在 Java 8 中,对于 ConcurrentHashMap 这个常用的工具类进行了很大的升级,对比之前 Java 7 版本在诸多方面都进行了调整和变化。不过,在 Java 7 中的 Segment 的设计思想依然具有参考和学习的价值,所以在很多情况下面试官都会问你:ConcurrentHashMap 在 Java 7 和 Java 8 中的结构分别是什么?它们有什么相同点和不同点?所以本课时就对 ConcurrentHashMap 在这两个版本的特点和性质进行对比和介绍。

Java 7 版本的 ConcurrentHashMap
我们首先来看一下 Java 7 版本中的 ConcurrentHashMap 的结构示意图:

从图中我们可以看出,在 ConcurrentHashMap 内部进行了 Segment 分段,Segment 继承了 ReentrantLock,可以理解为一把锁,各个 Segment 之间都是相互独立上锁的,互不影响。相比于之前的 Hashtable 每次操作都需要把整个对象锁住而言,大大提高了并发效率。因为它的锁与锁之间是独立的,而不是整个对象只有一把锁。

每个 Segment 的底层数据结构与 HashMap 类似,仍然是数组和链表组成的拉链法结构。默认有 0~15 共 16 个 Segment,所以最多可以同时支持 16 个线程并发操作(操作分别分布在不同的 Segment 上)。16 这个默认值可以在初始化的时候设置为其他值,但是一旦确认初始化以后,是不可以扩容的。

Java 8 版本的 ConcurrentHashMap

在 Java 8 中,几乎完全重写了 ConcurrentHashMap,代码量从原来 Java 7 中的 1000 多行,变成了现在的 6000 多行,所以也大大提高了源码的阅读难度。而为了方便我们理解,我们还是先从整体的结构示意图出发,看一看总体的设计思路,然后再去深入细节。

图中的节点有三种类型。

第一种是最简单的,空着的位置代表当前还没有元素来填充。
第二种就是和 HashMap 非常类似的拉链法结构,在每一个槽中会首先填入第一个节点,但是后续如果计算出相同的 Hash 值,就用链表的形式往后进行延伸。
第三种结构就是红黑树结构,这是 Java 7 的 ConcurrentHashMap 中所没有的结构,在此之前我们可能也很少接触这样的数据结构。
当第二种情况的链表长度大于某一个阈值(默认为 8),且同时满足一定的容量要求的时候,ConcurrentHashMap 便会把这个链表从链表的形式转化为红黑树的形式,目的是进一步提高它的查找性能。所以,Java 8 的一个重要变化就是引入了红黑树的设计,由于红黑树并不是一种常见的数据结构,所以我们在此简要介绍一下红黑树的特点。

红黑树是每个节点都带有颜色属性的二叉查找树,颜色为红色或黑色,红黑树的本质是对二叉查找树 BST 的一种平衡策略,我们可以理解为是一种平衡二叉查找树,查找效率高,会自动平衡,防止极端不平衡从而影响查找效率的情况发生。

由于自平衡的特点,即左右子树高度几乎一致,所以其查找性能近似于二分查找,时间复杂度是 O(log(n)) 级别;反观链表,它的时间复杂度就不一样了,如果发生了最坏的情况,可能需要遍历整个链表才能找到目标元素,时间复杂度为 O(n),远远大于红黑树的 O(log(n)),尤其是在节点越来越多的情况下,O(log(n)) 体现出的优势会更加明显。

红黑树的一些其他特点:

每个节点要么是红色,要么是黑色,但根节点永远是黑色的。
红色节点不能连续,也就是说,红色节点的子和父都不能是红色的。
从任一节点到其每个叶子节点的路径都包含相同数量的黑色节点。
正是由于这些规则和要求的限制,红黑树保证了较高的查找效率,所以现在就可以理解为什么 Java 8 的 ConcurrentHashMap 要引入红黑树了。好处就是避免在极端的情况下冲突链表变得很长,在查询的时候,效率会非常慢。而红黑树具有自平衡的特点,所以,即便是极端情况下,也可以保证查询效率在 O(log(n))。

