一  socket 套接字

二  粘包问题

一  socket 套接字

1.1 为何学习socket一定要先学习互联网协议:

1.首先:网络编程目标就是教会你如何基于socket编程,来开发一款自己的C/S架构软件

2.其次:C/S架构的软件(软件属于应用层)是基于网络进行通信的

3.然后:网络的核心即一堆协议,协议即标准,你想开发一款基于网络通信的软件,就必须遵循这些标准。

4.最后:从这些标准开始研究,开启socket编程

1.2 socket层

在上图中,我们没有看到Socket,我们用下图来继续说明.

1.3 socket是什么

Socket是应用层与TCP/IP协议通信的中间软件抽象层,它是一组接口。在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket接口后面,对用户来说,一组简单的接口就是全部,让Socket去组织数据,以符合指定的协议。

所以,我们无需深入理解tcp/udp协议,socket已经为我们封装好了,我们只需要遵循socket的规定去编程,写出的程序自然就是遵循tcp/udp标准的。

1.4  套接字发展史及分类

套接字起源于 20 世纪 70 年代加利福尼亚大学伯克利分校版本的 Unix,即人们所说的 BSD Unix。 因此,有时人们也把套接字称为“伯克利套接字”或“BSD 套接字”。一开始,套接字被设计用在同 一台主机上多个应用程序之间的通讯。这也被称进程间通讯,或 IPC。套接字有两种(或者称为有两个种族),分别是基于文件型的和基于网络型的。

基于文件类型的套接字家族

套接字家族的名字:AF_UNIX

unix一切皆文件,基于文件的套接字调用的就是底层的文件系统来取数据,两个套接字进程运行在同一机器,可以通过访问同一个文件系统间接完成通信

基于网络类型的套接字家族

套接字家族的名字:AF_INET

(还有AF_INET6被用于ipv6,还有一些其他的地址家族,不过,他们要么是只用于某个平台,要么就是已经被废弃,或者是很少被使用,或者是根本没有实现,所有地址家族中,AF_INET是使用最广泛的一个,python支持很多种地址家族,但是由于我们只关心网络编程,所以大部分时候我么只使用AF_INET)

1.5 套接字工作流程

一个生活中的场景。你要打电话给一个朋友,先拨号,朋友听到电话铃声后提起电话,这时你和你的朋友就建立起了连接,就可以讲话了。等交流结束,挂断电话结束此次交谈。 生活中的场景就解释了这工作原理。

图3

先从服务器端说起。服务器端先初始化Socket,然后与端口绑定(bind),对端口进行监听(listen),调用accept阻塞,等待客户端连接。在这时如果有个客户端初始化一个Socket,然后连接服务器(connect),如果连接成功,这时客户端与服务器端的连接就建立了。客户端发送数据请求,服务器端接收请求并处理请求,然后把回应数据发送给客户端,客户端读取数据,最后关闭连接,一次交互结束

socket()模块函数用法

 1 import socket2 socket.socket(socket_family,socket_type,protocal=0)3 socket_family 可以是 AF_UNIX 或 AF_INET。socket_type 可以是 SOCK_STREAM 或 SOCK_DGRAM。protocol 一般不填,默认值为 0。4 5 获取tcp/ip套接字6 tcpSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)7 8 获取udp/ip套接字9 udpSock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
10
11 由于 socket 模块中有太多的属性。我们在这里破例使用了'from module import *'语句。使用 'from socket import *',我们就把 socket 模块里的所有属性都带到我们的命名空间里了,这样能 大幅减短我们的代码。
12 例如tcpSock = socket(AF_INET, SOCK_STREAM)

服务端套接字函数s.bind()    绑定(主机,端口号)到套接字s.listen()  开始TCP监听s.accept()  被动接受TCP客户的连接,(阻塞式)等待连接的到来

客户端套接字函数s.connect()     主动初始化TCP服务器连接s.connect_ex()  connect()函数的扩展版本,出错时返回出错码,而不是抛出异常

