标签

PostgreSQL , 海明距离 , smlar , GiST索引

背景

SimHash的应用

通过上面的步骤,我们可以利用SimHash算法为每一个网页生成一个向量指纹,那么问题来了,如何判断2篇文本的相似性?

这里面主要应用到是海明距离。

(1)什么是海明距离

两个码字的对应比特取值不同的比特数称为这两个码字的海明距离。在一个有效编码集中,任意两个码字的海明距离的最小值称为该编码集的海明距离。举例如下:10101和00110从第一位开始依次有第一位、第四、第五位不同,则海明距离为3。

(2)海明距离的几何意义

n位的码字可以用n维空间的超立方体的一个顶点来表示。两个码字之间的海明距离就是超立方体两个顶点之间的一条边,而且是这两个顶点之间的最短距离。

(3)海明距离的应用场景

用于编码的检错和纠错

经过SimHash算法提取来的指纹(Simhash对长文本500字+比较适用,短文本可能偏差较大,具体需要根据实际场景测试),最后使用海明距离,求相似,在google的论文给出的数据中,64位的签名,在海明距离为3的情况下,可认为两篇文档是相似的或者是重复的,当然这个值只是参考值,针对自己的应用可能又不同的测试取值

到这里相似度问题基本解决,但是按这个思路,在海量数据几百亿的数量下,效率问题还是没有解决的,因为数据是不断添加进来的,不可能每来一条数据,都要和全库的数据做一次比较,按照这种思路,处理速度会越来越慢,线性增长。

针对海量数据的去重效率,我们可以将64位指纹,切分为4份16位的数据块,根据抽屉原理在海明距离为3的情况,如果两个文档相似,那么它必有一个块的数据是相等的。

那么数据库是否支持这种高效率的检索呢?

反正PostgreSQL是支持的,通过黑科技smlar插件。

一、需求

二、架构设计

在PostgreSQL中,从海量数据中,搜索海明距离小于N的数据,有多种设计手段。每种方法的能耗比都不一样,读者可以按需选择。

1 暴力计算

1、单机多核并行计算,暴力扫描。采用阿里云RDS PostgreSQL 10提供的多核并行能力,暴力扫描。

2、多机多核并行计算,暴力扫描。采用阿里云HybridDB for PostgreSQL提供的多级并行计算能力,暴力扫描。

3、利用GPU、FPGA加速暴力运算。

PostgreSQL提供了扩展接口,可以利用GPU,FPGA的能力对数据进行计算。

4、利用CPU向量计算指令,暴力计算。

PostgreSQL提供了扩展接口,可以利用CPU向量计算指令的能力加速计算。

2 索引

索引是高效的做法,例如PostgreSQL smlar插件,在阿里的导购平台就有使用,用于实时导购文的海量相似度查询。

如果要让smlar加速海明距离的搜索,需要采用更科学的方法,比如切片。

直接使用位置,会有问题,因为smlar的第一道工序是块级收敛,而海明码是bit64的编码,在一个数据块中,有若干条记录,任何位置都可能同时出现0和1,任何数据块都包含0和1,因此无法完成第一道过滤。

我们可以采用切片,减少这种可能性。例如每2个BIT一片,或者每4个BIT一片,或者更多。

通常海明距离大于3的,就没有什么相关性了。

三、DEMO与性能

1 暴力计算

1、全扫,并行扫描

创建测试表

create table hm (

id int, -- id

hmval bit(64) -- 海明HASH

);

写入1000万测试数据

postgres=# insert into hm select id, val::int8::bit(64) from (select id, sqrt(random())::numeric*9223372036854775807*2-9223372036854775807::numeric as val from generate_series(1,10000000) t(id)) t;

INSERT 0 10000000

postgres=# select * from hm limit 10;

id | hmval

----+------------------------------------------------------------------

1 | 0000101001110110110101010111101011100110101010000111100011110111

2 | 0110011100110101101000001010101111010001011101100111111011001110

3 | 1010110111001011011110110000111111101101101111010111111100101110

4 | 0110011110110000001011000010010000101011100101010100111000101001

5 | 0101110100101111010110010110000000101110000010001011010110110000

6 | 0011010000100000101011011100000101111110010110111101100001100001

7 | 1011110011101101101000011101011101010111011001011010110111101000

8 | 1110010011000101001101110010001111110100001101010101111101110010

9 | 0110111111110011101001001000101101011011111100010010111010001111

10 | 0011100011000010101011010001111000000110100011100100111011011001

(10 rows)

