-fomit-frame-pointer 在优化时候被启用,带来了效率的提升。看到一篇比较详细记录编译选项的文章,转发一下,同时给自己作一下备忘。

少优化->多优化:

O0 -->> O1 -->> O2 -->> O3

-O0表示没有优化,-O1为缺省值,-O3优化级别最高

英文解析:

`-O ' 
`-O1 ' 
                Optimize.      Optimizing   compilation   takes   somewhat   more   time,   and   a 
                lot   more   memory   for   a   large   function. 
  
                With   `-O ',   the   compiler   tries   to   reduce   code   size   and   execution 
                time,   without   performing   any   optimizations   that   take   a   great   deal 
                of   compilation   time. 
  
                `-O '   turns   on   the   following   optimization   flags: 
                               -fdefer-pop    
                               -fdelayed-branch    
                               -fguess-branch-probability    
                               -fcprop-registers    
                               -floop-optimize    
                               -fif-conversion    
                               -fif-conversion2    
                               -ftree-ccp    
                               -ftree-dce    
                               -ftree-dominator-opts    
                               -ftree-dse    
                               -ftree-ter    
                               -ftree-lrs    
                               -ftree-sra    
                               -ftree-copyrename    
                               -ftree-fre    
                               -ftree-ch    
                               -funit-at-a-time    
                               -fmerge-constants 
  
                `-O '   also   turns   on   `-fomit-frame-pointer '   on   machines   where   doing 
                so   does   not   interfere   with   debugging. 
  
                `-O '   doesn 't   turn   on   `-ftree-sra '   for   the   Ada   compiler.      This 
                option   must   be   explicitly   specified   on   the   command   line   to   be 
                enabled   for   the   Ada   compiler. 
  
`-O2 ' 
                Optimize   even   more.      GCC   performs   nearly   all   supported 
                optimizations   that   do   not   involve   a   space-speed   tradeoff.      The 
                compiler   does   not   perform   loop   unrolling   or   function   inlining   when 
                you   specify   `-O2 '.      As   compared   to   `-O ',   this   option   increases 
                both   compilation   time   and   the   performance   of   the   generated   code. 
  
                `-O2 '   turns   on   all   optimization   flags   specified   by   `-O '.      It   also 
                turns   on   the   following   optimization   flags: 
                               -fthread-jumps    
                               -fcrossjumping    
                               -foptimize-sibling-calls    
                               -fcse-follow-jumps      -fcse-skip-blocks    
                               -fgcse      -fgcse-lm       
                               -fexpensive-optimizations    
                               -fstrength-reduce    
                               -frerun-cse-after-loop      -frerun-loop-opt    
                               -fcaller-saves    
                               -fpeephole2    
                               -fschedule-insns      -fschedule-insns2    
                               -fsched-interblock      -fsched-spec    
                               -fregmove    
                               -fstrict-aliasing    
                               -fdelete-null-pointer-checks    
                               -freorder-blocks      -freorder-functions    
                               -falign-functions      -falign-jumps    
                               -falign-loops      -falign-labels    
                               -ftree-vrp    
                               -ftree-pre 
  
                Please   note   the   warning   under   `-fgcse '   about   invoking   `-O2 '   on 
                programs   that   use   computed   gotos. 
  
`-O3 ' 
                Optimize   yet   more.      `-O3 '   turns   on   all   optimizations   specified   by 
                `-O2 '   and   also   turns   on   the   `-finline-functions ', 
                `-funswitch-loops '   and   `-fgcse-after-reload '   options. 
  
`-O0 ' 
                Do   not   optimize.      This   is   the   default.

///==================另外还有个Os选项==========================

http://hi.baidu.com/ah__fu/blog/item/cc9fd19b801948bdc9eaf4b3.html

在研究编译驱动的makefile的时候,发现GCC的命令行里面有一个-Os的优化选项。
    遍查GCC文档,发现了-O0, -O1, -O2, -O3,就是没有发现-Os。
    祭出GOOGLE大法搜了一下,终于发现这篇文章说明了-Os的作用:
http://www.linuxjournal.com/article/7269

原来-Os相当于-O2.5。是使用了所有-O2的优化选项,但又不缩减代码尺寸的方法。
   详细的说明如下:
Level 2.5 (-Os)

The special optimization level (-Os or size) enables all -O2 optimizations that do not increase code size; it puts the emphasis on size over speed. This includes all second-level optimizations, except for the alignment optimizations. The alignment optimizations skip space to align functions, loops, jumps and labels to an address that is a multiple of a power of two, in an architecture-dependent manner. Skipping to these boundaries can increase performance as well as the size of the resulting code and data spaces; therefore, these particular optimizations are disabled. The size optimization level is enabled as:

gcc -Os -o test test.c

In gcc 3.2.2, reorder-blocks is enabled at -Os, but in gcc 3.3.2 reorder-blocks is disabled.