公共用途的套接字函数s.recv()            接收TCP数据s.send()            发送TCP数据(send在待发送数据量大于己端缓存区剩余空间时,数据丢失,不会发完)s.sendall()         发送完整的TCP数据(本质就是循环调用send,sendall在待发送数据量大于己端缓存区剩余空间时,数据不丢失,循环调用send直到发完)s.recvfrom()        接收UDP数据s.sendto()          发送UDP数据s.getpeername()     连接到当前套接字的远端的地址s.getsockname()     当前套接字的地址s.getsockopt()      返回指定套接字的参数s.setsockopt()      设置指定套接字的参数s.close()           关闭套接字

面向锁的套接字方法s.setblocking()     设置套接字的阻塞与非阻塞模式s.settimeout()      设置阻塞套接字操作的超时时间s.gettimeout()      得到阻塞套接字操作的超时时间

面向文件的套接字的函数s.fileno()          套接字的文件描述符s.makefile()        创建一个与该套接字相关的文件
 读者勿看:socket实验推演流程

1.6 基于TCP的套接字

tcp是基于链接的,必须先启动服务端,然后再启动客户端去链接服务端

tcp服务端

1 ss = socket() #创建服务器套接字
2 ss.bind()      #把地址绑定到套接字
3 ss.listen()      #监听链接
4 inf_loop:      #服务器无限循环
5     cs = ss.accept() #接受客户端链接
6     comm_loop:         #通讯循环
7         cs.recv()/cs.send() #对话(接收与发送)
8     cs.close()    #关闭客户端套接字
9 ss.close()        #关闭服务器套接字(可选)

tcp客户端

1 cs = socket()    # 创建客户套接字
2 cs.connect()    # 尝试连接服务器
3 comm_loop:        # 通讯循环
4     cs.send()/cs.recv()    # 对话(发送/接收)
5 cs.close()            # 关闭客户套接字

socket通信流程与打电话流程类似,我们就以打电话为例来实现一个low版的套接字通信

 服务端
 客户端

加上链接循环与通信循环

#_*_coding:utf-8_*_
__author__ = 'Linhaifeng'
import socket
ip_port=('127.0.0.1',8081)#电话卡
BUFSIZE=1024
s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) #买手机
s.bind(ip_port) #手机插卡
s.listen(5)     #手机待机while True:                         #新增接收链接循环,可以不停的接电话conn,addr=s.accept()            #手机接电话# print(conn)# print(addr)print('接到来自%s的电话' %addr[0])while True:                         #新增通信循环,可以不断的通信,收发消息msg=conn.recv(BUFSIZE)             #听消息,听话# if len(msg) == 0:break        #如果不加,那么正在链接的客户端突然断开,recv便不再阻塞,死循环发生print(msg,type(msg))conn.send(msg.upper())          #发消息,说话conn.close()                    #挂电话s.close()                       #手机关机

 客户端改进版

问题:在重启服务端时可能会遇到

这个是由于你的服务端仍然存在四次挥手的time_wait状态在占用地址(如果不懂,请深入研究1.tcp三次握手,四次挥手 2.syn洪水攻击 3.服务器高并发情况下会有大量的time_wait状态的优化方法)

解决方法:

 方法一
 方法二
1.7 基于UDP的套接字

udp是无链接的,先启动哪一端都不会报错

udp服务端

1 ss = socket()   #创建一个服务器的套接字
2 ss.bind()       #绑定服务器套接字
3 inf_loop:       #服务器无限循环
4     cs = ss.recvfrom()/ss.sendto() # 对话(接收与发送)
5 ss.close()                         # 关闭服务器套接字

udp客户端

cs = socket()   # 创建客户套接字
comm_loop:      # 通讯循环cs.sendto()/cs.recvfrom()   # 对话(发送/接收)
cs.close()                      # 关闭客户套接字

udp套接字简单示例

 udp服务端
 udp客户端

qq聊天(由于udp无连接,所以可以同时多个客户端去跟服务端通信)

 udp服务端
 udp客户端1
 udp客户端2

服务端运行结果

客户端1运行结果

客户端2运行结果

时间服务器

 ntp服务端
 ntp客户端

九 粘包现象

让我们基于tcp先制作一个远程执行命令的程序(1:执行错误命令 2:执行ls 3:执行ifconfig)

