目前更新到5.3节,请在
http://dl.dbank.com/c02ackpwp6下载5.3节的全部文档

本节源代码请在http://dl.dbank.com/c0fp2g5z9s下载

第7节 二进制信号量

某些资源在同一时刻只可以被一个任务操作,实时操作系统的任务抢占特性会导致这些资源可能被多个任务同时操作,从而产生错误。本节将讲述二进制信号量的原理,可以利用二进制信号量保护这些资源,使多个任务只能串行的操作这些资源。

有时候我们可以设计一块共享内存,用来在多个任务间传递数据,比如使用任务1向共享内存中写入数据,使用任务2从这片内存中读取数据,这样就可以实现任务1向任务2传递数据的功能,但这样做有一个问题,如果任务1正在向共享内存中写数据的过程中发生了任务切换,切换到了任务2,那么任务2所读取的共享内存中的数据就不完全是最新写入的有效数据,这样任务2就会读取到错误的数据。

为了防止这个问题发生,最简单的办法就是使用一个全局变量来指示共享内存的访问权限,当全局变量为1时,共享内存可以被访问,当全局变量为0时共享内存不可被访问。当一个任务操作共享内存时,首先判断全局变量,如果为0,说明共享内存正在被其它任务操作,此时无法被访问,如果为1的话说明共享内存可以被访问,那么该任务则将全局变量置为0,表明共享内存已经被访问,其它任务此时不可访问共享内存。当任务操作完共享内存后将全局变量置为1,释放对共享内存的访问权限,此后共享内存又可以被再次访问。

这个过程使用伪码描述如下:

00001  锁中断;

00002

00003

00004  if(1 == 全局变量)

00005  {

00006

00007      全局变量 = 0;

00008

00009      解锁中断;

00010  }

00011  else

00012  {

00013      解锁中断;

00014

00015

00016      return;

00017  }

00018

00019  对共享内存的操作;

00020

00021

00022  全局变量 = 1;

上述函数在运行时可能会发生重入现象,因此4~7行需要用锁中断的方式将全局变量的操作过程保护起来,虽然在22行也存在重入的问题,但22行只有一条指令涉及到对全局变量的操作,而不是一个过程,因此无需锁中断保护。这里所说的一条指令,不是指C语言的一条指令,而是汇编语言的一条指令。

二进制信号量就是基于上述原理实现的,简单来说,二进制信号量就是一个全局变量,用来实现各种资源的互斥,但使用全局变量作为资源互斥的开关存在一个缺点:当任务获取不到访问权限时,它可能需要等待该权限,需要暂时放弃CPU资源,让给其它任务去运行,这就需要发生任务调度,但直接触发任务调度的软中断调度函数被封装到了操作系统内部,用户不可见,因此获取不到权限的任务也就无法主动发生任务调度切换到其它任务。

二进制信号量将任务调度函数封装到了其内部,当任务获取不到权限被阻塞时可以直接调用软中断函数MDS_TaskSwiSched触发任务调度函数,切换到其它任务继续运行,因此,可以说二进制信号量就是全局变量+任务调度的结合体。

在这节,我们将引入任务的另一个状态,阻塞态(pend),当任务获取不到信号量资源时就会进入pend态,pend态与delay态非常相似,delay态是由任务主动释放CPU资源而进入的等待状态,而pend态则是由于任务获取不到某些非CPU资源而被动进入的等待状态。如果处于pend态的任务不是永久pend状态,那么该任务也将被挂入delay表中,与处于非永久delay状态的任务一起参与tick中断的调度。当pend的时间耗尽时,任务将会被从delay表拆除,结束pend状态,重新挂入ready表,参与任务调度。

在使用信号量前,需要使用MDS_SemCreate函数创建信号量,新创建的信号量可以为“空”状态或者“满”状态,为与后续章节增加的信号量保持兼容,我们将“空”定义为0,将“满”定义为0xFFFFFFFF,而不是1。任务需要使用MDS_SemTake函数获取信号量,获取信号量的过程就是信号量从满到空的过程。任务需要使用MDS_SemGive函数释放信号量,释放信号量的过程就是信号量从空到满的过程。信号量空满状态对信号量操作的对应关系如表9所示:

