https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=219

  题意是,给出铁人三项运动员在每一项中的速度,问他是否有可能获得第一。

  如果还没学过半平面交,估计做这题的时候应该是不停yy如何比较每两个运动员之间谁赢谁输,然后忽略了整体情况而导致狂wa不止。

  如果是利用半平面交,这时我们要假设前两项项目的路程占全程分别是x和y,那么总时间T(x,y)=x/v+y/u+(1-x-y)/w。

  对于判断当前运动员i是否能获胜,将它与其他运动员j比较,满足Ti<Tj(对于所有i!=j),那么运动员i就能获得第一。

  于是有(1/uj-1/ui-1/wj+1/wi)x+(1/vj-1/vi-1/wj+1/wi)y+(1/wj-1/wi)>0,然后,我们就可以划分出多个半平面了。

  半平面的交都是可行解,如果半平面交集为空,那么运动员i就无法获得第一。

  在构建半平面的时候,需要对两种必胜/必输状态进行特判,否则在构建半平面交的时候会产生错误。

代码如下:

View Code

  1 #include <cstdio>
  2 #include <cstring>
  3 #include <cmath>
  4 #include <set>
  5 #include <vector>
  6 #include <iostream>
  7 #include <algorithm>
  8
  9 using namespace std;
 10
 11 // Point class
 12 struct Point {
 13     double x, y;
 14     Point() {}
 15     Point(double x, double y) : x(x), y(y) {}
 16 } ;
 17 template<class T> T sqr(T x) { return x * x;}
 18 inline double ptDis(Point a, Point b) { return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y));}
 19
 20 // basic calculations
 21 typedef Point Vec;
 22 Vec operator + (Vec a, Vec b) { return Vec(a.x + b.x, a.y + b.y);}
 23 Vec operator - (Vec a, Vec b) { return Vec(a.x - b.x, a.y - b.y);}
 24 Vec operator * (Vec a, double p) { return Vec(a.x * p, a.y * p);}
 25 Vec operator / (Vec a, double p) { return Vec(a.x / p, a.y / p);}
 26
 27 const double EPS = 5e-13;
 28 const double PI = acos(-1.0);
 29 inline int sgn(double x) { return fabs(x) < EPS ? 0 : (x < 0 ? -1 : 1);}
 30 bool operator < (Point a, Point b) { return a.x < b.x || (a.x == b.x && a.y < b.y);}
 31 bool operator == (Point a, Point b) { return sgn(a.x - b.x) == 0 && sgn(a.y - b.y) == 0;}
 32
 33 inline double dotDet(Vec a, Vec b) { return a.x * b.x + a.y * b.y;}
 34 inline double crossDet(Vec a, Vec b) { return a.x * b.y - a.y * b.x;}
 35 inline double crossDet(Point o, Point a, Point b) { return crossDet(a - o, b - o);}
 36 inline double vecLen(Vec x) { return sqrt(sqr(x.x) + sqr(x.y));}
 37 inline double toRad(double deg) { return deg / 180.0 * PI;}
 38 inline double angle(Vec v) { return atan2(v.y, v.x);}
 39 inline double angle(Vec a, Vec b) { return acos(dotDet(a, b) / vecLen(a) / vecLen(b));}
 40 inline double triArea(Point a, Point b, Point c) { return fabs(crossDet(b - a, c - a));}
 41 inline Vec vecUnit(Vec x) { return x / vecLen(x);}
 42 inline Vec rotate(Vec x, double rad) { return Vec(x.x * cos(rad) - x.y * sin(rad), x.x * sin(rad) + x.y * cos(rad));}
 43 Vec normal(Vec x) {
 44     double len = vecLen(x);
 45     return Vec(- x.y / len, x.x / len);
 46 }
 47
 48 // Line class
 49 struct Line {
 50     Point s, t;
 51     Line() {}
 52     Line(Point s, Point t) : s(s), t(t) {}
 53     Point point(double x) {
 54         return s + (t - s) * x;
 55     }
 56     Line move(double x) { // while x > 0 move to (s->t)'s left
 57         Vec nor = normal(t - s);
 58         nor = nor * x;
 59         return Line(s + nor, t + nor);
