当我们想比较两张图片相似度的时候,可以使用这一节提到的技术

  • 直方图对比

  • 反向投影

关于这两种技术的原理可以参考我上面贴的链接,下面是示例的代码:

0x01. 绘制直方图

import cv2.cv as cvdef drawGraph(ar,im, size): #Draw the histogram on the imageminV, maxV, minloc, maxloc = cv.MinMaxLoc(ar) #Get the min and max valuehpt = 0.9 * histsizefor i in range(size):intensity = ar[i] * hpt / maxV #Calculate the intensity to make enter in the imagecv.Line(im, (i,size), (i,int(size-intensity)),cv.Scalar(255,255,255)) #Draw the linei += 1#---- Gray image
orig = cv.LoadImage("img/lena.jpg", cv.CV_8U)histsize = 256 #Because we are working on grayscale pictures which values within 0-255hist = cv.CreateHist([histsize], cv.CV_HIST_ARRAY, [[0,histsize]], 1)cv.CalcHist([orig], hist) #Calculate histogram for the given grayscale picturehistImg = cv.CreateMat(histsize, histsize, cv.CV_8U) #Image that will contain the graph of the repartition of values
drawGraph(hist.bins, histImg, histsize)cv.ShowImage("Original Image", orig)
cv.ShowImage("Original Histogram", histImg)
#---------------------#---- Equalized image
imEq = cv.CloneImage(orig)
cv.EqualizeHist(imEq, imEq) #Equlize the original imagehistEq = cv.CreateHist([histsize], cv.CV_HIST_ARRAY, [[0,histsize]], 1)
cv.CalcHist([imEq], histEq) #Calculate histogram for the given grayscale picture
eqImg = cv.CreateMat(histsize, histsize, cv.CV_8U) #Image that will contain the graph of the repartition of values
drawGraph(histEq.bins, eqImg, histsize)cv.ShowImage("Image Equalized", imEq)
cv.ShowImage("Equalized HIstogram", eqImg)
#--------------------------------cv.WaitKey(0)

0x02. 反向投影

import cv2.cv as cvim = cv.LoadImage("img/lena.jpg", cv.CV_8U)cv.SetImageROI(im, (1, 1,30,30))histsize = 256 #Because we are working on grayscale pictures
hist = cv.CreateHist([histsize], cv.CV_HIST_ARRAY, [[0,histsize]], 1)
cv.CalcHist([im], hist)cv.NormalizeHist(hist,1) # The factor rescale values by multiplying values by the factor
_,max_value,_,_ = cv.GetMinMaxHistValue(hist)if max_value == 0:max_value = 1.0
cv.NormalizeHist(hist,256/max_value)cv.ResetImageROI(im)res = cv.CreateMat(im.height, im.width, cv.CV_8U)
cv.CalcBackProject([im], res, hist)cv.Rectangle(im, (1,1), (30,30), (0,0,255), 2, cv.CV_FILLED)
cv.ShowImage("Original Image", im)
cv.ShowImage("BackProjected", res)
cv.WaitKey(0)

————————————————————————————————————————————————分割线————————————————————————————————————————————————





关于边缘检测的基础来自于一个事实,即在边缘部分,像素值出现”跳跃“或者较大的变化。如果在此边缘部分求取一阶导数,就会看到极值的出现。而在一阶导数为极值的地方,二阶导数为0,基于这个原理,就可以进行边缘检测。关于 Laplace 算法原理,可参考
  • Laplace 算子

0x01. Laplace 算法

下面的代码展示了分别对灰度化的图像和原始彩色图像中的边缘进行检测:
import cv2.cv as cvim=cv.LoadImage('img/building.png', cv.CV_LOAD_IMAGE_COLOR)# Laplace on a gray scale picture
gray = cv.CreateImage(cv.GetSize(im), 8, 1)
cv.CvtColor(im, gray, cv.CV_BGR2GRAY)aperture=3dst = cv.CreateImage(cv.GetSize(gray), cv.IPL_DEPTH_32F, 1)
cv.Laplace(gray, dst,aperture)cv.Convert(dst,gray)thresholded = cv.CloneImage(im)
cv.Threshold(im, thresholded, 50, 255, cv.CV_THRESH_BINARY_INV)cv.ShowImage('Laplaced grayscale',gray)
#------------------------------------# Laplace on color
planes = [cv.CreateImage(cv.GetSize(im), 8, 1) for i in range(3)]
laplace = cv.CreateImage(cv.GetSize(im), cv.IPL_DEPTH_16S, 1)
colorlaplace = cv.CreateImage(cv.GetSize(im), 8, 3)cv.Split(im, planes[0], planes[1], planes[2], None) #Split channels to apply laplace on each
for plane in planes:cv.Laplace(plane, laplace, 3)cv.ConvertScaleAbs(laplace, plane, 1, 0)cv.Merge(planes[0], planes[1], planes[2], None, colorlaplace)cv.ShowImage('Laplace Color', colorlaplace)
#-------------------------------------cv.WaitKey(0)
效果展示原图灰度化图片检测原始彩色图片检测