操作方式

操作后状态

发生的结果

MDS_SemCreate

信号量被初始化为满状态。

MDS_SemTake

任务获取到信号量。

MDS_SemTake

任务没有获取到信号量,被阻塞。

MDS_SemTake

任务没有获取到信号量,共有2个任务被阻塞。

MDS_SemGive

一个任务获取到信号量,重新恢复到ready态,还有一个任务被阻塞。

MDS_SemGive

一个任务获取到信号量,重新恢复到ready态,没有任务被阻塞。

MDS_SemGive

没有任务获取信号量,信号量被置为满状态。

MDS_SemGive

没有任务获取信号量,信号量仍为满状态。

表 9  信号量操作与二进制信号量空满状态的对应关系

一个信号量可以阻塞多个任务,当信号量为空时,任何任务使用MDS_SemTake函数都可能被阻塞到该信号量上。当信号量上有被阻塞的任务时,如果一个任务使用MDS_SemGive函数释放了信号量,那么在这些被阻塞的任务中将会有一个任务被激活,从pend态恢复到ready态,重新参与任务调度。但具体是哪个任务先从pend状态恢复,我们可以采用两种调度方式,一种是先进先出(FIFO)方式,即最先被阻塞的任务最先被从pend状态恢复,另一种是优先级(PRIO)方式,即被阻塞的任务中优先级最高的任务最先被恢复。前面介绍的操作系统的任务调度方式就是优先级方式,因此在信号量里我们仍可以使用与任务调度相同的ready表结构来实现信号量的优先级调度,每个信号量里都有一个类似ready表的调度表,当任务被信号量阻塞时,任务被从ready表拆除,被挂接到信号量的调度表中,当信号量被释放时,激活信号量调度表中的最高优先级任务,将它从信号量表拆除,挂接到ready表中,对信号量调度表的拆除、添加过程与对任务调度表的拆除、添加过程是一样的。

信号量结构如下所示:

typedef struct m_sem

{

M_TASKSCHEDTAB strSemTab;

U32 uiCounter;

U32 uiSemOpt;

}M_SEM;

其中M_TASKSCHEDTAB结构就是ready表的结构,可以将被阻塞的任务按照任务调度的方式挂接到strSemTab变量上。uiCounter变量用来表明信号量是空还是满。uiSemOpt变量用来表明信号量是采用FIFO还是PRIO调度方式。

当信号量采用FIFO调度方式时,它只需要一个根节点就可以了,所有被阻塞的任务按照阻塞的顺序挂接到尾节点上,任务恢复时从头节点依次取出。在FIFO调度方式中,我们只使用strSemTab中优先级0的根节点作为FIFO方式的根节点就可以了。

在获取信号量时,如果暂时获取不到信号量,那么有的情况可能需要任务一直处于pend状态,一直等待获取到信号量后才重新返回ready状态重新参与任务调度。而有的情况则可能会需要设定一个超时上限,如果任务在超时时间内获取到信号量,那么任务会返回ready状态重新参与调度,如果超时时间耗尽时还没有获取到信号量,那么任务也会重新转换为ready态重新参与任务调度。而有的情况则可能不需要做任何时间等待,任务获取不到信号量的话也需要继续运行。

上面列出了二进制信号量所需要实现的所有功能,下面我们来看看代码的具体实现过程。

在使用信号量前需要先定义一个M_SEM型的信号量变量,使用信号量初始化函数MDS_SemCreate对该变量进行初始化:

00019  U32 MDS_SemCreate(M_SEM* pstrSem, U32 uiSemOpt, U32 uiInitVal)

00020  {

00021

00022      if(NULL == pstrSem)

00023      {

00024          return RTN_FAIL;

00025      }

00026

00027

00028      if((SEMFIFO != (SEMSCHEDOPTMASK & uiSemOpt))