设置暴力并行度

postgres=# set force_parallel_mode = on;

postgres=# set min_parallel_table_scan_size = 0;

postgres=# set parallel_setup_cost = 0;

postgres=# set parallel_tuple_cost = 0;

postgres=# alter table hm set (parallel_workers = 128);

postgres=# set max_parallel_workers_per_gather = 64;

并行查询海明距离小于4的记录,耗时463毫秒。

postgres=# select * from hm where length(replace(bitxor(bit'0011110001011010110010001011010101001000111110000111110010010110', hmval)::text,'0','')) < 4;

id | hmval

----+------------------------------------------------------------------

16 | 0011110001011010110010001011010101001000111110000111110010010110

(1 row)

Time: 463.314 ms

非并行查询海明距离小于4的记录,耗时16秒。

postgres=# select * from hm where length(replace(bitxor(bit'0011110001011010110010001011010101001000111110000111110010010110', hmval)::text,'0','')) < 4;

id | hmval

----+------------------------------------------------------------------

16 | 0011110001011010110010001011010101001000111110000111110010010110

(1 row)

Time: 16791.215 ms (00:16.791)

求两个BIT的不同位数,还有更高效率的方法。理论上可以达到100毫秒以内。

https://www.postgresql.org/message-id/flat/ab1ea6540903121110l2a3021d4h6632b206e2419898%40mail.gmail.com#ab1ea6540903121110l2a3021d4h6632b206e2419898@mail.gmail.com

2 索引

阿里云RDS PostgreSQL提供了一个smlar插件,用于高效率的求数组的相似度。

我们需要将海明HASH,转换为数组,根据前面的设计,我们采用8个BIT一片的切法,支持索引查询海明距离为8以内的值。

切之前,验证一下切片后的过滤性:

postgres=# select relpages from pg_class where relname='hm';

relpages

----------

63695

(1 row)

1、单个片为1时,不用说,每个块都包含。

postgres=# select count(*) from (select substring(ctid::text,'(\d+),') from hm where substring(hmval,1,1)='0' group by 1)t;

count

-------

63695

(1 row)

2、单个片为8时,有接近一半的块包含。

postgres=# select count(*) from (select substring(ctid::text,'(\d+),') from hm where substring(hmval,1,8)='00000000' group by 1)t;

count

-------

29100

(1 row)

3、单个片为16时,只有100多个块包含了。

postgres=# select count(*) from (select substring(ctid::text,'(\d+),') from hm where substring(hmval,1,16)='0000000000000000' group by 1)t;

count

-------

160

(1 row)

8片切法的性能验证

创建插件

create extension smlar;

创建测试表

create table hm1 (id int, hmval bit(64), hmarr text[]);

生成1000万测试数据,生成测试数据时,按切分手段进行切分,记录为TEXT数组。

insert into hm1

select

id,

val::bit(64),

regexp_split_to_array('1_'||substring(val,1,8)||',2_'||substring(val,9,8)||',3_'||substring(val,17,8)||',4_'||substring(val,25,8)||',5_'||substring(val,33,8)||',6_'||substring(val,41,8)||',7_'||substring(val,49,8)||',8_'||substring(val,57,8), ',')

from

(select id, (sqrt(random())::numeric*9223372036854775807*2-9223372036854775807::numeric)::int8::bit(64)::text as val from generate_series(1,10000000) t(id)) t;

postgres=# select * from hm1 limit 10;

id | hmval | hmarr

----+------------------------------------------------------------------+-------------------------------------------------------------------------------------------

1 | 0000001110101101100110011000100111100100001100100101101010010011 | {1_00000011,2_10101101,3_10011001,4_10001001,5_11100100,6_00110010,7_01011010,8_10010011}

2 | 0001001000010101001100100010101010111001001000000110101101100100 | {1_00010010,2_00010101,3_00110010,4_00101010,5_10111001,6_00100000,7_01101011,8_01100100}

3 | 0011111111010100011001001010110110100010101110101001101111010000 | {1_00111111,2_11010100,3_01100100,4_10101101,5_10100010,6_10111010,7_10011011,8_11010000}

4 | 1100110010011001001110101110111111111111010000100000010011000010 | {1_11001100,2_10011001,3_00111010,4_11101111,5_11111111,6_01000010,7_00000100,8_11000010}

5 | 0011000011010001011111010101010111100110000110000011101100000101 | {1_00110000,2_11010001,3_01111101,4_01010101,5_11100110,6_00011000,7_00111011,8_00000101}