0x02. Sobel 算法

Sobel 也是很常用的一种轮廓识别的算法。关于 Sobel 导数原理的介绍,可参考
  • Sobel 导数

以下是使用 Sobel 算法进行轮廓检测的代码和效果
import cv2.cv as cvim=cv.LoadImage('img/building.png', cv.CV_LOAD_IMAGE_GRAYSCALE)sobx = cv.CreateImage(cv.GetSize(im), cv.IPL_DEPTH_16S, 1)
cv.Sobel(im, sobx, 1, 0, 3) #Sobel with x-order=1soby = cv.CreateImage(cv.GetSize(im), cv.IPL_DEPTH_16S, 1)
cv.Sobel(im, soby, 0, 1, 3) #Sobel withy-oder=1cv.Abs(sobx, sobx)
cv.Abs(soby, soby)result = cv.CloneImage(im)
cv.Add(sobx, soby, result) #Add the two results together.cv.Threshold(result, result, 100, 255, cv.CV_THRESH_BINARY_INV)cv.ShowImage('Image', im)
cv.ShowImage('Result', result)cv.WaitKey(0)
处理之后效果图(感觉比Laplace效果要好些)

0x03. cv.MorphologyEx

cv.MorphologyEx 是另外一种边缘检测的算法
import cv2.cv as cvimage=cv.LoadImage('img/build.png', cv.CV_LOAD_IMAGE_GRAYSCALE)#Get edges
morphed = cv.CloneImage(image)
cv.MorphologyEx(image, morphed, None, None, cv.CV_MOP_GRADIENT) # Apply a dilate - Erodecv.Threshold(morphed, morphed, 30, 255, cv.CV_THRESH_BINARY_INV)cv.ShowImage("Image", image)
cv.ShowImage("Morphed", morphed)cv.WaitKey(0)

0x04. Canny 边缘检测

Canny 算法可以对直线边界做出很好的检测;关于 Canny 算法原理的描述,可参考:
  • Canny 边缘检测

import cv2.cv as cv
import mathim=cv.LoadImage('img/road.png', cv.CV_LOAD_IMAGE_GRAYSCALE)pi = math.pi #Pi valuedst = cv.CreateImage(cv.GetSize(im), 8, 1)cv.Canny(im, dst, 200, 200)
cv.Threshold(dst, dst, 100, 255, cv.CV_THRESH_BINARY)#---- Standard ----
color_dst_standard = cv.CreateImage(cv.GetSize(im), 8, 3)
cv.CvtColor(im, color_dst_standard, cv.CV_GRAY2BGR)#Create output image in RGB to put red lineslines = cv.HoughLines2(dst, cv.CreateMemStorage(0), cv.CV_HOUGH_STANDARD, 1, pi / 180, 100, 0, 0)
for (rho, theta) in lines[:100]:a = math.cos(theta) #Calculate orientation in order to print themb = math.sin(theta)x0 = a * rhoy0 = b * rhopt1 = (cv.Round(x0 + 1000*(-b)), cv.Round(y0 + 1000*(a)))pt2 = (cv.Round(x0 - 1000*(-b)), cv.Round(y0 - 1000*(a)))cv.Line(color_dst_standard, pt1, pt2, cv.CV_RGB(255, 0, 0), 2, 4) #Draw the line#---- Probabilistic ----
color_dst_proba = cv.CreateImage(cv.GetSize(im), 8, 3)
cv.CvtColor(im, color_dst_proba, cv.CV_GRAY2BGR) # idemrho=1
theta=pi/180
thresh = 50
minLength= 120 # Values can be changed approximately to fit your image edges
maxGap= 20lines = cv.HoughLines2(dst, cv.CreateMemStorage(0), cv.CV_HOUGH_PROBABILISTIC, rho, theta, thresh, minLength, maxGap)
for line in lines:cv.Line(color_dst_proba, line[0], line[1], cv.CV_RGB(255, 0, 0), 2, 8)cv.ShowImage('Image',im)
cv.ShowImage("Cannied", dst)
cv.ShowImage("Hough Standard", color_dst_standard)
cv.ShowImage("Hough Probabilistic", color_dst_proba)
cv.WaitKey(0)
原图使用 Canny 算法处理之后标记出标准的直线标记出所有可能的直线