 60     }
 61     Vec vec() { return t - s;}
 62 } ;
 63 typedef Line Seg;
 64
 65 inline bool onSeg(Point x, Point a, Point b) { return sgn(crossDet(a - x, b - x)) == 0 && sgn(dotDet(a - x, b - x)) < 0;}
 66 inline bool onSeg(Point x, Seg s) { return onSeg(x, s.s, s.t);}
 67
 68 // 0 : not intersect
 69 // 1 : proper intersect
 70 // 2 : improper intersect
 71 int segIntersect(Point a, Point c, Point b, Point d) {
 72     Vec v1 = b - a, v2 = c - b, v3 = d - c, v4 = a - d;
 73     int a_bc = sgn(crossDet(v1, v2));
 74     int b_cd = sgn(crossDet(v2, v3));
 75     int c_da = sgn(crossDet(v3, v4));
 76     int d_ab = sgn(crossDet(v4, v1));
 77     if (a_bc * c_da > 0 && b_cd * d_ab > 0) return 1;
 78     if (onSeg(b, a, c) && c_da) return 2;
 79     if (onSeg(c, b, d) && d_ab) return 2;
 80     if (onSeg(d, c, a) && a_bc) return 2;
 81     if (onSeg(a, d, b) && b_cd) return 2;
 82     return 0;
 83 }
 84 inline int segIntersect(Seg a, Seg b) { return segIntersect(a.s, a.t, b.s, b.t);}
 85
 86 // point of the intersection of 2 lines
 87 Point lineIntersect(Point P, Vec v, Point Q, Vec w) {
 88     Vec u = P - Q;
 89     double t = crossDet(w, u) / crossDet(v, w);
 90     return P + v * t;
 91 }
 92 inline Point lineIntersect(Line a, Line b) { return lineIntersect(a.s, a.t - a.s, b.s, b.t - b.s);}
 93
 94 // Warning: This is a DIRECTED Distance!!!
 95 double pt2Line(Point x, Point a, Point b) {
 96     Vec v1 = b - a, v2 = x - a;
 97     return crossDet(v1, v2) / vecLen(v1);
 98 }
 99 inline double pt2Line(Point x, Line L) { return pt2Line(x, L.s, L.t);}
100
101 double pt2Seg(Point x, Point a, Point b) {
102     if (a == b) return vecLen(x - a);
103     Vec v1 = b - a, v2 = x - a, v3 = x - b;
104     if (sgn(dotDet(v1, v2)) < 0) return vecLen(v2);
105     if (sgn(dotDet(v1, v3)) > 0) return vecLen(v3);
106     return fabs(crossDet(v1, v2)) / vecLen(v1);
107 }
108 inline double pt2Seg(Point x, Seg s) { return pt2Seg(x, s.s, s.t);}
109
110 // Polygon class
111 struct Poly {
112     vector<Point> pt;
113     Poly() { pt.clear();}
114     Poly(vector<Point> pt) : pt(pt) {}
115     Point operator [] (int x) const { return pt[x];}
116     int size() { return pt.size();}
117     double area() {
118         double ret = 0.0;
119         int sz = pt.size();
120         for (int i = 1; i < sz; i++) {
121             ret += crossDet(pt[i], pt[i - 1]);
122         }
123         return fabs(ret / 2.0);
124     }
125 } ;
126
127 // Circle class
128 struct Circle {
129     Point c;
130     double r;
131     Circle() {}
132     Circle(Point c, double r) : c(c), r(r) {}
133     Point point(double a) {
134         return Point(c.x + cos(a) * r, c.y + sin(a) * r);
135     }
136 } ;
137
138 // Cirlce operations
139 int lineCircleIntersect(Line L, Circle C, double &t1, double &t2, vector<Point> &sol) {
140     double a = L.s.x, b = L.t.x - C.c.x, c = L.s.y, d = L.t.y - C.c.y;
