微服务网关zuul,看这篇就够了
  11. CE修改器入门:查找共享代码
  12. dns服务器一些网站无法解析,dns解析出错,导致有些网站解析出错,重启DNS服务器就正常了。 - Exchange论坛 - 51CTO技术论坛_中国领先的IT技术社区...
  13. 割裂的前端工程师--- 2017年前端生态窥探 1
  14. PAT 甲级 1158 Telefraud Detection
  15. React实现简单图片放大缩小旋转还原模块
  16. 同洲电子转型之殇:新瓶装老酒的定位迷航
  17. webpack `Invalid Host/Origin header`问题
  18. anovan matlab,matlab函数之anova用法
  19. JavaWeb-13 (购物车项目2)
  20. 解读本世纪最成功的天才——埃隆·马斯克

热门文章

  1. Word一部分内容分为两栏或多栏的方法
  2. 从 Quora 的 187 个问题中学习机器学习和 NLP
  3. 第三方SDK:百度地图(二)定位 + 鹰眼轨迹
  4. 阿里云-印刷文字识别-营业执照识别
  5. 休息时间!哪些业余活动能提升开发人员的技能?
  6. Laravel CSRF token mismatch
  7. 查询1990年出生的学生名单
  8. ps小知识——将图片素描化
  9. lambda的peek(流元素操作),filter(过滤),map(映射),limit(截断),skip(跳过),collect,distinct(去重)函数使用
  10. 如何修复excel文件损坏