0x05. 轮廓检测

OpenCV 提供一个 FindContours 函数可以用来检测出图像中对象的轮廓:
import cv2.cv as cvorig = cv.LoadImage('img/build.png', cv.CV_LOAD_IMAGE_COLOR)
im = cv.CreateImage(cv.GetSize(orig), 8, 1)
cv.CvtColor(orig, im, cv.CV_BGR2GRAY)
#Keep the original in colour to draw contours in the endcv.Threshold(im, im, 128, 255, cv.CV_THRESH_BINARY)
cv.ShowImage("Threshold 1", im)element = cv.CreateStructuringElementEx(5*2+1, 5*2+1, 5, 5, cv.CV_SHAPE_RECT)cv.MorphologyEx(im, im, None, element, cv.CV_MOP_OPEN) #Open and close to make appear contours
cv.MorphologyEx(im, im, None, element, cv.CV_MOP_CLOSE)
cv.Threshold(im, im, 128, 255, cv.CV_THRESH_BINARY_INV)
cv.ShowImage("After MorphologyEx", im)
# --------------------------------vals = cv.CloneImage(im) #Make a clone because FindContours can modify the image
contours=cv.FindContours(vals, cv.CreateMemStorage(0), cv.CV_RETR_LIST, cv.CV_CHAIN_APPROX_SIMPLE, (0,0))_red = (0, 0, 255); #Red for external contours
_green = (0, 255, 0);# Gren internal contours
levels=2 #1 contours drawn, 2 internal contours as well, 3 ...
cv.DrawContours (orig, contours, _red, _green, levels, 2, cv.CV_FILLED) #Draw contours on the colour imagecv.ShowImage("Image", orig)
cv.WaitKey(0)
效果图:原图识别结果

0x06. 边界检测


from: https://segmentfault.com/a/1190000003742455https://segmentfault.com/a/1190000003742461
全选<button href="javascript:void(0);" _xhe_href="javascript:void(0);" class="copyCode btn btn-xs" data-clipboard-text="" import="" cv2.cv="" as="" cv"="" data-toggle="tooltip" data-placement="bottom" title="" style="color: rgb(255, 255, 255); font-style: inherit; font-variant: inherit; font-stretch: inherit; font-size: 12px; line-height: 1.5; font-family: inherit; margin: 0px 0px 0px 5px; overflow: visible; cursor: pointer; vertical-align: middle; border: 1px solid transparent; white-space: nowrap; padding-right: 5px; padding-left: 5px; border-radius: 3px; -webkit-user-select: none; box-shadow: rgba(0, 0, 0, 0.0980392) 0px 1px 2px; background-image: none; background-color: rgba(0, 0, 0, 0.74902);">复制放进笔记
import cv2.cv as cvim = cv.LoadImage("img/build.png", cv.CV_LOAD_IMAGE_GRAYSCALE)dst_32f = cv.CreateImage(cv.GetSize(im), cv.IPL_DEPTH_32F, 1)neighbourhood = 3
aperture = 3
k = 0.01
maxStrength = 0.0
threshold = 0.01
nonMaxSize = 3cv.CornerHarris(im, dst_32f, neighbourhood, aperture, k)minv, maxv, minl, maxl = cv.MinMaxLoc(dst_32f)dilated = cv.CloneImage(dst_32f)
cv.Dilate(dst_32f, dilated) # By this way we are sure that pixel with local max value will not be changed, and all the others willlocalMax = cv.CreateMat(dst_32f.height, dst_32f.width, cv.CV_8U)
cv.Cmp(dst_32f, dilated, localMax, cv.CV_CMP_EQ) #compare allow to keep only non modified pixel which are local maximum values which are corners.threshold = 0.01 * maxv
cv.Threshold(dst_32f, dst_32f, threshold, 255, cv.CV_THRESH_BINARY)cornerMap = cv.CreateMat(dst_32f.height, dst_32f.width, cv.CV_8U)
cv.Convert(dst_32f, cornerMap) #Convert to make the and
cv.And(cornerMap, localMax, cornerMap) #Delete all modified pixelsradius = 3
thickness = 2l = []
for x in range(cornerMap.height): #Create the list of point take all pixel that are not 0 (so not black)for y in range(cornerMap.width):if cornerMap[x,y]:l.append((y,x))for center in l:cv.Circle(im, center, radius, (255,255,255), thickness)cv.ShowImage("Image", im)
cv.ShowImage("CornerHarris Result", dst_32f)
cv.ShowImage("Unique Points after Dilatation/CMP/And", cornerMap)cv.WaitKey(0)

Python-OpenCV 处理图像(四)(五):图像直方图和反向投影 图像中边界和轮廓检测相关推荐

  1. Python-OpenCV 处理图像(五):图像中边界和轮廓检测

    关于边缘检测的基础来自于一个事实,即在边缘部分,像素值出现"跳跃"或者较大的变化.如果在此边缘部分求取一阶导数,就会看到极值的出现. 而在一阶导数为极值的地方,二阶导数为0,基于这 ...