注意注意注意:

res=subprocess.Popen(cmd.decode('utf-8'),
shell=True,
stderr=subprocess.PIPE,
stdout=subprocess.PIPE)

的结果的编码是以当前所在的系统为准的,如果是windows,那么res.stdout.read()读出的就是GBK编码的,在接收端需要用GBK解码

且只能从管道里读一次结果

注意:命令ls -l ; lllllll ; pwd 的结果是既有正确stdout结果,又有错误stderr结果

 服务端
 客户端

上述程序是基于tcp的socket,在运行时会发生粘包

让我们再基于udp制作一个远程执行命令的程序

 服务端
 客户端

上述程序是基于udp的socket,在运行时永远不会发生粘包

十 什么是粘包

须知:只有TCP有粘包现象,UDP永远不会粘包,为何,且听我娓娓道来

首先需要掌握一个socket收发消息的原理

发送端可以是一K一K地发送数据,而接收端的应用程序可以两K两K地提走数据,当然也有可能一次提走3K或6K数据,或者一次只提走几个字节的数据,也就是说,应用程序所看到的数据是一个整体,或说是一个流(stream),一条消息有多少字节对应用程序是不可见的,因此TCP协议是面向流的协议,这也是容易出现粘包问题的原因。而UDP是面向消息的协议,每个UDP段都是一条消息,应用程序必须以消息为单位提取数据,不能一次提取任意字节的数据,这一点和TCP是很不同的。怎样定义消息呢?可以认为对方一次性write/send的数据为一个消息,需要明白的是当对方send一条信息的时候,无论底层怎样分段分片,TCP协议层会把构成整条消息的数据段排序完成后才呈现在内核缓冲区。

例如基于tcp的套接字客户端往服务端上传文件,发送时文件内容是按照一段一段的字节流发送的,在接收方看了,根本不知道该文件的字节流从何处开始,在何处结束

所谓粘包问题主要还是因为接收方不知道消息之间的界限,不知道一次性提取多少字节的数据所造成的。

此外,发送方引起的粘包是由TCP协议本身造成的,TCP为提高传输效率,发送方往往要收集到足够多的数据后才发送一个TCP段。若连续几次需要send的数据都很少,通常TCP会根据优化算法把这些数据合成一个TCP段后一次发送出去,这样接收方就收到了粘包数据。

  1. TCP(transport control protocol,传输控制协议)是面向连接的,面向流的,提供高可靠性服务。收发两端(客户端和服务器端)都要有一一成对的socket,因此,发送端为了将多个发往接收端的包,更有效的发到对方,使用了优化方法(Nagle算法),将多次间隔较小且数据量小的数据,合并成一个大的数据块,然后进行封包。这样,接收端,就难于分辨出来了,必须提供科学的拆包机制。 即面向流的通信是无消息保护边界的。
  2. UDP(user datagram protocol,用户数据报协议)是无连接的,面向消息的,提供高效率服务。不会使用块的合并优化算法,, 由于UDP支持的是一对多的模式,所以接收端的skbuff(套接字缓冲区)采用了链式结构来记录每一个到达的UDP包,在每个UDP包中就有了消息头(消息来源地址,端口等信息),这样,对于接收端来说,就容易进行区分处理了。 即面向消息的通信是有消息保护边界的。
  3. tcp是基于数据流的,于是收发的消息不能为空,这就需要在客户端和服务端都添加空消息的处理机制,防止程序卡住,而udp是基于数据报的,即便是你输入的是空内容(直接回车),那也不是空消息,udp协议会帮你封装上消息头,实验略

udp的recvfrom是阻塞的,一个recvfrom(x)必须对唯一一个sendinto(y),收完了x个字节的数据就算完成,若是y>x数据就丢失,这意味着udp根本不会粘包,但是会丢数据,不可靠

tcp的协议数据不会丢,没有收完包,下次接收,会继续上次继续接收,己端总是在收到ack时才会清除缓冲区内容。数据是可靠的,但是会粘包。

两种情况下会发生粘包。

发送端需要等缓冲区满才发送出去,造成粘包(发送数据时间间隔很短,数据了很小,会合到一起,产生粘包)