6 | 0111101101111110101000010110101101110011011110100100010111011001 | {1_01111011,2_01111110,3_10100001,4_01101011,5_01110011,6_01111010,7_01000101,8_11011001}

7 | 0010001011111111100010101011110001001101001011100100011000010000 | {1_00100010,2_11111111,3_10001010,4_10111100,5_01001101,6_00101110,7_01000110,8_00010000}

8 | 1110001111100011011110110111101111010101000111000100111111111101 | {1_11100011,2_11100011,3_01111011,4_01111011,5_11010101,6_00011100,7_01001111,8_11111101}

9 | 0111110010111000010111001000000101111000000110110110000011101110 | {1_01111100,2_10111000,3_01011100,4_10000001,5_01111000,6_00011011,7_01100000,8_11101110}

10 | 0111001101100010001101101111000000100100000000010001010011100101 | {1_01110011,2_01100010,3_00110110,4_11110000,5_00100100,6_00000001,7_00010100,8_11100101}

(10 rows)

创建smlar索引

postgres=# create index idx_hm1 on hm1 using gin(hmarr _text_sml_ops );

搜索海明距离小于等于1的VALUE。用到了smlar索引,耗时63毫秒。

postgres=# set smlar.type = overlap;

postgres=# set smlar.threshold = 7;

select

*,

smlar( hmarr, '{1_00000011,2_10101101,3_10011001,4_10001001,5_11100100,6_00110010,7_01011010,8_10010011}')

from

hm1

where

hmarr % '{1_00000011,2_10101101,3_10011001,4_10001001,5_11100100,6_00110010,7_01011010,8_10010011}'

and length(replace(bitxor(bit'0000001110101101100110011000100111100100001100100101101010010011', hmval)::text,'0','')) < 2

limit 100;

postgres=# explain (analyze,verbose,timing,costs,buffers) select

*,

smlar( hmarr, '{1_00000011,2_10101101,3_10011001,4_10001001,5_11100100,6_00110010,7_01011010,8_10010011}')

from

hm1

where

hmarr % '{1_00000011,2_10101101,3_10011001,4_10001001,5_11100100,6_00110010,7_01011010,8_10010011}'

and length(replace(bitxor(bit'0000001110101101100110011000100111100100001100100101101010010011', hmval)::text,'0','')) < 2

limit 100;

QUERY PLAN

-------------------------------------------------------------------------------------------------------------------------------------------------------------------

Limit (cost=117.83..420.48 rows=100 width=169) (actual time=62.928..62.929 rows=1 loops=1)

Output: id, hmval, hmarr, (smlar(hmarr, '{1_00000011,2_10101101,3_10011001,4_10001001,5_11100100,6_00110010,7_01011010,8_10010011}'::text[]))

Buffers: shared hit=166

-> Bitmap Heap Scan on public.hm1 (cost=117.83..10205.17 rows=3333 width=169) (actual time=62.927..62.927 rows=1 loops=1)

Output: id, hmval, hmarr, smlar(hmarr, '{1_00000011,2_10101101,3_10011001,4_10001001,5_11100100,6_00110010,7_01011010,8_10010011}'::text[])

Recheck Cond: (hm1.hmarr % '{1_00000011,2_10101101,3_10011001,4_10001001,5_11100100,6_00110010,7_01011010,8_10010011}'::text[])

Filter: (length(replace((bitxor(B'0000001110101101100110011000100111100100001100100101101010010011'::"bit", hm1.hmval))::text, '0'::text, ''::text)) < 2)

Heap Blocks: exact=1

Buffers: shared hit=166

-> Bitmap Index Scan on idx_hm1 (cost=0.00..117.00 rows=10000 width=0) (actual time=62.898..62.898 rows=1 loops=1)

Index Cond: (hm1.hmarr % '{1_00000011,2_10101101,3_10011001,4_10001001,5_11100100,6_00110010,7_01011010,8_10010011}'::text[])

Buffers: shared hit=165

Planning time: 0.147 ms

Execution time: 62.975 ms

(14 rows)

postgres=# select

*,

smlar( hmarr, '{1_00000011,2_10101101,3_10011001,4_10001001,5_11100100,6_00110010,7_01011010,8_10010011}')

from

hm1

where

hmarr % '{1_00000011,2_10101101,3_10011001,4_10001001,5_11100100,6_00110010,7_01011010,8_10010011}'

and length(replace(bitxor(bit'0000001110101101100110011000100111100100001100100101101010010011', hmval)::text,'0','')) < 2

limit 100;

id | hmval | hmarr | smlar

----+------------------------------------------------------------------+-------------------------------------------------------------------------------------------+-------