  2. opencv——图像直方图与反向投影

    引言 在图像处理中,对于直方图这个概念,肯定不会陌生.但是其原理真的可以信手拈来吗? 本文篇幅有点长,在此列个目录,大家可以跳着看: 分析图像直方图的概念,以及opencv函数calcHist()对于 ...

  3. Python-OpenCV 处理图像(四):图像直方图和反向投影

    当我们想比较两张图片相似度的时候,可以使用这一节提到的技术 直方图对比 反向投影 关于这两种技术的原理可以参考我上面贴的链接,下面是示例的代码: 0x01. 绘制直方图 import cv2.cv a ...

  4. python做直方图-python OpenCV学习笔记实现二维直方图

    本文介绍了python OpenCV学习笔记实现二维直方图,分享给大家,具体如下: 官方文档 – https://docs.opencv.org/3.4.0/dd/d0d/tutorial_py_2d ...

  5. OpenCV之imgproc 模块. 图像处理(4)直方图均衡化 直方图计算 直方图对比 反向投影 模板匹配

    直方图均衡化 目标 在这个教程中你将学到: 什么是图像的直方图和为什么图像的直方图很有用 用OpenCV函数 equalizeHist 对图像进行直方图均衡化 原理 图像的直方图是什么? 直方图是图像 ...

  6. 图像处理-直方图的反向投影

    1.反向投影概念 反向投影是反映直方图模型在目标图像中的分布情况. 简单点说就是用直方图模型去目标图像中寻找是否有相似的对象. 通常用HSV色彩空间的HS两个通道直方图模型. 2.可视化理解 建立直方 ...

  7. c# opencv 轮廓检测_C#中OpenCVSharp实现轮廓检测

    OpenCv提供了函数 findContours()用于对物体轮廓进行检测,该函数实现算法是由S.suzuki K.Abe于1985年发表的.OpenCVSharp封装了这个函数,有2个参数(cont ...

  8. Python+Opencv图像处理新手入门教程(二):颜色空间转换,图像大小调整,灰度直方图

    一步一步来吧 上一节:Python+Opencv图像处理新手入门教程(一):介绍,安装与起步 1.什么是图像 对于计算机而言,图像的本质是一个由像素点构成的矩阵. 例如我们用肉眼很容易分辨一辆汽车的后 ...

  9. OpenCV图像处理学习四,像素的读写操作和图像反差函数操作

    一.读写图像 imread 可以指定加载为灰度或者RGB图像 Imwrite 保存图像文件,类型由扩展名决定 二.读写像素 读一个GRAY(灰度图)像素点的像素值(CV_8UC1) Scalar in ...

最新文章

  1. re.search()用法详解
  2. CentOS 6 同一台机器部署多个Tomcat应用服务器
  3. 网站建设想要赢得用户的认可和客户的满意并不容易
  4. 史上最全的MySQL高性能优化实战总结!
  5. pyspark模块介绍
  6. win8 -telnet安装
  7. angular路由传递参数_在angular4.0路由传递获取参数的最优方案
  8. 小程序 省市区县三级联动选择器(caseCade)
  9. Element-UI-快速入门(极简教程)
  10. 6.5 Introduce Explaining Variable(引入解释性变量)
  11. 金融数据分析与挖掘实战练习2.5-2.9
  12. python print_Python print()
  13. Java System.arraycopy()方法示例
  14. CICD详解(三)——SVN基本概念
  15. 如何正确添加水印保护自己的版权?
  16. 当失控的预装行为以非正当手段伸向行货机时_北京鼎开预装刷机数据统计apk(rom固化版)分析...
  17. PAT乙级刷题感想及踩坑总结
  18. Android开发视频教程,最全面的,总共200多集
  19. 软考—程序设计语言—有限自动机、正规式、编译程序基础、语法树、解释程序基础
  20. 如何在PDF文件中快速查找关键字,这个方法后悔没早点知道

热门文章

  1. jQuery快速学习
  2. 深入理解分布式技术 - 消息幂等性如何保障不重复消费
  3. 白话Elasticsearch50-深入聚合数据分析之doc values机制
  4. Oracle优化03-Latch和等待
  5. 谈谈mysql优化_浅谈MySQL SQL优化
  6. spring批处理mysql语句_Spring框架——批处理(batch)和事务(Transaction)
  7. xml发生错误_WEB之web.xml详解
  8. css中光标的设置,CSS Cursors(光标)
  9. java web jsp相对路径_Java Web中的相对路径与绝对路径总结
  10. python numpy 奇数偶数行互换_python 列表推导式(经典代码)(21)