00029         && (SEMPRIO != (SEMSCHEDOPTMASK & uiSemOpt)))

00030      {

00031          return RTN_FAIL;

00032      }

00033

00034

00035      if((SEMEMPTY != uiInitVal) && (SEMFULL != uiInitVal))

00036      {

00037          return RTN_FAIL;

00038      }

00039

00040

00041      MDS_TaskSchedTabInit(&pstrSem->strSemTab);

00042

00043

00044      pstrSem->uiCounter = uiInitVal;

00045

00046

00047      pstrSem->uiSemOpt = uiSemOpt;

00048

00049      return RTN_SUCD;

00050  }

00019行,函数返回值包括RTN_SUCD,表明创建信号量成功,RTN_FAIL表明创建信号量失败。入口参数pstrSem为需要初始化的信号量的指针,入口参数uiSemOpt为创建信号量所使用的选项,创建先进先出的信号量时使用SEMFIFO选项,创建优先级的信号量时使用SEMPRIO信选项。uiInitVal是信号量的初始值,SEMEMPTY表明创建的信号量的初始值为空,SEMFULL表明创建的信号量的初始值为满。

00022~00025行,对入口参数pstrSem进行检查,若为空则返回失败。

00028~00032行,对入口参数uiSemOpt进行检查,若既不是FIFO状态也不是PRIO状态则返回失败。

00035~00038行,对入口参数uiInitVal进行检查,若信号量初始化值既不是空也不是满则返回失败。

00041行,初始化信号量中的调度表,这个过程与任务中初始化ready表的过程是一致的。

00044行,初始化信号量的初始值。

00047行,初始化信号量的参数。

获取信号量的函数MDS_SemTake的代码如下:

00069  U32 MDS_SemTake(M_SEM* pstrSem, U32 uiDelayTick)

00070  {

00071

00072      if(NULL == pstrSem)

00073      {

00074          return RTN_FAIL;

00075      }

00076

00077      (void)MDS_IntLock();

00078

00079

00080      gpstrCurTcb->pstrSem = pstrSem;

00081

00082

00083      if(SEMNOWAIT == uiDelayTick)

00084      {

00085

00086          if(SEMFULL == pstrSem->uiCounter)

00087          {

00088

00089              pstrSem->uiCounter = SEMEMPTY;

00090

00091              (void)MDS_IntUnlock();

00092

00093              return RTN_SUCD;

00094          }

00095          else

00096          {

00097              (void)MDS_IntUnlock();

00098

00099              return RTN_SMTKRT;

00100          }

00101      }

00102      else

00103      {

00104

00105          if(SEMFULL == pstrSem->uiCounter)

00106          {

00107

00108              pstrSem->uiCounter = SEMEMPTY;

00109

00110              (void)MDS_IntUnlock();

00111

00112              return RTN_SUCD;

00113          }

00114          else

00115          {

00116

00117              if(RTN_FAIL == MDS_TaskPend(pstrSem, uiDelayTick))

00118              {

00119                  (void)MDS_IntUnlock();

00120

00121

00122                  return RTN_FAIL;

00123              }

00124

00125              (void)MDS_IntUnlock();

00126

00127

00128              MDS_TaskSwiSched();

00129

00130

00131              return gpstrCurTcb->strTaskOpt.uiDelayTick;

00132          }

00133      }

00134  }

00069行,函数有5种返回值,RTN_SUCD:在延迟时间内获取到信号量。RTN_FAIL:获取信号量失败。RTN_SMTKTO:信号量时间耗尽,超时返回。RTN_SMTKRT:任务延迟状态被中断,没有获取到信号量。RTN_SMTKDL:信号量被删除。入口参数pstrSem为需要操作的信号量的指针。入口参数uiDelayTick为获取不到信号量时的超时时间,超时时间分为SEMNOWAIT、SEMWAITFEV和任意数值这3种类型,SEMNOWAIT是不等待,若获取不到信号量则立刻执行下条指令,SEMWAITFEV是永久等待,若获取不到信号量则永久处于pend状态,任意数值为pend的超时时间,单位为tick,若在此时间内获取到信号量,则任务重新返回ready态参与任务调度,若超时时间耗尽了还没有获取信号量,那么任务也重新返回ready态参与任务调度,这两种情况的返回值不同,用户可以根据返回值做相应的处理。