==============================
补充:在GCC的官方文档里又发现了关于-Os的说明:
http://gcc.gnu.org/onlinedocs/gcc-3.4.6/gcc/Optimize-Options.html#Optimize-Options

//=============================================

http://blog.csdn.net/ison81/archive/2009/05/07/4158576.aspx

backtrace与fomit-frame-pointer选项

事实上gcc的所有级别的优化(-O, -O2, -O3等)都会打开-fomit-frame-pointer,该选项的功能是函数调用时不保存frame指针,在ARM上就是fp,故我们无法按照APCS中的约定来回溯调用栈。但是GDB中仍然可以使用bt命令看到调用栈,为什么?得知GDB v6之后都是支持DWARF2的,也就意味着它可以不依赖fp来回溯调用栈(详见http://gcc.gnu.org/ml/gcc/2003-10/msg00322.html)。

看来想在代码中动态显示调用栈而又不希望使用GDB的朋友,只能在编译时关掉-fomit-frame-pointer了。

//==================gcc参数大全:===========================

[介绍] 
gcc and g++分别是gnu的c & c++编译器 gcc/g++在执行编译工作的时候,总共需要4步 
1.预处理,生成.i的文件[预处理器cpp] 
2.将预处理后的文件不转换成汇编语言,生成文件.s[编译器egcs] 
3.有汇编变为目标代码(机器代码)生成.o的文件[汇编器as] 
4.连接目标代码,生成可执行程序[链接器ld]

[参数详解] 
-x language filename 
 设定文件所使用的语言,使后缀名无效,对以后的多个有效.也就是根据约定C语言的后缀名称是.c的,而C++的后缀名是.C或者.cpp,如果你很个性,决定你的C代码文件的后缀名是.pig 哈哈,那你就要用这个参数,这个参数对他后面的文件名都起作用,除非到了下一个参数的使用。 
  可以使用的参数吗有下面的这些 
  `c', `objective-c', `c-header', `c++', `cpp-output', `assembler', and `assembler-with-cpp'. 
  看到英文,应该可以理解的。 
  例子用法: 
  gcc -x c hello.pig 
   
-x none filename 
  关掉上一个选项,也就是让gcc根据文件名后缀,自动识别文件类型 
  例子用法: 
  gcc -x c hello.pig -x none hello2.c 
   
-c 
  只激活预处理,编译,和汇编,也就是他只把程序做成obj文件 
  例子用法: 
  gcc -c hello.c 
  他将生成.o的obj文件

-S 
  只激活预处理和编译,就是指把文件编译成为汇编代码。 
  例子用法 
  gcc -S hello.c 
  他将生成.s的汇编代码,你可以用文本编辑器察看

-E 
  只激活预处理,这个不生成文件,你需要把它重定向到一个输出文件里面. 
  例子用法: 
  gcc -E hello.c > pianoapan.txt 
  gcc -E hello.c | more 
  慢慢看吧,一个hello word 也要与处理成800行的代码

-o 
  制定目标名称,缺省的时候,gcc 编译出来的文件是a.out,很难听,如果你和我有同感,改掉它,哈哈 
  例子用法 
  gcc -o hello.exe hello.c (哦,windows用习惯了) 
  gcc -o hello.asm -S hello.c

-pipe 
  使用管道代替编译中临时文件,在使用非gnu汇编工具的时候,可能有些问题 
  gcc -pipe -o hello.exe hello.c

-ansi 
  关闭gnu c中与ansi c不兼容的特性,激活ansi c的专有特性(包括禁止一些asm inline typeof关键字,以及UNIX,vax等预处理宏,

-fno-asm 
  此选项实现ansi选项的功能的一部分,它禁止将asm,inline和typeof用作关键字。      
-fno-strict-prototype 
  只对g++起作用,使用这个选项,g++将对不带参数的函数,都认为是没有显式的对参数的个数和类型说明,而不是没有参数. 
  而gcc无论是否使用这个参数,都将对没有带参数的函数,认为城没有显式说明的类型 
   
-fthis-is-varialble 
  就是向传统c++看齐,可以使用this当一般变量使用. 
   