141     double e = sqr(a) + sqr(c), f = 2 * (a * b + c * d), g = sqr(b) + sqr(d) - sqr(C.r);
142     double delta = sqr(f) - 4.0 * e * g;
143     if (sgn(delta) < 0) return 0;
144     if (sgn(delta) == 0) {
145         t1 = t2 = -f / (2.0 * e);
146         sol.push_back(L.point(t1));
147         return 1;
148     }
149     t1 = (-f - sqrt(delta)) / (2.0 * e);
150     sol.push_back(L.point(t1));
151     t2 = (-f + sqrt(delta)) / (2.0 * e);
152     sol.push_back(L.point(t2));
153     return 2;
154 }
155
156 int lineCircleIntersect(Line L, Circle C, vector<Point> &sol) {
157     Vec dir = L.t - L.s, nor = normal(dir);
158     Point mid = lineIntersect(C.c, nor, L.s, dir);
159     double len = sqr(C.r) - sqr(ptDis(C.c, mid));
160     if (sgn(len) < 0) return 0;
161     if (sgn(len) == 0) {
162         sol.push_back(mid);
163         return 1;
164     }
165     Vec dis = vecUnit(dir);
166     len = sqrt(len);
167     sol.push_back(mid + dis * len);
168     sol.push_back(mid - dis * len);
169     return 2;
170 }
171
172 // -1 : coincide
173 int circleCircleIntersect(Circle C1, Circle C2, vector<Point> &sol) {
174     double d = vecLen(C1.c - C2.c);
175     if (sgn(d) == 0) {
176         if (sgn(C1.r - C2.r) == 0) {
177             return -1;
178         }
179         return 0;
180     }
181     if (sgn(C1.r + C2.r - d) < 0) return 0;
182     if (sgn(fabs(C1.r - C2.r) - d) > 0) return 0;
183     double a = angle(C2.c - C1.c);
184     double da = acos((sqr(C1.r) + sqr(d) - sqr(C2.r)) / (2.0 * C1.r * d));
185     Point p1 = C1.point(a - da), p2 = C1.point(a + da);
186     sol.push_back(p1);
187     if (p1 == p2) return 1;
188     sol.push_back(p2);
189     return 2;
190 }
191
192 void circleCircleIntersect(Circle C1, Circle C2, vector<double> &sol) {
193     double d = vecLen(C1.c - C2.c);
194     if (sgn(d) == 0) return ;
195     if (sgn(C1.r + C2.r - d) < 0) return ;
196     if (sgn(fabs(C1.r - C2.r) - d) > 0) return ;
197     double a = angle(C2.c - C1.c);
198     double da = acos((sqr(C1.r) + sqr(d) - sqr(C2.r)) / (2.0 * C1.r * d));
199     sol.push_back(a - da);
200     sol.push_back(a + da);
201 }
202
203 int tangent(Point p, Circle C, vector<Vec> &sol) {
204     Vec u = C.c - p;
205     double dist = vecLen(u);
206     if (dist < C.r) return 0;
207     if (sgn(dist - C.r) == 0) {
208         sol.push_back(rotate(u, PI / 2.0));
209         return 1;
210     }
211     double ang = asin(C.r / dist);
212     sol.push_back(rotate(u, -ang));
213     sol.push_back(rotate(u, ang));
214     return 2;
215 }
216
217 // ptA : points of tangency on circle A
218 // ptB : points of tangency on circle B
219 int tangent(Circle A, Circle B, vector<Point> &ptA, vector<Point> &ptB) {
220     if (A.r < B.r) {
221         swap(A, B);
222         swap(ptA, ptB);
223     }
224     int d2 = sqr(A.c.x - B.c.x) + sqr(A.c.y - B.c.y);