00072~00075行,对入口参数pstrSem进行检查,若为空则返回失败。

00077行,锁中断,防止多个任务同时操作信号量。

00080行,将阻塞任务的信号量赋给TCB中相关的变量。本节在TCB中新增加了一个M_SEM*型的变量,

typedef struct m_tcb

{

STACKREG strStackReg;

M_TCBQUE strTcbQue;

M_TCBQUE strDelayQue;

M_SEM* pstrSem;

U8* pucTaskName;

U32 uiTaskFlag;

U8 ucTaskPrio;

M_TASKOPT strTaskOpt;

U32 uiStillTick;

}M_TCB;

用它记录阻塞任务的信号量,这样,我们就可以通过这个变量从TCB中找到阻塞任务的信号量,进而找到信号量的调度表,然后就可以对阻塞这个任务的信号量的调度表进行操作了。

00083行,pend时间为0走此分支。

00086行,若信号量处于满状态走此分支。

00089行,信号量为满状态,可获取到信号量,任务获取到信号量后,将信号量置为空状态。

00091行,对信号量操作完毕,解锁中断。

00093行,对信号量操作完毕,返回RTN_SUCD。

00095行,信号量为空走此分支。

00097行,走此分支说明信号量为空无法获取,并且pend的时间为SEMNOWAIT,说明任务不需要进入pend状态,因此不对信号量做任何处理,直接解锁中断,准备返回。

00099行,返回RTN_SMTKRT值,表明任务没有获取到信号量,直接返回。

00102行,被pend的任务需要等待时间走此分支。

00105行,若信号量处于满状态走此分支。

00108行,信号量为满状态,可获取到信号量,任务获取到信号量后,将信号量置为空状态。

00110行,对信号量操作完毕,解锁中断。

00112行,对信号量操作完毕,返回RTN_SUCD。

00114行,信号量为空走此分支。

00117行,走此分支说明信号量为空无法获取,需要等待一定时间以获取信号量,调用MDS_TaskPend函数操作各种调度表,将当前任务阻塞到pstrSem信号量上,阻塞时间为uiDelayTick。

00119行,阻塞任务操作发生错误,在函数返回前先解锁中断。

00122行,对信号量操作失败,返回RTN_FAIL。

00125行,任务已经被阻塞,函数返回前先解锁中断。

00128行,各种调度表在117行MDS_TaskPend函数里已经更新完毕,此处需要调用软中断函数进行任务调度。

00131行,走到此行,说明任务已经从running态切换为pend态,又从pend态切换回running态,该函数的返回值已经被存入到当前任务TCB的strTaskOpt.uiDelayTick变量中,返回函数的返回值。

MDS_TaskPend函数与MDS_TaskDelay函数的处理过程非常相似,主要是将任务从ready表拆除,添加到delay表中,细节不再做介绍,请读者自行参考代码:

00439  U32 MDS_TaskPend(M_SEM* pstrSem, U32 uiDelayTick)

00440  {

00441      M_CHAIN* pstrChain;

00442      M_CHAIN* pstrNode;

00443      M_CHAIN* pstrDelayNode;

00444      M_TCBQUE* pstrTaskQue;

00445      M_PRIOFLAG* pstrPrioFlag;

00446      U8 ucTaskPrio;

00447

00448

00449      if(gpstrCurTcb == gpstrIdleTaskTcb)

00450      {

00451          return RTN_FAIL;

00452      }

00453

00454

00455      ucTaskPrio = gpstrCurTcb->ucTaskPrio;

00456      pstrChain = &gstrReadyTab.astrChain[ucTaskPrio];

00457      pstrPrioFlag = &gstrReadyTab.strFlag;