-fcond-mismatch 
  允许条件表达式的第二和第三参数类型不匹配,表达式的值将为void类型 
   
-funsigned-char 
-fno-signed-char 
-fsigned-char 
-fno-unsigned-char 
  这四个参数是对char类型进行设置,决定将char类型设置成unsigned char(前两个参数)或者 signed char(后两个参数) 
   
-include file 
  包含某个代码,简单来说,就是便以某个文件,需要另一个文件的时候,就可以用它设定,功能就相当于在代码中使用#include<filename> 
  例子用法: 
  gcc hello.c -include /root/pianopan.h 
   
-imacros file 
  将file文件的宏,扩展到gcc/g++的输入文件,宏定义本身并不出现在输入文件中 
   
-Dmacro 
  相当于C语言中的#define macro 
   
-Dmacro=defn 
  相当于C语言中的#define macro=defn 
   
-Umacro 
  相当于C语言中的#undef macro

-undef 
  取消对任何非标准宏的定义 
   
-Idir 
  在你是用#include"file"的时候,gcc/g++会先在当前目录查找你所制定的头文件,如果没有找到,他回到缺省的头文件目录找,如果使用-I制定了目录,他 
  回先在你所制定的目录查找,然后再按常规的顺序去找. 
  对于#include<file>,gcc/g++会到-I制定的目录查找,查找不到,然后将到系统的缺省的头文件目录查找 
   
-I- 
  就是取消前一个参数的功能,所以一般在-Idir之后使用 
   
-idirafter dir 
  在-I的目录里面查找失败,讲到这个目录里面查找. 
   
-iprefix prefix 
-iwithprefix dir 
  一般一起使用,当-I的目录查找失败,会到prefix+dir下查找 
   
-nostdinc 
  使编译器不再系统缺省的头文件目录里面找头文件,一般和-I联合使用,明确限定头文件的位置 
   
-nostdin C++ 
  规定不在g++指定的标准路经中搜索,但仍在其他路径中搜索,.此选项在创libg++库使用 
   
-C 
  在预处理的时候,不删除注释信息,一般和-E使用,有时候分析程序,用这个很方便的 
   
-M 
  生成文件关联的信息。包含目标文件所依赖的所有源代码你可以用gcc -M hello.c来测试一下,很简单。 
   
-MM 
  和上面的那个一样,但是它将忽略由#include<file>造成的依赖关系。 
   
-MD 
  和-M相同,但是输出将导入到.d的文件里面 
   
-MMD 
  和-MM相同,但是输出将导入到.d的文件里面 
   
-Wa,option 
  此选项传递option给汇编程序;如果option中间有逗号,就将option分成多个选项,然后传递给会汇编程序 
   
-Wl.option 
  此选项传递option给连接程序;如果option中间有逗号,就将option分成多个选项,然后传递给会连接程序.

-llibrary 
  制定编译的时候使用的库 
  例子用法 
  gcc -lcurses hello.c 
  使用ncurses库编译程序 
   
-Ldir 
  制定编译的时候,搜索库的路径。比如你自己的库,可以用它制定目录,不然 
  编译器将只在标准库的目录找。这个dir就是目录的名称。 
   
-O0 
-O1 
-O2 
-O3 
  编译器的优化选项的4个级别,-O0表示没有优化,-O1为缺省值,-O3优化级别最高      
-g 
  只是编译器,在编译的时候,产生调试信息。 
   
-gstabs 
  此选项以stabs格式声称调试信息,但是不包括gdb调试信息. 
   
-gstabs+ 
  此选项以stabs格式声称调试信息,并且包含仅供gdb使用的额外调试信息. 
   
-ggdb 
  此选项将尽可能的生成gdb的可以使用的调试信息.

-static 
  此选项将禁止使用动态库,所以,编译出来的东西,一般都很大,也不需要什么 
动态连接库,就可以运行.

-share 
  此选项将尽量使用动态库,所以生成文件比较小,但是需要系统由动态库.