 服务端
 客户端

接收方不及时接收缓冲区的包,造成多个包接收(客户端发送了一段数据,服务端只收了一小部分,服务端下次再收的时候还是从缓冲区拿上次遗留的数据,产生粘包)

 服务端
 客户端

拆包的发生情况

当发送端缓冲区的长度大于网卡的MTU时,tcp会将这次发送的数据拆成几个数据包发送出去。

补充问题一:为何tcp是可靠传输,udp是不可靠传输

基于tcp的数据传输请参考我的另一篇文章http://www.cnblogs.com/linhaifeng/articles/5937962.html,tcp在数据传输时,发送端先把数据发送到自己的缓存中,然后协议控制将缓存中的数据发往对端,对端返回一个ack=1,发送端则清理缓存中的数据,对端返回ack=0,则重新发送数据,所以tcp是可靠的

而udp发送数据,对端是不会返回确认信息的,因此不可靠

补充问题二:send(字节流)和recv(1024)及sendall

recv里指定的1024意思是从缓存里一次拿出1024个字节的数据

send的字节流是先放入己端缓存,然后由协议控制将缓存内容发往对端,如果待发送的字节流大小大于缓存剩余空间,那么数据丢失,用sendall就会循环调用send,数据不会丢失

十一 解决粘包的low比处理方法

问题的根源在于,接收端不知道发送端将要传送的字节流的长度,所以解决粘包的方法就是围绕,如何让发送端在发送数据前,把自己将要发送的字节流总大小让接收端知晓,然后接收端来一个死循环接收完所有数据

low版本的解决方法

 服务端
 客户端

为何low:

程序的运行速度远快于网络传输速度,所以在发送一段字节前,先用send去发送该字节流长度,这种方式会放大网络延迟带来的性能损耗

十二 峰哥解决粘包的方法

为字节流加上自定义固定长度报头,报头中包含字节流长度,然后一次send到对端,对端在接收时,先从缓存中取出定长的报头,然后再取真实数据

struct模块

该模块可以把一个类型,如数字,转成固定长度的bytes

>>> struct.pack('i',1111111111111)

。。。。。。。。。

struct.error: 'i' format requires -2147483648 <= number <= 2147483647 #这个是范围

import json,struct
#假设通过客户端上传1T:1073741824000的文件a.txt#为避免粘包,必须自定制报头
header={'file_size':1073741824000,'file_name':'/a/b/c/d/e/a.txt','md5':'8f6fbf8347faa4924a76856701edb0f3'} #1T数据,文件路径和md5值#为了该报头能传送,需要序列化并且转为bytes
head_bytes=bytes(json.dumps(header),encoding='utf-8') #序列化并转成bytes,用于传输#为了让客户端知道报头的长度,用struck将报头长度这个数字转成固定长度:4个字节
head_len_bytes=struct.pack('i',len(head_bytes)) #这4个字节里只包含了一个数字,该数字是报头的长度#客户端开始发送
conn.send(head_len_bytes) #先发报头的长度,4个bytes
conn.send(head_bytes) #再发报头的字节格式
conn.sendall(文件内容) #然后发真实内容的字节格式#服务端开始接收
head_len_bytes=s.recv(4) #先收报头4个bytes,得到报头长度的字节格式
x=struct.unpack('i',head_len_bytes)[0] #提取报头的长度head_bytes=s.recv(x) #按照报头长度x,收取报头的bytes格式
header=json.loads(json.dumps(header)) #提取报头#最后根据报头的内容提取真实的数据,比如
real_data_len=s.recv(header['file_size'])
s.recv(real_data_len)