1 | 0000001110101101100110011000100111100100001100100101101010010011 | {1_00000011,2_10101101,3_10011001,4_10001001,5_11100100,6_00110010,7_01011010,8_10010011} | 8

(1 row)

Time: 61.227 ms

如果我们只需要查询4以内的海明距离,实际上可以使用16的分组,或者我们可以使用混合切法。

6片混合切法的性能验证

切法为8,16,8,8,16,8。支持海明距离6以内的查询。

create table hm2 (id int, hmval bit(64), hmarr text[]);

insert into hm2

select

id,

val::bit(64),

regexp_split_to_array('1_'||substring(val,1,8)||',2_'||substring(val,9,16)||',3_'||substring(val,25,8)||',4_'||substring(val,33,8)||',5_'||substring(val,41,16)||',6_'||substring(val,57,8), ',')

from

(select id, (sqrt(random())::numeric*9223372036854775807*2-9223372036854775807::numeric)::int8::bit(64)::text as val from generate_series(1,10000000) t(id)) t;

postgres=# select * from hm2 limit 10;

id | hmval | hmarr

----+------------------------------------------------------------------+-------------------------------------------------------------------------------------

1 | 1100111011000001100100100111111110100011100111111101101001101010 | {1_11001110,2_1100000110010010,3_01111111,4_10100011,5_1001111111011010,6_01101010}

2 | 0111111000101011000111010011011000000010010001111001000111011101 | {1_01111110,2_0010101100011101,3_00110110,4_00000010,5_0100011110010001,6_11011101}

3 | 0111111000101111000101011100100000001111011101101100110100000101 | {1_01111110,2_0010111100010101,3_11001000,4_00001111,5_0111011011001101,6_00000101}

4 | 0111010101010010100000110001100011110010111000001011000010010010 | {1_01110101,2_0101001010000011,3_00011000,4_11110010,5_1110000010110000,6_10010010}

5 | 1111101100110100101111000011001011111110111000100110101001100001 | {1_11111011,2_0011010010111100,3_00110010,4_11111110,5_1110001001101010,6_01100001}

6 | 0011110000100010101001000001100010000010111011100010011001000110 | {1_00111100,2_0010001010100100,3_00011000,4_10000010,5_1110111000100110,6_01000110}

7 | 0000111111001110100110011110000110001101110111111111111010111001 | {1_00001111,2_1100111010011001,3_11100001,4_10001101,5_1101111111111110,6_10111001}

8 | 0110100010010100111100110110000011101110101001001111010101011111 | {1_01101000,2_1001010011110011,3_01100000,4_11101110,5_1010010011110101,6_01011111}

9 | 0111001111001100101011001001100100000000111100000110110001000011 | {1_01110011,2_1100110010101100,3_10011001,4_00000000,5_1111000001101100,6_01000011}

10 | 1101111101011000111100101010101000100001101100101110100001111000 | {1_11011111,2_0101100011110010,3_10101010,4_00100001,5_1011001011101000,6_01111000}

(10 rows)

create index idx_hm2 on hm2 using gin(hmarr _text_sml_ops );

查询海明距离小于等于1的值,提高到2毫秒了。

postgres=# set smlar.type = overlap;

postgres=# set smlar.threshold = 5;

postgres=# select

*,

smlar( hmarr, '{1_11001110,2_1100000110010010,3_01111111,4_10100011,5_1001111111011010,6_01101010}')

from

hm2

where

hmarr % '{1_11001110,2_1100000110010010,3_01111111,4_10100011,5_1001111111011010,6_01101010}'

and length(replace(bitxor(bit'1100111011000001100100100111111110100011100111111101101001101010', hmval)::text,'0','')) < 2

limit 100;

id | hmval | hmarr | smlar

----+------------------------------------------------------------------+-------------------------------------------------------------------------------------+-------

1 | 1100111011000001100100100111111110100011100111111101101001101010 | {1_11001110,2_1100000110010010,3_01111111,4_10100011,5_1001111111011010,6_01101010} | 6

(1 row)