00458

00459

00460      pstrNode = MDS_TaskDelFromSchedTab(pstrChain, pstrPrioFlag, ucTaskPrio);

00461

00462

00463      gpstrCurTcb->strTaskOpt.ucTaskSta &= ~((U8)TASKREADY);

00464

00465

00466      gpstrCurTcb->strTaskOpt.uiDelayTick = uiDelayTick;

00467

00468

00469      if(SEMWAITFEV != uiDelayTick)

00470      {

00471          gpstrCurTcb->uiStillTick = guiTick + uiDelayTick;

00472

00473

00474          pstrTaskQue = (M_TCBQUE*)pstrNode;

00475          pstrDelayNode = &pstrTaskQue->pstrTcb->strDelayQue.strQueHead;

00476

00477

00478          MDS_TaskAddToDelayTab(pstrDelayNode);

00479

00480

00481          gpstrCurTcb->uiTaskFlag |= DELAYQUEFLAG;

00482      }

00483

00484

00485      MDS_TaskAddToSemTab(gpstrCurTcb, pstrSem);

00486

00487

00488      gpstrCurTcb->strTaskOpt.ucTaskSta |= TASKPEND;

00489

00490      return RTN_SUCD;

00491  }

MDS_TaskPend函数中所使用的MDS_TaskAddToSemTab函数的功能是将任务添加到信号量调度表中,如果信号量采用优先级调度方式,则使用MDS_TaskAddToSchedTab函数添加,这个过程与将任务添加到ready表的过程是一样的。如果信号量采用先进先出调度方式,则将任务添加到链表的尾节点上。这个过程比较简单,不再详细介绍,代码如下:

00353  void MDS_TaskAddToSemTab(M_TCB* pstrTcb, M_SEM* pstrSem)

00354  {

00355      M_CHAIN* pstrChain;

00356      M_CHAIN* pstrNode;

00357      M_PRIOFLAG* pstrPrioFlag;

00358      U8 ucTaskPrio;

00359

00360

00361      if(SEMPRIO == (SEMSCHEDOPTMASK & pstrSem->uiSemOpt))

00362      {

00363

00364          ucTaskPrio = pstrTcb->ucTaskPrio;

00365          pstrChain = &pstrSem->strSemTab.astrChain[ucTaskPrio];

00366          pstrNode = &pstrTcb->strTcbQue.strQueHead;

00367          pstrPrioFlag = &pstrSem->strSemTab.strFlag;

00368

00369

00370          MDS_TaskAddToSchedTab(pstrChain, pstrNode, pstrPrioFlag, ucTaskPrio);

00371      }

00372      else

00373      {

00374

00375          pstrChain = &pstrSem->strSemTab.astrChain[LOWESTPRIO];

00376          pstrNode = &pstrTcb->strTcbQue.strQueHead;

00377

00378

00379          MDS_ChainNodeAdd(pstrChain, pstrNode);

00380      }

00381  }

第4章第7节nbsp;二进制信号量(一)相关推荐

  1. 第4章第7节nbsp;二进制信号量(二)

    目前更新到5.3节,请在http://dl.dbank.com/c02ackpwp6下载5.3节的全部文档 本节源代码请在http://dl.dbank.com/c0fp2g5z9s下载 释放信号量的 ...

  2. FreeRTOS笔记篇:第七章 -- 资源管理(互斥锁、二进制信号量、死锁)

    测试环境如下 stm32F103C8T6 MDK keil5 stm32cube + FreeRTOS 概述 在多任务处理系统中,如果一个任务开始访问资源,但在脱离运行状态之前没有完成其访问,则有可能 ...

  3. FreeRTOS笔记篇:第六章 - (二进制信号量 计数信号量 队列下)使用中断管理

    目录 测试环境如下 概述 概况 中断对RTOS的影响 中断请求任务切换的宏 延迟中断处理 二进制信号量 xSemaphoreCreateBinary() xSemaphoreTake() xSemap ...