225     int rdiff = A.r - B.r, rsum = A.r + B.r;
226     if (d2 < sqr(rdiff)) return 0;
227     double base = atan2(B.c.y - A.c.y, B.c.x - A.c.x);
228     if (d2 == 0 && A.r == B.r) return -1;
229     if (d2 == sqr(rdiff)) {
230         ptA.push_back(A.point(base));
231         ptB.push_back(B.point(base));
232         return 1;
233     }
234     double ang = acos((A.r - B.r) / sqrt(d2));
235     ptA.push_back(A.point(base + ang));
236     ptB.push_back(B.point(base + ang));
237     ptA.push_back(A.point(base - ang));
238     ptB.push_back(B.point(base - ang));
239     if (d2 == sqr(rsum)) {
240         ptA.push_back(A.point(base));
241         ptB.push_back(B.point(PI + base));
242     } else if (d2 > sqr(rsum)) {
243         ang = acos((A.r + B.r) / sqrt(d2));
244         ptA.push_back(A.point(base + ang));
245         ptB.push_back(B.point(PI + base + ang));
246         ptA.push_back(A.point(base - ang));
247         ptB.push_back(B.point(PI + base - ang));
248     }
249     return (int) ptA.size();
250 }
251
252 // -1 : onside
253 // 0 : outside
254 // 1 : inside
255 int ptInPoly(Point p, Poly &poly) {
256     int wn = 0, sz = poly.size();
257     for (int i = 0; i < sz; i++) {
258         if (onSeg(p, poly[i], poly[(i + 1) % sz])) return -1;
259         int k = sgn(crossDet(poly[(i + 1) % sz] - poly[i], p - poly[i]));
260         int d1 = sgn(poly[i].y - p.y);
261         int d2 = sgn(poly[(i + 1) % sz].y - p.y);
262         if (k > 0 && d1 <= 0 && d2 > 0) wn++;
263         if (k < 0 && d2 <= 0 && d1 > 0) wn--;
264     }
265     if (wn != 0) return 1;
266     return 0;
267 }
268
269 // if DO NOT need a high precision
270 /*
271 int ptInPoly(Point p, Poly poly) {
272     int sz = poly.size();
273     double ang = 0.0, tmp;
274     for (int i = 0; i < sz; i++) {
275         if (onSeg(p, poly[i], poly[(i + 1) % sz])) return -1;
276         tmp = angle(poly[i] - p) - angle(poly[(i + 1) % sz] - p) + PI;
277         ang += tmp - floor(tmp / (2.0 * PI)) * 2.0 * PI - PI;
278     }
279     if (sgn(ang - PI) == 0) return -1;
280     if (sgn(ang) == 0) return 0;
281     return 1;
282 }
283 */
284
285
286 // Convex Hull algorithms
287 // return the number of points in convex hull
288
289 // andwer's algorithm
290 // if DO NOT want the points on the side of convex hull, change all "<" into "<="
291 int andrew(Point *pt, int n, Point *ch) {
292     sort(pt, pt + n);
293     int m = 0;
294     for (int i = 0; i < n; i++) {
295         while (m > 1 && crossDet(ch[m - 1] - ch[m - 2], pt[i] - ch[m - 2]) <= 0) m--;
296         ch[m++] = pt[i];
297     }
298     int k = m;
299     for (int i = n - 2; i >= 0; i--) {
300         while (m > k && crossDet(ch[m - 1] - ch[m - 2], pt[i] - ch[m - 2]) <= 0) m--;
301         ch[m++] = pt[i];
302     }
303     if (n > 1) m--;
304     return m;
305 }
306
307 // graham's algorithm