Time: 1.954 ms

postgres=# explain (analyze,verbose,timing,costs,buffers) select

*,

smlar( hmarr, '{1_11001110,2_1100000110010010,3_01111111,4_10100011,5_1001111111011010,6_01101010}')

from

hm2

where

hmarr % '{1_11001110,2_1100000110010010,3_01111111,4_10100011,5_1001111111011010,6_01101010}'

and length(replace(bitxor(bit'1100111011000001100100100111111110100011100111111101101001101010', hmval)::text,'0','')) < 2

limit 100;

QUERY PLAN

-------------------------------------------------------------------------------------------------------------------------------------------------------------------

Limit (cost=103.83..406.06 rows=100 width=153) (actual time=2.414..2.416 rows=1 loops=1)

Output: id, hmval, hmarr, (smlar(hmarr, '{1_11001110,2_1100000110010010,3_01111111,4_10100011,5_1001111111011010,6_01101010}'::text[]))

Buffers: shared hit=102

-> Bitmap Heap Scan on public.hm2 (cost=103.83..10177.17 rows=3333 width=153) (actual time=2.414..2.415 rows=1 loops=1)

Output: id, hmval, hmarr, smlar(hmarr, '{1_11001110,2_1100000110010010,3_01111111,4_10100011,5_1001111111011010,6_01101010}'::text[])

Recheck Cond: (hm2.hmarr % '{1_11001110,2_1100000110010010,3_01111111,4_10100011,5_1001111111011010,6_01101010}'::text[])

Filter: (length(replace((bitxor(B'1100111011000001100100100111111110100011100111111101101001101010'::"bit", hm2.hmval))::text, '0'::text, ''::text)) < 2)

Heap Blocks: exact=1

Buffers: shared hit=102

-> Bitmap Index Scan on idx_hm2 (cost=0.00..103.00 rows=10000 width=0) (actual time=2.374..2.374 rows=1 loops=1)

Index Cond: (hm2.hmarr % '{1_11001110,2_1100000110010010,3_01111111,4_10100011,5_1001111111011010,6_01101010}'::text[])

Buffers: shared hit=101

Planning time: 0.149 ms

Execution time: 2.463 ms

(14 rows)

4片切法的性能验证

create table hm3 (id int, hmval bit(64), hmarr text[]);

insert into hm3

select

id,

val::bit(64),

regexp_split_to_array('1_'||substring(val,1,16)||',2_'||substring(val,17,16)||',3_'||substring(val,33,16)||',4_'||substring(val,41,16), ',')

from

(select id, (sqrt(random())::numeric*9223372036854775807*2-9223372036854775807::numeric)::int8::bit(64)::text as val from generate_series(1,10000000) t(id)) t;

postgres=# select * from hm3 limit 10;

id | hmval | hmarr

----+------------------------------------------------------------------+-------------------------------------------------------------------------------

1 | 0101011111111010000001001011101101100011111101111101101100000011 | {1_0101011111111010,2_0000010010111011,3_0110001111110111,4_1111011111011011}

2 | 1101011000010000000000000000111011011111011101110100000010101011 | {1_1101011000010000,2_0000000000001110,3_1101111101110111,4_0111011101000000}

3 | 0101000010110110110010001010100010101001001010111111011000110011 | {1_0101000010110110,2_1100100010101000,3_1010100100101011,4_0010101111110110}

4 | 0111000111100011111000100111000011101111110000011110101101000100 | {1_0111000111100011,2_1110001001110000,3_1110111111000001,4_1100000111101011}

5 | 0010111010101011111010011110110010011110111111110011101110010011 | {1_0010111010101011,2_1110100111101100,3_1001111011111111,4_1111111100111011}

6 | 0110111110011100100110010111010000000011100011000011110001010110 | {1_0110111110011100,2_1001100101110100,3_0000001110001100,4_1000110000111100}

7 | 0100110100111001110011011110100111101110101001000101010110110110 | {1_0100110100111001,2_1100110111101001,3_1110111010100100,4_1010010001010101}

8 | 0110010111001100111000011011011100001100111111101111011010100010 | {1_0110010111001100,2_1110000110110111,3_0000110011111110,4_1111111011110110}

9 | 0110111010110000001010101111000101110000010011100011100101000100 | {1_0110111010110000,2_0010101011110001,3_0111000001001110,4_0100111000111001}

10 | 0101101000000110100101100011111111000101110001010011100110101011 | {1_0101101000000110,2_1001011000111111,3_1100010111000101,4_1100010100111001}

(10 rows)

create index idx_hm3 on hm3 using gin(hmarr _text_sml_ops );