  4. 《UML面向对象设计基础》—第1章1.2节信息/实现隐藏

    本节书摘来自异步社区<UML面向对象设计基础>一书中的第1章1.2节信息/实现隐藏,作者[美]Meliir Page-Jones,更多章节内容可以访问云栖社区"异步社区" ...

  5. 《敏捷迭代开发:管理者指南》—第2章2.5节渐进开发和自适应开发

    本节书摘来自异步社区<敏捷迭代开发:管理者指南>一书中的第2章2.5节渐进开发和自适应开发,作者[美]Craig Larman,更多章节内容可以访问云栖社区"异步社区" ...

  6. 《实现模式(修订版)》—第1章1.2节那么,现在……

    本节书摘来自异步社区<实现模式(修订版)>一书中的第1章1.2节那么,现在--,作者[美]Kent Beck,更多章节内容可以访问云栖社区"异步社区"公众号查看. 1. ...

  7. 《Adobe Acrobat DC经典教程》—第1章1.11节在阅读模式下查看PDF文件

    本节书摘来自异步社区<Adobe Acrobat DC经典教程>一书中的第1章1.11节在阅读模式下查看PDF文件,作者[美]Lisa Fridsma(丽莎 弗里斯玛) , Brie Gy ...

  8. 《术以载道——软件过程改进实践指南》—第1章1.1节对CMMI的基本认识

    本节书摘来自异步社区<术以载道--软件过程改进实践指南>一书中的第1章1.1节对CMMI的基本认识,作者任甲林,更多章节内容可以访问云栖社区"异步社区"公众号查看. 第 ...

  9. 《精通Wireshark》—第2章2.6节总结

    本节书摘来自异步社区<精通Wireshark>一书中的第2章2.6节总结,作者[印度]Charit Mishra(夏里特 米什拉),更多章节内容可以访问云栖社区"异步社区&quo ...

最新文章

  1. PTA基础编程题目集-7-4 BCD解密
  2. 川大计算机考研2020招生数,四川大学等大学,2020年研究生招生简章发布,这3个信息很重要!...
  3. CodeForces Gym-101350M
  4. 项目启动,数据库连接错误:SQLNonTransientConnectionException: Could not create connection to database server
  5. php5.3 sql server,php5.3连接sqlserver2005
  6. elasticsearch存储空间不足导致索引只读,不能创建
  7. java基础—IO流——字节流的操作演示
  8. spark学习-41-Spark的块传输服务BlockTransferService
  9. linux的free会擦出磁盘吗,如何在 Linux 上检查可用的磁盘空间 | Linux 中国
  10. Linux学习笔记二十——系统裁剪之二
  11. POJ NOI0101-08 字符三角形
  12. php 字符串转驼峰,zhouqq - PHP 蛇形命名法(snake case)和驼峰命名法(camel case) 相互转换...
  13. 2019118_四个化学数据分析(2)
  14. HDFS的java API操作(基于Windows平台的Eclipse)
  15. 三菱modbusRTU通讯实例_modbus通讯协议详解 | 每位工控人都应该了解
  16. 天津理工大学2018年计算机硕士真题
  17. ElasticSearch的常用查询语句
  18. Fcoin事件背后的良心与底线
  19. sheng的学习笔记-平衡二叉树(AVL)和3+4重构
  20. 21/4/25 项目二:客户信息管理软件

热门文章

  1. 画ROC为什么clf.predict_proba(X_train)[:, 1] 而不是[:,0]?
  2. 根据经纬度查询方圆5公里数据信息
  3. Uniform_buffers/Descriptor layout and buffer
  4. python系列教程145——布尔运算
  5. JS验证字符串的长度(区分中英文)
  6. {转} 80后的我们 说好了,只许看不许哭.......
  7. 全网最全最好用的ChatGPT调教指南(prompt)
  8. GauGAN,Semantic Image Synthesis with Spatially-Adaptive Normalization 论文阅读
  9. 烧掉600亿后 人工智能公司金融和安防开始赚钱
  10. 驱动里调用I2c和Gpio,驱动里调用驱动