分析 Java 8 版本的 ConcurrentHashMap 的重要源码
前面我们讲解了 Java 7 和 Java 8 中 ConcurrentHashMap 的主体结构,下面我们深入源码分析。由于 Java 7 版本已经过时了,所以我们把重点放在 Java 8 版本的源码分析上。

Node 节点
我们先来看看最基础的内部存储结构 Node,这就是一个一个的节点,如这段代码所示:

复制代码
static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    volatile V val;
    volatile Node<K,V> next;
    // ...
}
可以看出,每个 Node 里面是 key-value 的形式,并且把 value 用 volatile 修饰,以便保证可见性,同时内部还有一个指向下一个节点的 next 指针,方便产生链表结构。

下面我们看两个最重要、最核心的方法。

put 方法源码分析
put 方法的核心是 putVal 方法,为了方便阅读,我把重要步骤的解读用注释的形式补充在下面的源码中。我们逐步分析这个最重要的方法,这个方法相对有些长,我们一步一步把它看清楚。

复制代码
final V putVal(K key, V value, boolean onlyIfAbsent) {
    if (key == null || value == null) {
        throw new NullPointerException();
    }
    //计算 hash 值
    int hash = spread(key.hashCode());
    int binCount = 0;
    for (Node<K, V>[] tab = table; ; ) {
        Node<K, V> f;
        int n, i, fh;
        //如果数组是空的,就进行初始化
        if (tab == null || (n = tab.length) == 0) {
            tab = initTable();
        }
        // 找该 hash 值对应的数组下标
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            //如果该位置是空的,就用 CAS 的方式放入新值
            if (casTabAt(tab, i, null,
                    new Node<K, V>(hash, key, value, null))) {
                break;
            }
        }
        //hash值等于 MOVED 代表在扩容
        else if ((fh = f.hash) == MOVED) {
            tab = helpTransfer(tab, f);
        }
        //槽点上是有值的情况
        else {
            V oldVal = null;
            //用 synchronized 锁住当前槽点,保证并发安全
            synchronized (f) {
                if (tabAt(tab, i) == f) {
                    //如果是链表的形式
                    if (fh >= 0) {
                        binCount = 1;
                        //遍历链表
                        for (Node<K, V> e = f; ; ++binCount) {
                            K ek;
                            //如果发现该 key 已存在,就判断是否需要进行覆盖,然后返回
                            if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                            (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                if (!onlyIfAbsent) {
                                    e.val = value;
                                }
                                break;
                            }
                            Node<K, V> pred = e;
                            //到了链表的尾部也没有发现该 key,说明之前不存在,就把新值添加到链表的最后
                            if ((e = e.next) == null) {
                                pred.next = new Node<K, V>(hash, key,
                                        value, null);
                                break;
                            }
                        }
                    }
                    //如果是红黑树的形式
                    else if (f instanceof TreeBin) {
                        Node<K, V> p;
                        binCount = 2;
                        //调用 putTreeVal 方法往红黑树里增加数据
                        if ((p = ((TreeBin<K, V>) f).putTreeVal(hash, key,
                                value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent) {
                                p.val = value;
                            }
                        }
                    }
                }
            }
            if (binCount != 0) {
                //检查是否满足条件并把链表转换为红黑树的形式,默认的 TREEIFY_THRESHOLD 阈值是 8
                if (binCount >= TREEIFY_THRESHOLD) {
                    treeifyBin(tab, i);
                }
                //putVal 的返回是添加前的旧值,所以返回 oldVal
                if (oldVal != null) {
                    return oldVal;
                }
                break;
            }
        }
    }
    addCount(1L, binCount);
    return null;
}
通过以上的源码分析,我们对于 putVal 方法有了详细的认识,可以看出,方法中会逐步根据当前槽点是未初始化、空、扩容、链表、红黑树等不同情况做出不同的处理。

get 方法源码分析
get 方法比较简单,我们同样用源码注释的方式来分析一下:

复制代码
public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    //计算 hash 值
    int h = spread(key.hashCode());
    //如果整个数组是空的,或者当前槽点的数据是空的,说明 key 对应的 value 不存在,直接返回 null
    if ((tab = table) != null && (n = tab.length) > 0 &&
            (e = tabAt(tab, (n - 1) & h)) != null) {
        //判断头结点是否就是我们需要的节点,如果是则直接返回
        if ((eh = e.hash) == h) {
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                return e.val;
        }
        //如果头结点 hash 值小于 0,说明是红黑树或者正在扩容,就用对应的 find 方法来查找
        else if (eh < 0)
            return (p = e.find(h, key)) != null ? p.val : null;
        //遍历链表来查找
        while ((e = e.next) != null) {
            if (e.hash == h &&
                    ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }
    return null;
}
总结一下 get 的过程:

计算 Hash 值,并由此值找到对应的槽点;
如果数组是空的或者该位置为 null,那么直接返回 null 就可以了;
如果该位置处的节点刚好就是我们需要的,直接返回该节点的值;
如果该位置节点是红黑树或者正在扩容,就用 find 方法继续查找;
否则那就是链表,就进行遍历链表查找。

对比Java7 和Java8 的异同和优缺点

数据结构

正如本课时最开始的两个结构示意图所示,Java 7 采用 Segment 分段锁来实现,而 Java 8 中的 ConcurrentHashMap 使用数组 + 链表 + 红黑树,在这一点上它们的差别非常大。

并发度

Java 7 中,每个 Segment 独立加锁,最大并发个数就是 Segment 的个数,默认是 16。

但是到了 Java 8 中,锁粒度更细,理想情况下 table 数组元素的个数(也就是数组长度)就是其支持并发的最大个数,并发度比之前有提高。

保证并发安全的原理

Java 7 采用 Segment 分段锁来保证安全,而 Segment 是继承自 ReentrantLock。

Java 8 中放弃了 Segment 的设计,采用 Node + CAS + synchronized 保证线程安全。

遇到 Hash 碰撞

Java 7 在 Hash 冲突时,会使用拉链法,也就是链表的形式。

Java 8 先使用拉链法,在链表长度超过一定阈值时,将链表转换为红黑树,来提高查找效率。

查询时间复杂度

Java 7 遍历链表的时间复杂度是 O(n),n 为链表长度。

Java 8 如果变成遍历红黑树,那么时间复杂度降低为 O(log(n)),n 为树的节点个数。

引用:https://kaiwu.lagou.com/course/courseInfo.htm?courseId=16#/detail/pc?id=264

Java多线程学习二十一:ConcurrentHashMap 在 Java7 和 8 有何不同相关推荐

  1. Java多线程学习二十:HashMap 为什么是线程不安全的

    为什么 HashMap 是线程不安全的?而对于 HashMap,相信你一定并不陌生,HashMap 是我们平时工作和学习中用得非常非常多的一个容器,也是 Map 最主要的实现类之一,但是它自身并不具备 ...

  2. java多线程学习二、安全与不安全示例:12306买票和银行取钱、java内存模型、内存可见性、线程同步块和方法

    文章目录 前言 1. 什么是块,分为几种 2. 静态块与构造块的区别 一. 举例说明:并发情况下,线程不安全 1. 示例1:unsafe12306取票 2. 示例2:unsafe银行取钱 二.线程不安 ...

  3. Java多线程学习(二)---线程创建方式

    线程创建方式 摘要: 1. 通过继承Thread类来创建并启动多线程的方式 2. 通过实现Runnable接口来创建并启动线程的方式 3. 通过实现Callable接口来创建并启动线程的方式 4. 总 ...