查询海明距离小于等于1的值,提高到0.2毫秒了。

postgres=# set smlar.type = overlap;

postgres=# set smlar.threshold = 3;

postgres=# select

*,

smlar( hmarr, '{1_0101011111111010,2_0000010010111011,3_0110001111110111,4_1111011111011011}')

from

hm3

where

hmarr % '{1_0101011111111010,2_0000010010111011,3_0110001111110111,4_1111011111011011}'

and length(replace(bitxor(bit'0101011111111010000001001011101101100011111101111101101100000011', hmval)::text,'0','')) < 2

limit 100;

id | hmval | hmarr | smlar

----+------------------------------------------------------------------+-------------------------------------------------------------------------------+-------

1 | 0101011111111010000001001011101101100011111101111101101100000011 | {1_0101011111111010,2_0000010010111011,3_0110001111110111,4_1111011111011011} | 4

(1 row)

postgres=# explain (analyze,verbose,timing,costs,buffers) select

*,

smlar( hmarr, '{1_0101011111111010,2_0000010010111011,3_0110001111110111,4_1111011111011011}')

from

hm3

where

hmarr % '{1_0101011111111010,2_0000010010111011,3_0110001111110111,4_1111011111011011}'

and length(replace(bitxor(bit'0101011111111010000001001011101101100011111101111101101100000011', hmval)::text,'0','')) < 2

limit 100;

QUERY PLAN

-------------------------------------------------------------------------------------------------------------------------------------------------------------------

Limit (cost=99.83..401.19 rows=100 width=134) (actual time=0.169..0.170 rows=1 loops=1)

Output: id, hmval, hmarr, (smlar(hmarr, '{1_0101011111111010,2_0000010010111011,3_0110001111110111,4_1111011111011011}'::text[]))

Buffers: shared hit=14

-> Bitmap Heap Scan on public.hm3 (cost=99.83..10144.17 rows=3333 width=134) (actual time=0.168..0.169 rows=1 loops=1)

Output: id, hmval, hmarr, smlar(hmarr, '{1_0101011111111010,2_0000010010111011,3_0110001111110111,4_1111011111011011}'::text[])

Recheck Cond: (hm3.hmarr % '{1_0101011111111010,2_0000010010111011,3_0110001111110111,4_1111011111011011}'::text[])

Filter: (length(replace((bitxor(B'0101011111111010000001001011101101100011111101111101101100000011'::"bit", hm3.hmval))::text, '0'::text, ''::text)) < 2)

Heap Blocks: exact=1

Buffers: shared hit=14

-> Bitmap Index Scan on idx_hm3 (cost=0.00..99.00 rows=10000 width=0) (actual time=0.145..0.145 rows=1 loops=1)

Index Cond: (hm3.hmarr % '{1_0101011111111010,2_0000010010111011,3_0110001111110111,4_1111011111011011}'::text[])

Buffers: shared hit=13

Planning time: 0.101 ms

Execution time: 0.200 ms

(14 rows)

查询海明距离小于等于4的,依旧在毫秒返回。

postgres=# set smlar.type = overlap;

postgres=# set smlar.threshold = 0;

postgres=# select

*,

smlar( hmarr, '{1_0101011111111010,2_0000010010111011,3_0110001111110111,4_1111011111011011}')

from

hm3

where

hmarr % '{1_0101011111111010,2_0000010010111011,3_0110001111110111,4_1111011111011011}'

and length(replace(bitxor(bit'0101011111111010000001001011101101100011111101111101101100000011', hmval)::text,'0','')) < 5

limit 100;

id | hmval | hmarr | smlar

----+------------------------------------------------------------------+-------------------------------------------------------------------------------+-------

1 | 0101011111111010000001001011101101100011111101111101101100000011 | {1_0101011111111010,2_0000010010111011,3_0110001111110111,4_1111011111011011} | 4

(1 row)

Time: 6.983 ms

不使用索引,23秒。

postgres=# select * from hm3 where length(replace(bitxor(bit'0101011111111010000001001011101101100011111101111101101100000011', hmval)::text,'0','')) < 5;

id | hmval | hmarr

----+------------------------------------------------------------------+-------------------------------------------------------------------------------

1 | 0101011111111010000001001011101101100011111101111101101100000011 | {1_0101011111111010,2_0000010010111011,3_0110001111110111,4_1111011111011011}

(1 row)

Time: 22954.686 ms

相比没有索引的情况,性能从23秒提升到了0.2毫秒。提升了11.48万倍。

自动切分

有人会说,怎么自动生成simhash切分后的数组呢?