308 // if DO NOT want the points on the side of convex hull, change all "<=" into "<"
309 Point origin;
310 inline bool cmpAng(Point p1, Point p2) { return crossDet(origin, p1, p2) > 0;}
311 inline bool cmpDis(Point p1, Point p2) { return ptDis(p1, origin) > ptDis(p2, origin);}
312
313 void removePt(Point *pt, int &n) {
314     int idx = 1;
315     for (int i = 2; i < n; i++) {
316         if (sgn(crossDet(origin, pt[i], pt[idx]))) pt[++idx] = pt[i];
317         else if (cmpDis(pt[i], pt[idx])) pt[idx] = pt[i];
318     }
319     n = idx + 1;
320 }
321
322 int graham(Point *pt, int n, Point *ch) {
323     int top = -1;
324     for (int i = 1; i < n; i++) {
325         if (pt[i].y < pt[0].y || (pt[i].y == pt[0].y && pt[i].x < pt[0].x)) swap(pt[i], pt[0]);
326     }
327     origin = pt[0];
328     sort(pt + 1, pt + n, cmpAng);
329     removePt(pt, n);
330     for (int i = 0; i < n; i++) {
331         if (i >= 2) {
332             while (!(crossDet(ch[top - 1], pt[i], ch[top]) <= 0)) top--;
333         }
334         ch[++top] = pt[i];
335     }
336     return top + 1;
337 }
338
339
340 // Half Plane
341 // The intersected area is always a convex polygon.
342 // Directed Line class
343 struct DLine {
344     Point p;
345     Vec v;
346     double ang;
347     DLine() {}
348     DLine(Point p, Vec v) : p(p), v(v) { ang = atan2(v.y, v.x);}
349     bool operator < (const DLine &L) const { return ang < L.ang;}
350     DLine move(double x) { // while x > 0 move to v's left
351         Vec nor = normal(v);
352         nor = nor * x;
353         return DLine(p + nor, v);
354     }
355
356 } ;
357
358 Poly cutPoly(Poly &poly, Point a, Point b) {
359     Poly ret = Poly();
360     int n = poly.size();
361     for (int i = 0; i < n; i++) {
362         Point c = poly[i], d = poly[(i + 1) % n];
363         if (sgn(crossDet(b - a, c - a)) >= 0) ret.pt.push_back(c);
364         if (sgn(crossDet(b - a, c - d)) != 0) {
365             Point ip = lineIntersect(a, b - a, c, d - c);
366             if (onSeg(ip, c, d)) ret.pt.push_back(ip);
367         }
368     }
369     return ret;
370 }
371 inline Poly cutPoly(Poly &poly, DLine L) { return cutPoly(poly, L.p, L.p + L.v);}
372
373 inline bool onLeft(DLine L, Point p) { return crossDet(L.v, p - L.p) > 0;}
374 Point dLineIntersect(DLine a, DLine b) {
375     Vec u = a.p - b.p;
376     double t = crossDet(b.v, u) / crossDet(a.v, b.v);
377     return a.p + a.v * t;
378 }
379
380 Poly halfPlane(DLine *L, int n) {
381     Poly ret = Poly();
382     sort(L, L + n);
383     int fi, la;
384     Point *p = new Point[n];
385     DLine *q = new DLine[n];
386     q[fi = la = 0] = L[0];
387     for (int i = 1; i < n; i++) {
388         while (fi < la && !onLeft(L[i], p[la - 1])) la--;
389         while (fi < la && !onLeft(L[i], p[fi])) fi++;
390         q[++la] = L[i];
391         if (fabs(crossDet(q[la].v, q[la - 1].v)) < EPS) {
392             la--;