 关于struct的详细用法
 服务端(自定制报头)
 客户端(自定制报头)

我们可以把报头做成字典,字典里包含将要发送的真实数据的详细信息,然后json序列化,然后用struck将序列化后的数据长度打包成4个字节(4个自己足够用了)

发送时:

先发报头长度

再编码报头内容然后发送

最后发真实内容

接收时:

先手报头长度,用struct取出来

根据取出的长度收取报头内容,然后解码,反序列化

从反序列化的结果中取出待取数据的详细信息,然后去取真实的数据内容

 服务端:定制稍微复杂一点的报头
 客户端

FTP作业:上传下载文件

 服务端

import socket
import struct
import json
import osclass MYTCPClient:address_family = socket.AF_INETsocket_type = socket.SOCK_STREAMallow_reuse_address = Falsemax_packet_size = 8192coding='utf-8'request_queue_size = 5def __init__(self, server_address, connect=True):self.server_address=server_addressself.socket = socket.socket(self.address_family,self.socket_type)if connect:try:self.client_connect()except:self.client_close()raisedef client_connect(self):self.socket.connect(self.server_address)def client_close(self):self.socket.close()def run(self):while True:inp=input(">>: ").strip()if not inp:continuel=inp.split()cmd=l[0]if hasattr(self,cmd):func=getattr(self,cmd)func(l)def put(self,args):cmd=args[0]filename=args[1]if not os.path.isfile(filename):print('file:%s is not exists' %filename)returnelse:filesize=os.path.getsize(filename)head_dic={'cmd':cmd,'filename':os.path.basename(filename),'filesize':filesize}print(head_dic)head_json=json.dumps(head_dic)head_json_bytes=bytes(head_json,encoding=self.coding)head_struct=struct.pack('i',len(head_json_bytes))self.socket.send(head_struct)self.socket.send(head_json_bytes)send_size=0with open(filename,'rb') as f:for line in f:self.socket.send(line)send_size+=len(line)print(send_size)else:print('upload successful')client=MYTCPClient(('127.0.0.1',8080))client.run()

Socket(套接字)

127.0.0.1本机回还地址
只能自己识别自己 其他人无法访问

send与recv对应
不要出现两边都是相同的情况

recv是跟内存要数据
至于数据的来源 你无需考虑

TCP特点
会将数据量比较小的并且时间间隔比较短的数据
一次性打包发送给对方

socket最简单版本

解决粘包问题的最复杂版本

from socket import SOL_SOCKET,SO_REUSEADDR
sk.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) #就是它,在bind前加

解决粘包问题
服务端
1.先制作一个发送给客户端的字典
2.制作字典的报头
3.发送字典的报头
4.发送字典
5.再发真实数据

客户端
1.先接受字典的报头
2.解析拿到字典的数据长度
3.接受字典
4.从字典中获取真实数据的长度
5.接受真实数据

写一个上传电影的功能
1.循环打印某一个文件夹下面的所有的文件
2.用户选取想要上传的文件
3.将用户选择的文件上传到服务端
4.服务端保存该文件

1.直接获取数据1024
2.制作一个数据的报头
3.先发个字典 然后再发真实数据

转载于:https://www.cnblogs.com/Ryan-Yuan/p/11317724.html

day28 socket网络编程相关推荐

  1. Linux C++/Java/Web/OC Socket网络编程

    一,Linux C++ Socket网络编程 1.什么是TCP/IP.UDP? TCP/IP(Transmission Control Protocol/Internet Protocol)即传输控制 ...

  2. python运维开发之socket网络编程01

    python运维开发之socket网络编程01说明:本文来自来自北京老男孩linux运维实战培训中心-运维开发课程免费视频内容,本文内容为系列内容,更多分享信息见:http://oldboy.blog ...

  3. Socket网络编程(2)--服务端实现

    中秋了,首先祝大家中秋快乐,闲着无事在家整一个socket的聊天程序,有点仿QQ界面,就是瞎折腾,不知道最后是不是能将所有功能实现. 如果你对socket不了解,请看这篇文章:http://www.c ...