不用担心,PostgreSQL提供了强大的UDF功能,可以建立UDF和TRIGGER,在写入数据时,自动生成切分后的数组。

例子

create table hm4 (id int, hmval bit(64), hmarr text[]);

create or replace function sp(val bit(64)) returns text[] as $$

select regexp_split_to_array('1_'||substring(val::text,1,10)||',2_'||substring(val::text,11,10)||',3_'||substring(val::text,21,10)||',4_'||substring(val::text,31,10)||',5_'||substring(val::text,41,10)||',6_'||substring(val::text,51,14), ',') ;

$$ language sql strict;

postgres=# select sp(123::bit(64));

sp

-------------------------------------------------------------------------------------

{1_0000000000,2_0000000000,3_0000000000,4_0000000000,5_0000000000,6_00000001111011}

(1 row)

-- 写入1亿记录

insert into hm4

select

id,

val::bit(64),

sp(val::bit(64))

from

(select id, (sqrt(random())::numeric*9223372036854775807*2-9223372036854775807::numeric)::int8::bit(64)::text as val from generate_series(1,100000000) t(id)) t;

-- 索引

create index idx_hm4 on hm4 using gin(hmarr _text_sml_ops );

-- 查询海明距离小于等于1的记录,性能杠杠的

postgres=# set smlar.type = overlap;

postgres=# set smlar.threshold = 5;

select

*,

smlar( hmarr, sp(123::bit(64))) -- 查询与123::bit(64)海明距离小于2的记录

from

hm3

where

hmarr % sp(123::bit(64)) -- 查询与123::bit(64)海明距离小于2的记录

and length(replace(bitxor(123::bit(64), hmval)::text,'0','')) < 2 -- 查询与123::bit(64)海明距离小于2的记录

limit 100;

创建触发器,写入simhash时,自动写入切分数组

create or replace function tg() returns trigger as $$

declare

begin

NEW.hmarr := sp(NEW.hmval);

return NEW;

end;

$$ language plpgsql strict;

postgres=# create trigger tg before insert or update on hm4 for each row execute procedure tg();

CREATE TRIGGER

-- 效果很赞

postgres=# truncate hm4;

TRUNCATE TABLE

postgres=# insert into hm4 values (1,1::bit(64));

INSERT 0 1

postgres=# select * from hm4;

id | hmval | hmarr

----+------------------------------------------------------------------+-------------------------------------------------------------------------------------

1 | 0000000000000000000000000000000000000000000000000000000000000001 | {1_0000000000,2_0000000000,3_0000000000,4_0000000000,5_0000000000,6_00000000000001}

(1 row)

postgres=# update hm4 set hmval=123456::bit(64);

UPDATE 1

postgres=# select * from hm4;

id | hmval | hmarr

----+------------------------------------------------------------------+-------------------------------------------------------------------------------------

1 | 0000000000000000000000000000000000000000000000011110001001000000 | {1_0000000000,2_0000000000,3_0000000000,4_0000000000,5_0000000111,6_10001001000000}

(1 row)

爽就点个赞吧。

四、技术点

1、阿里云RDS PostgreSQL smlar插件,使用GIN索引,块级收敛,二重过滤。0.2毫秒的响应速度,1000万数据中,检索海明距离2以内的记录。

2、阿里云RDS PostgreSQL 10,使用多核并行,暴力扫描,1000万数据,检索海明距离为N以内的数据,约450毫秒。

3、阿里云HybridDB for PostgreSQL,使用多机并行,横向扩展计算能力,也可以做到暴力扫描。根据实际的节点数计算查询效率。

五、云端产品

六、类似场景、案例

七、小结

采用阿里云RDS PostgreSQL的SMLAR插件,对千万量级的simhash数据检索相似文本,(更多数据量的测试后续提供,响应速度应该在毫秒级),相比没有索引的情况,性能从23秒提升到了0.2毫秒。提升了11.48万倍。

开不开心,意不意外。

八、参考

海明距离mysql查询_海量数据,海明距离高效检索(smlar) - 阿里云RDS PosgreSQL最佳实践-阿里云开发者社区...相关推荐

  1. 海量数据,海明距离高效检索(smlar)

    (1)什么是海明距离两个码字的对应比特取值不同的比特数称为这两个码字的海明距离.在一个有效编码集中,任意两个码字的海明距离的最小值称为该编码集的海明距离.举例如下:10101和00110从第一位开始依 ...