393             if (onLeft(q[la], L[i].p)) q[la] = L[i];
394         }
395         if (fi < la) p[la - 1] = dLineIntersect(q[la - 1], q[la]);
396     }
397     while (fi < la && !onLeft(q[fi], p[la - 1])) la--;
398     if (la - fi <= 1) return ret;
399     p[la] = dLineIntersect(q[la], q[fi]);
400     for (int i = fi; i <= la; i++) ret.pt.push_back(p[i]);
401     return ret;
402 }
403
404
405 // 3D Geometry
406 void getCoor(double R, double lat, double lng, double &x, double &y, double &z) {
407     lat = toRad(lat);
408     lng = toRad(lng);
409     x = R * cos(lat) * cos(lng);
410     y = R * cos(lat) * sin(lng);
411     z = R * sin(lat);
412 }
413
414
415 /****************** template above *******************/
416
417 const int N = 111;
418 const double ep = 1e4;
419 double v[N], u[N], w[N];
420
421 bool halfPlaneTest(DLine *L, int n) {
422     Poly ret = Poly();
423     sort(L, L + n);
424     int fi, la;
425     Point *p = new Point[n];
426     DLine *q = new DLine[n];
427     q[fi = la = 0] = L[0];
428     for (int i = 1; i < n; i++) {
429         while (fi < la && !onLeft(L[i], p[la - 1])) la--;
430         while (fi < la && !onLeft(L[i], p[fi])) fi++;
431         q[++la] = L[i];
432         if (fabs(crossDet(q[la].v, q[la - 1].v)) < EPS) {
433             la--;
434             if (onLeft(q[la], L[i].p)) q[la] = L[i];
435         }
436         if (fi < la) p[la - 1] = dLineIntersect(q[la - 1], q[la]);
437     }
438     while (fi < la && !onLeft(q[fi], p[la - 1])) la--;
439 //    cout << la - fi << " ~~" << endl;
440     if (la - fi <= 1) return false;
441     return true;
442 }
443
444 bool test(int id, int n) {
445     DLine tmp[N];
446     int top = 0;
447     tmp[top++] = DLine(Point(0.0, 0.0), Vec(0.0, -1.0));
448     tmp[top++] = DLine(Point(0.0, 0.0), Vec(1.0, 0.0));
449     tmp[top++] = DLine(Point(0.0, 1.0), Vec(-1.0, 1.0));
450     for (int i = 0; i < n; i++) {
451         if (i == id) continue;
452         // 下面的特判必不可少
453         if (v[i] >= v[id] && u[i] >= u[id] && w[i] >= w[id]) return false;
454         if (v[i] <= v[id] && u[i] <= u[id] && w[i] <= w[id]) continue;
455         double A = ep / v[i] - ep / v[id] - ep / w[i] + ep / w[id];
456         double B = ep / u[i] - ep / u[id] - ep / w[i] + ep / w[id];
457         Point pt;
458         if (fabs(A) < fabs(B)) pt = Point(0.0, - (ep / w[i] - ep / w[id]) / B);
459         else pt = Point(- (ep / w[i] - ep / w[id]) / A, 0.0);
460         tmp[top++] = DLine(pt, Vec(B, - A));
461     }
462     return halfPlaneTest(tmp, top);
463 }
464
465 int main() {
466 //    freopen("in", "r", stdin);
467     int n;
468     while (cin >> n) {
469         for (int i = 0; i < n; i++) cin >> v[i] >> u[i] >> w[i];
470         for (int i = 0; i < n; i++) {
471             if (test(i, n)) puts("Yes");
472             else puts("No");
473         }
474 //        puts("~~~");
475     }
476     return 0;
477 }