-traditional 
  试图让编译器支持传统的C语言特性

[参考资料] 
-Linux/UNIX高级编程 
  中科红旗软件技术有限公司编著.清华大学出版社出版 
-Gcc man page 
   
[ChangeLog] 
-2002-08-10 
  ver 0.1 发布最初的文档 
-2002-08-11 
  ver 0.11 修改文档格式 
-2002-08-12 
  ver 0.12 加入了对静态库,动态库的参数 
-2002-08-16 
  ver 0.16 增加了gcc编译的4个阶段的命令

运行 gcc/egcs

**********运行 gcc/egcs*********************** 
  GCC 是 GNU 的 C 和 C++ 编译器。实际上,GCC 能够编译三种语言:C、C++ 和 Object C(C 语言的一种面向对象扩展)。利用 gcc 命令可同时编译并连接 C 和 C++ 源程序。 
  如果你有两个或少数几个 C 源文件,也可以方便地利用 GCC 编译、连接并生成可执行文件。例如,假设你有两个源文件 main.c 和 factorial.c 两个源文件,现在要编译生成一个计算阶乘的程序。 
代码:

----------------------- 
清单 factorial.c 
----------------------- 
int factorial (int n) 

  if (n <= 1) 
   return 1; 
  else 
   return factorial (n - 1) * n; 

----------------------- 
清单 main.c 
----------------------- 
#include <stdio.h> 
#include <unistd.h>

int factorial (int n); 
int main (int argc, char **argv) 

  int n;

  if (argc < 2) 
  { 
    printf ("Usage: %s n/n", argv [0]); 
    return -1; 
  } 
  else 
  { 
   n = atoi (argv[1]); 
   printf ("Factorial of %d is %d./n", n, factorial (n)); 
   } 
  return 0; 
}

----------------------- 
利用如下的命令可编译生成可执行文件,并执行程序: 
$ gcc -o factorial main.c factorial.c 
$ ./factorial 5 
Factorial of 5 is 120.

  GCC 可同时用来编译 C 程序和 C++ 程序。一般来说,C 编译器通过源文件的后缀名来判断是 C 程序还是 C++ 程序。在 Linux 中,C 源文件的后缀名为 .c,而 C++ 源文件的后缀名为 .C 或 .cpp。但是,gcc 命令只能编译 C++ 源文件,而不能自动和 C++ 程序使用的库连接。因此,通常使用 g++ 命令来完成 C++ 程序的编译和连接,该程序会自动调用 gcc 实现编译。假设我们有一个如下的 C++ 源文件(hello.C): 
#include <iostream> 
void main (void) 

  cout << "Hello, world!" << endl; 
}

则可以如下调用 g++ 命令编译、连接并生成可执行文件: 
$ g++ -o hello hello.C 
$ ./hello 
Hello, world!

**********************gcc/egcs 的主要选项********* 
gcc 命令的常用选项 
选项 解释 
-ansi 只支持 ANSI 标准的 C 语法。这一选项将禁止 GNU C 的某些特色, 
例如 asm 或 typeof 关键词。 
-c 只编译并生成目标文件。 
-DMACRO 以字符串“1”定义 MACRO 宏。 
-DMACRO=DEFN 以字符串“DEFN”定义 MACRO 宏。 
-E 只运行 C 预编译器。 
-g 生成调试信息。GNU 调试器可利用该信息。 
-IDIRECTORY 指定额外的头文件搜索路径DIRECTORY。 
-LDIRECTORY 指定额外的函数库搜索路径DIRECTORY。 
-lLIBRARY 连接时搜索指定的函数库LIBRARY。 
-m486 针对 486 进行代码优化。 
-o FILE 生成指定的输出文件。用在生成可执行文件时。 
-O0 不进行优化处理。 
-O 或 -O1 优化生成代码。 
-O2 进一步优化。 
-O3 比 -O2 更进一步优化,包括 inline 函数。 
-shared 生成共享目标文件。通常用在建立共享库时。 
-static 禁止使用共享连接。 
-UMACRO 取消对 MACRO 宏的定义。 
-w 不生成任何警告信息。 
-Wall 生成所有警告信息。

gcc 优化选项 -O1 -O2 -O3 -Os 优先级,-fomit-frame-pointer(不积跬步无以至千里)相关推荐

  1. gcc 优化选项 -O1 -O2 -O3 -Os 优先级

    Gcc 编译优化简介 gcc 提供了为了满足用户不同程度的的优化需要,提供了近百种优化选项,用来对{编译时间,目标文件长度,执行效率}这个三维模型进行不同的取舍和平衡.优化的方法不一而足,总体上将有以 ...