  4. Java多线程学习二十七:AtomicInteger 在高并发下性能不好,如何解决?为什么?

    AtomicInteger 在高并发下性能不好,如何解决?以及为什么会出现这种情况? 我们知道在 JDK1.5 中新增了并发情况下使用的 Integer/Long 所对应的原子类 AtomicInte ...

  5. Java多线程学习二十九:AtomicInteger(原子类) 和 synchronized 的异同点?

    原子类和 synchronized 关键字都可以用来保证线程安全,在本课时中,我们首先分别用原子类和 synchronized 关键字来解决一个经典的线程安全问题,给出具体的代码对比,然后再分析它们背 ...

  6. Java多线程学习二十六:原子类是如何利用 CAS 保证线程安全的?

    什么是原子类,以及它有什么作用. 在编程领域里,原子性意味着"一组操作要么全都操作成功,要么全都失败,不能只操作成功其中的一部分".而 java.util.concurrent.a ...

  7. Java多线程学习二十三:什么是阻塞队列

    阻塞队列的作用 阻塞队列,也就是 BlockingQueue,它是一个接口,如代码所示: public interface BlockingQueue<E> extends Queue&l ...

  8. Java基础学习(二十一)之接口

    1. 接口 1.1 接口概述 五孔插线面板,不同品牌都能使用,因为它们遵循同样的规范来生产的.所以说接口其实就是一种公共的规范,只要符合规范,大家都可以使用. 笔记本,USB口,鼠标,键盘,U盘 接口 ...

  9. Java多线程学习三十一:ThreadLocal 是用来解决共享资源的多线程访问的问题吗?

    ThreadLocal 是不是用来解决共享资源的多线程访问的. 这是一个常见的面试问题,如果被问到了 ThreadLocal,则有可能在你介绍完它的作用.注意点等内容之后,再问你:ThreadLoca ...

最新文章

  1. 使用 SAX 解析器简化文档处理程序的编写
  2. 2018.12.24
  3. c语言程序设计1.9例题
  4. 求幂,我居然又没做出来
  5. 笔记本电脑怎么清理灰尘_家里边边角角灰尘多,不好清理怎么办?一个“塑料瓶”解决烦恼!...
  6. IMP-00002: 无法打开 D:\orcldat\test_20111024.dmp 进行读取,rman备份
  7. (34)FPGA面试技能提升篇(高速SERDES)
  8. Lotus开发之Lotus Notes中域的验证
  9. LNMP平台部署及应用
  10. pip和requests模块的安装
  11. java8的下载与安装(网上教程的安装方法)
  12. 图片加密信息(16进制)
  13. java源文件只能有一import_Java源文件的声明规则
  14. python爬取豆瓣图书top250_python3 爬虫学习:爬取豆瓣读书Top250(四)
  15. 读书笔记-反省使人成长
  16. ClickHouse查询语句详解
  17. 网通相中中国联通GSM网络 联通暂无意租售
  18. 关于0x016f2818这个幻数
  19. ES6 ~ ES11整理
  20. Appium启动应用时,报错提示adb执行超时的问题解决

热门文章

  1. 优衣库试衣间又出事了!惊现针孔摄像头 回应:正全力配合警方调查
  2. 你们是魔鬼吗?Adobe研发了一款反PS工具:自己打自己?
  3. 小成本、大体验,“听歌自由”时代来临
  4. 受上海Model S自燃影响?特斯拉市值周一蒸发18亿美元
  5. 虚拟资源拳王公社:虚拟副业怎么赚钱,最简单的副业是什么,小白没经验怎么做副业
  6. linux内核文件cache机制,Linux内核文件Cache机制
  7. cadence导入dxf文件_DXF如何导入为图纸?
  8. apollo local 模式_「架构」 - 配置中心 Apollo基本使用
  9. Android 蓝牙遥控器的连接
  10. asio 组播包ssdp