  4. Linux Kernel TCP/IP Stack — Socket Layer — TCP/UDP Socket 网络编程

    目录 文章目录 目录 TCP/UDP Socket 逻辑架构 创建 Socket 绑定 Socket 请求建立 Socket 连接 监听 Socket 接受请求 关闭连接 数据的发送和接收 send ...

  5. Socket网络编程笔记

    网络.计算机网络的构成是什么? 网络: 在计算机领域中,网络是信息传输.接收.共享的虚拟平台,通过它可以把各个点.面(组织之间).体(例如公共app)的信息联系到一起,从而实现这些资源的共享. 局域网 ...

  6. 【Socket网络编程】14. perror()、errno 的使用

    经常会在socket网络编程时看到errno和perror(),他们是什么呢? 函数定义: void perror(const char *s); perror ("open_port&qu ...

  7. socket网络编程——套接字地址结构

    声明:此博客是本人根据老师课件总结的,如有抄袭行为,本人会即刻删除. 1.主机字节序列和网络字节序列 主机字节序列分为大端字节序和小端字节序,不同的主机采用的字节序列可能不同.大端字节序是指一个整数的 ...

  8. 【网络编程】之四、socket网络编程例解

    前面说了那么多,现在我们给出4个代码+详解,基于win32平台的socket编程.使用TCP 和 UDP 两种协议. OK,先来看一下TCP服务器和客户端: [cpp] view plaincopy ...

  9. MFC socket网络编程(流程示例)

    MFC socket网络编程(流程示例) 1.TCP流式套接字的编程步骤 在使用之前须链接库函数:工程->设置->Link->输入ws2_32.lib,OK! 服务器端程序: 1.加 ...

最新文章

  1. 5.基于STM32F103+OV7670的网络摄像头
  2. gRPC简介及简单使用(C++)
  3. bzoj1036: [ZJOI2008]树的统计Count 树链剖分
  4. TensorFlow全球下载量破1亿,Jeff Dean激动不已,但网友却不给面子
  5. 理解int的存储方式以及VS二进制编辑器的使用
  6. centos7 搭建vsftpd服务并锁定用户的家目录
  7. sprytabbedpanels.js库之在页面中插入Tabbed Panels
  8. 开源.net开发平台SharpDevelop挑战VS2008
  9. ASP.NET中常用的优化性能方法(转)
  10. 如何让小程序页面更顺滑_小程序怎样让wx.navigateBack更好用的方法实现
  11. python xlrd读取excel慢_python操作Excel读写--使用xlrd
  12. AppBarLayout中的Android TabLayout
  13. windows借鉴linux了吗,Windows应该借鉴Linux的10大功能特征
  14. 深度学习2.08.tensorflow的高阶操作之张量排序
  15. 跟着杨中科学习asp.net之javascript
  16. NVIDIA Jetson TK1学习与开发——手动刷机
  17. linux用什么命令查看ip,Linux中ip命令的使用实例
  18. sql--sqlsever--时间相关SQL语句--查询当前时间至前N天的数据
  19. linux 重新运行命令,如何在Linux中重新运行最后执行的命令?
  20. ICPC 2019 徐州网络赛

热门文章

  1. Linux Shell 重定向到文件以当前时间命名
  2. 地壳中元素含量排名记忆口诀_在地球46亿年的历史中,氮气始终是含量最高的气体,为什么?...
  3. Linux Select
  4. mysql的高阶用法_MySQL的经典用法(十四)-高级优化
  5. 计算机程序设计基础试题与答案,2018年4月自考计算机基础与程序设计02275试题及答案.doc...
  6. python如何调用阿里云接口_Python调用aliyun API设置阿里云负载均衡虚拟服务器组权重...
  7. .bat是什么语言_简单说说当我们打开网页时,浏览器到底做了什么?
  8. LeetCode 309: 一个很清晰的DP解题思路
  9. fastapi 用户指南(路径参数、查询参数、请求体)
  10. Hive是如何让MapReduce实现SQL操作的?