  2. 【gcc】gcc优化等级 -O1 -O2 -O3 -Os -Ofast -Og

    目录 优化等级 -O1 -O2 -O3 -Os -Ofast -Og cmake 生成 debug和 release 版|Cmake设置优化等级 优化等级 -O1 -O2 -O3 -Os -Ofast ...

  3. gcc 中-O -O1 -O2 -O3 -Os -Ofast -Og优化的原理

    一般来说,如果不指定优化标识的话,gcc就会产生可调试代码,每条指令之间将是独立的:可以在指令之间设置断点,使用gdb中的 p命令查看变量的值,改变变量的值等.并且把获取最快的编译速度作为它的目标. ...

  4. #gcc笔记01#gcc编译选项 -O0 -O1 -O2 -O3

    -O0 -O1 -O2 -O3 编译器的优化选项的4个级别,-O0表示没有优化,-O1为缺省值,-O3优化级别最(此处为大写字母O) 优化选项(来源:http://blog.csdn.net/Sodi ...

  5. Makefile 中 -wl ,rpath 以及 O0 O1 O2 O3 Os 的用法

    再makefile中一般默认的 lib 的加载路径是/lib /usr/lib  如果想要改变程序运行时的libs的加载路径 就需要用到 -wl , rpath 参数来添加lib 加载路径. O0 O ...

  6. GCC优化选项:一般的文档里不容易找到的-Os

    From: http://hi.baidu.com/ah__fu/item/9287dd5227227c908d12ed50 在研究编译驱动的makefile的时候,发现GCC的命令行里面有一个-Os ...

  7. C++手动开启O2优化(以及-O -O1 -O2 -O3优化的知识点)(竞赛可用)

    O1优化会消耗少多的编译时间,它主要对代码的分支,常量以及表达式等进行优化. O2会尝试更多的寄存器级的优化以及指令级的优化,它会在编译期间占用更多的内存和编译时间. O3在O2的基础上进行更多的优化 ...

  8. c++ -O1,-O2,-O3资料整理

    原文:http://blog.csdn.net/xinianbuxiu/article/details/51844994 1.从.c文件到可执行文件,其间经历了几步? 高级语言是偏向人,按照人的思维方 ...

  9. gcc -O0 -O1 -O2 -O3 四级优化选项及每级分别做什么优化【转】

    转自:http://blog.csdn.net/qinrenzhi/article/details/78334677 相关博客http://blog.chinaunix.net/uid-2495495 ...

最新文章

  1. Python常用函数与技巧总结(二)
  2. ADO.Net的小知识(连接数据库)二
  3. jQuery 轮播图
  4. 轻松删除所有安装的gem
  5. 论文笔记:Autoregressive Tensor Factorizationfor Spatio-temporal Predictions
  6. Fiddler抓取移动端请求
  7. UILabel自适应高、宽
  8. Activiti源码 ProcessEngineConfiguration
  9. select、poll、epoll优缺点
  10. CGAffineTransform
  11. Asp.net的HTTP请求处理过程
  12. Java虚拟机专题之字节码指令(读书笔记)
  13. docker部署在linux怎么代理,如何在linux 上部署docker
  14. 字符串format函数使用
  15. 计算机数值换算在线,计算机单位换算(计算机单位换算在线)
  16. webstorm识别 ftl文件
  17. CNN模型压缩——使用网络稀疏化方法(Learning Effcient Convolutional Network through Network Sliming)
  18. CHM 格式打开不显示网页
  19. Java版Quest Soft Player
  20. 推荐一个可以做历年蓝桥杯真题的网站

热门文章

  1. [导入]收录Google公益广告的答案
  2. 理解van-field组件 :value 和 v-model的区别
  3. 【AI科幻】地球陨落·准备
  4. Baxter实战 baxter与moveit!
  5. 【NLP】Praat库(2) Batch processing of files
  6. php 分割验证码,动态验证码字符完美分割(附算法)
  7. arch linux u盘安装,使用U盘安装Arch Linux系统步骤
  8. (转)Element和Node的区别你造吗?
  9. Android 本地路径问题
  10. 2019NOIP算法复健+学习