——written by Lyon

转载于:https://www.cnblogs.com/LyonLys/archive/2013/05/08/LA_2218_Lyon.html

LA 2218 Triathlon (Geometry, Half Plane Intersection)相关推荐

  1. LA 2218 (半平面交) Triathlon

    题意: 有n个选手,铁人三项有连续的三段,对于每段场地选手i分别以vi, ui 和 wi匀速通过. 对于每个选手,问能否通过调整每种赛道的长度使得他成为冠军(不能并列). 分析: 粗一看,这不像一道计 ...

  2. poj 3384 Feng Shui (Half Plane Intersection)

    3384 -- Feng Shui 构造半平面交,然后求凸包上最远点对. 这题的题意是给出一个凸多边形区域,要求在其中放置两个半径为r的圆(不能超出凸多边形区域),要求求出两个圆心,使得多边形中没有被 ...

  3. 2018十二月刷题列表

    Preface \(2018\)年的尾巴,不禁感慨自己这一年的蜕变只能用蜕变来形容了. 而且老叶说我们今年没的参加清北冬令营可以参加CCF在广州二中举办的冬令营,只要联赛\(390+\)就应该可以报. ...

  4. Nvidia PhysX 学习文档7:Geometry

        引物爪牙之利,筋骨之强,上食埃土,下饮黄泉,用心一也. official site: https://gameworksdocs.nvidia.com/PhysX/4.1/documentat ...

  5. 几何工具引擎(geometry tool engine)

    Geometric Tools Geometric Tools 欢迎访问Geometric Tools的官方网站,这是数学.几何.图形.图像分析和物理领域计算的源代码集合.该引擎是用C++14编写的, ...

  6. JTS Geometry关系判断和分析

    关系判断 Geometry之间的关系有如下几种: 相等(Equals): 几何形状拓扑上相等. 脱节(Disjoint): 几何形状没有共有的点. 相交(Intersects): 几何形状至少有一个共 ...

  7. GeoTools应用-JTS(Geometry之间的关系)

    几何信息和拓扑关系是地理信息系统中描述地理要素的空间位置和空间关系的不可缺少的基本信息.其中几何信息主要涉及几何目标的坐标位置.方向.角度.距离和面积等信息,它通常用解析几何的方法来分析.而空间关系信 ...

  8. 《An Introduction to Ray Tracing》——2.3 Ray/Polygon Intersection And Mapping

    总结<An Introduction to Ray Tracing>全文:点这里http://blog.csdn.net/libing_zeng/article/details/72603 ...

  9. JTS Geometry

    JTS Geometry关系判断和分析 JTS Geometry关系判断和分析 1.关系判断 1.1实例 2.关系分析 2.1实例 JTS(Geometry) JTS Geometry关系判断和分析 ...

  10. JTS Geometry用例分析

    微信搜索:"二十同学" 公众号,欢迎关注一条不一样的成长之路 拓扑关系        GeometryTest import com.vividsolutions.jts.geom ...

最新文章

  1. 没忍住又怼同事了!领导说,要做好情绪管理:真正优秀的人,从来都是不动声色...
  2. c语言 linux取运行目录,c语言获取当前工作路径的实现代码(windows/linux)
  3. MP3Player(附源码)
  4. 一场不能只看结果的较量
  5. eclipse+ADT 进行android应用签名详解
  6. Notepad++快速选中多行
  7. 什么时候会用到拷贝构造函数?
  8. java web ssh jar_java web 汽车美容管理系统 ssh 毕设作品
  9. Linux运维基础入门知识
  10. 极限精简服务器系统,极限精简斐讯T1/N1 极客开发者强迫症福音6.25
  11. 【WiFi】WiFi 5G信道和频宽的对应关系
  12. 高斯课堂数电讲义笔记_《高数上》讲义笔记【高斯课堂】 (1).pdf
  13. python:实现convolve卷积算法(附完整源码)
  14. 【Java】所有做过的面试题
  15. linux 脚本 input,Linux 下通过命令行和脚本开关笔记本触控板和其他输入外设
  16. 自建服务器系列-0元搭建linux服务器(windows笔记本)
  17. 学海无涯!java连接mysql
  18. 李嘉诚汕头大学毕业典礼上致辞:无心睡眠
  19. 又闹分裂?Node.js 被 fork 出一个项目 Ayo.js
  20. opencv python 人脸识别 相似度_OpenCV+Tensorflow实现实时人脸识别演示

热门文章

  1. SQL-sqlHelper001
  2. 对复杂字典DictionaryT1,T2排序问题
  3. jquery 上下无缝滚动
  4. 浏览器通知--window.Notification
  5. python的Singleton模式实现
  6. 自己的 并查集 模板
  7. Windows下的wget安装
  8. 美团云的网络架构演进之路
  9. 用递归将嵌套的JSON对象遍历出来,转为二维数组 或一维数组
  10. MySQLdb 1031 Error