  2. mysql snowflake_一篇文章彻底搞懂snowflake算法及百度美团的最佳实践

    写在前面的话 一提到分布式ID自动生成方案,大家肯定都非常熟悉,并且立即能说出自家拿手的几种方案,确实,ID作为系统数据的重要标识,重要性不言而喻,而各种方案也是历经多代优化,请允许我用这个视角对分布 ...

  3. aws mysql 升级_aws RDS 版本升级最佳实践的探讨

    这篇文章其实在草稿箱中存在了挺长的一段时间,去年10月就已经开始写了,但是由于工作上的其他事情的干扰,一直还没写完.所以你可以看到我画的图中,now其实是指2018年10月(OCT). 趁着休假,把这 ...

  4. java 身边距离怎么查询_附近的人位置距离计算方法

    附近的人的位置用经纬度表示,然后通过两点的经纬度计算距离.根据网上的推荐,最终采用geohash. geohash的实现java版: 1 importjava.util.BitSet;2 import ...

  5. 简单mysql 查询_简单的mysql查询

    mysql是基于客户机-服务器的数据库.客户机-服务器应用分为两个不同的部分.服务器部分是负责所有数据访问和处理的一个软件. 连接mysql 要连接mysql需要知道如下 主机名: 本地为localh ...

  6. pgsql vs mysql查询_对比平台--SQL Server Vs PostgreSQL

    Microsoft SQL Server是一个数据库管理和分析系统,主要用于电子商务,业务范围和不同的数据仓库解决方案.另一方面,PostgreSQL是高级的对象关系数据库管理系统,它为SQL标准的扩 ...

  7. java对mysql查询_如何利用java对mysql数据库进行增删改查

    代码如下: 增: @Test //数据插入 public void demo1() { Connection conn=null; Statement stmt=null; try { //注册驱动 ...

  8. 关于mysql查询_关于mysql的查询

    --使用聚合函数查询计算--求和的方式对表中的数据个数求和SELECT COUNT(*) AS '总数' FROM zhangwu;--SUM 求和 sun(列名)SELECT SUM(money) ...

  9. 杰奇cms mysql查询_杰奇cms通过sql查询自定义标签,基础级别

    模板开发会经常遇到一个问题,那就是你想要调用某个值的时候,发现当前的页面根本调用不出来,那么这就造成一个很尴尬的局面,直接造成页面上需要调用的数据根本就呈现不出来,而且杰奇cms本身没有像织梦那样的后 ...

最新文章

  1. 如何判断一个字符串在JavaScript中是否包含某个字符?
  2. Spring Cloud Alibaba - 09 Ribbon 饥饿加载及其他配置参数解读
  3. ora-01950 对表空间无权限
  4. python ui自动化测试框架_基于python语言下的UI自动化测试框架搭建(一)
  5. (二分搜索法尺取法)subsequence
  6. java的整型_java 整型
  7. 计算机房安全等级标准,电子计算机房的分级标准
  8. 下面oracle命令正确的是,中国平安银行关于软件测试笔试试题(三)
  9. Windows Server 8 Tips (二) Hyper-V 3:用PowerShell导出和导入虚拟机
  10. 搭建Android开发环境(超详细)
  11. 我的c盘为多余的java.exejavaw.exe_java.exe,javac.exe,javaw.exe 是什么进程?
  12. 【云IDE】CSDN云IDE的初探以及实战操作
  13. web测试----死链检查(Xenu)
  14. 户外便携吹尘器方案浅析
  15. mysql三张表 left join
  16. 【极乐小程序】房地产行业怎么利用小程序运营http://www.dreawer.cn/opration/605.html
  17. 二开免公众号盲盒源码
  18. Word2007设置标题序号与标题文字之间自动空一个字距
  19. 重做系统后查不到jdk版本
  20. OSB Message-Level Custom Security

热门文章

  1. EntityFramework实体默认值遇到Oracle自增主键
  2. 給服务器增加swap空间缓解内存压力
  3. bzoj2662:[BeiJing wc2012]冻结
  4. 操作系统相关机器语言基础部分
  5. 用Ghost进行备份还原
  6. 20145307《信息安全系统设计基础》第十一周学习总结
  7. UICollectionViewDelegateFlowLayout 使用
  8. 用函数刷新页面内容比刷新页面要好
  9. UTC/GMT 时间转换
  10. Flutter NestedScrollView 滑动折叠头部下拉刷新效果