《重识云原生系列》专题索引:

  1. 第一章——不谋全局不足以谋一域
  2. 第二章计算第1节——计算虚拟化技术总述
  3. 第二章计算第2节——主流虚拟化技术之VMare ESXi
  4. 第二章计算第3节——主流虚拟化技术之Xen
  5. 第二章计算第4节——主流虚拟化技术之KVM
  6. 第二章计算第5节——商用云主机方案
  7. 第二章计算第6节——裸金属方案
  8. 第三章云存储第1节——分布式云存储总述
  9. 第三章云存储第2节——SPDK方案综述
  10. 第三章云存储第3节——Ceph统一存储方案
  11. 第三章云存储第4节——OpenStack Swift 对象存储方案
  12. 第三章云存储第5节——商用分布式云存储方案
  13. 第四章云网络第一节——云网络技术发展简述
  14. 第四章云网络4.2节——相关基础知识准备
  15. 第四章云网络4.3节——重要网络协议
  16. 第四章云网络4.3.1节——路由技术简述
  17. 第四章云网络4.3.2节——VLAN技术
  18. 第四章云网络4.3.3节——RIP协议
  19. 第四章云网络4.3.4.1-2节——OSPF协议综述
  20. 第四章云网络4.3.4.3节——OSPF协议工作原理
  21. 第四章云网络4.3.4.4节——[转载]OSPF域内路由
  22. 第四章云网络4.3.4.5节——[转载]OSPF外部路由
  23. 第四章云网络4.3.4.6节——[转载]OSPF特殊区域之Stub和Totally Stub区域详解及配置
  24. 第四章云网络4.3.4.7节——OSPF特殊区域之NSSA和Totally NSSA详解及配置
  25. 第四章云网络4.3.5节——EIGRP协议
  26. 第四章云网络4.3.6节——IS-IS协议
  27. 第四章云网络4.3.7节——BGP协议
  28. 第四章云网络4.3.7.2节——BGP协议概述
  29. 第四章云网络4.3.7.3节——BGP协议实现原理
  30. 第四章云网络4.3.7.4节——高级特性
  31. 第四章云网络4.3.7.5节——实操
  32. 第四章云网络4.3.7.6节——MP-BGP协议
  33. 第四章云网络4.3.8节——策略路由
  34. 第四章云网络4.3.9节——Graceful Restart(平滑重启)技术
  35. 第四章云网络4.3.10节——VXLAN技术
  36. 第四章云网络4.3.10.2节——VXLAN Overlay网络方案设计
  37. 第四章云网络4.3.10.3节——VXLAN隧道机制
  38. 第四章云网络4.3.10.4节——VXLAN报文转发过程
  39. 第四章云网络4.3.10.5节——VXlan组网架构
  40. 第四章云网络4.3.10.6节——VXLAN应用部署方案
  41. 第四章云网络4.4节——Spine-Leaf网络架构
  42. 第四章云网络4.5节——大二层网络
  43. 第四章云网络4.6节——Underlay 和 Overlay概念
  44. 第四章云网络4.7.1节——网络虚拟化与卸载加速技术的演进简述
  45. 第四章云网络4.7.2节——virtio网络半虚拟化简介
  46. 第四章云网络4.7.3节——Vhost-net方案
  47. 第四章云网络4.7.4节vhost-user方案——virtio的DPDK卸载方案
  48. 第四章云网络4.7.5节vDPA方案——virtio的半硬件虚拟化实现
  49. 第四章云网络4.7.6节——virtio-blk存储虚拟化方案
  50. 第四章云网络4.7.8节——SR-IOV方案
  51. 第四章云网络4.7.9节——NFV
  52. 第四章云网络4.8.1节——SDN总述
  53. 第四章云网络4.8.2.1节——OpenFlow概述
  54. 第四章云网络4.8.2.2节——OpenFlow协议详解
  55. 第四章云网络4.8.2.3节——OpenFlow运行机制
  56. 第四章云网络4.8.3.1节——Open vSwitch简介
  57. 第四章云网络4.8.3.2节——Open vSwitch工作原理详解
  58. 第四章云网络4.8.4节——OpenStack与SDN的集成
  59. 第四章云网络4.8.5节——OpenDayLight
  60. 第四章云网络4.8.6节——Dragonflow
  61. 第四章云网络4.9.1节——网络卸载加速技术综述

  62. 第四章云网络4.9.2节——传统网络卸载技术

  63. 第四章云网络4.9.3.1节——DPDK技术综述

  64. 第四章云网络4.9.3.2节——DPDK原理详解

  65. 第四章云网络4.9.4.1节——智能网卡SmartNIC方案综述

  66. 第四章云网络4.9.4.2节——智能网卡实现

  67. 第六章容器6.1.1节——容器综述

  68. 第六章容器6.1.2节——容器安装部署

  69. 第六章容器6.1.3节——Docker常用命令

  70. 第六章容器6.1.4节——Docker核心技术LXC

  71. 第六章容器6.1.5节——Docker核心技术Namespace

  72. 第六章容器6.1.6节—— Docker核心技术Chroot

  73. 第六章容器6.1.7.1节——Docker核心技术cgroups综述

  74. 第六章容器6.1.7.2节——cgroups原理剖析

  75. 第六章容器6.1.7.3节——cgroups数据结构剖析

  76. 第六章容器6.1.7.4节——cgroups使用

  77. 第六章容器6.1.8节——Docker核心技术UnionFS

  78. 第六章容器6.1.9节——Docker镜像技术剖析

  79. 第六章容器6.1.10节——DockerFile解析

  80. 第六章容器6.1.11节——docker-compose容器编排

  81. 第六章容器6.1.12节——Docker网络模型设计

  82. 第六章容器6.2.1节——Kubernetes概述

  83. 第六章容器6.2.2节——K8S架构剖析

  84. 第六章容器6.3.1节——K8S核心组件总述

  85. 第六章容器6.3.2节——API Server组件

  86. 第六章容器6.3.3节——Kube-Scheduler使用篇

  87. 第六章容器6.3.4节——etcd组件

  88. 第六章容器6.3.5节——Controller Manager概述

  89. 第六章容器6.3.6节——kubelet组件

  90. 第六章容器6.3.7节——命令行工具kubectl

  91. 第六章容器6.3.8节——kube-proxy

  92. 第六章容器6.4.1节——K8S资源对象总览

  93. 第六章容器6.4.2.1节——pod详解

  94. 第六章容器6.4.2.2节——Pod使用(上)

  95. 第六章容器6.4.2.3节——Pod使用(下)

  96. 第六章容器6.4.3节——ReplicationController

  97. 第六章容器6.4.4节——ReplicaSet组件

  98. 第六章容器基础6.4.5.1节——Deployment概述

  99. 第六章容器基础6.4.5.2节——Deployment配置详细说明

  100. 第六章容器基础6.4.5.3节——Deployment实现原理解析

  101. 第六章容器基础6.4.6节——Daemonset

  102. 第六章容器基础6.4.7节——Job

  103. 第六章容器基础6.4.8节——CronJob

  104. 第六章容器基础6.4.9.1节——Service综述

  105. 第六章容器基础6.4.9.2节——使用 Service 连接到应用

  106. 第六章容器基础6.4.9.3节——Service拓扑感知

  107. 第六章容器基础6.4.10.1节——StatefulSet概述

  108. 第六章容器基础6.4.10.2节——StatefulSet常规操作实操

  109. 第六章容器基础6.4.10.3节——StatefulSet实操案例-部署WordPress 和 MySQL

  110. 第六章容器基础6.4.10.4节——StatefulSet实操案例-使用 StatefulSet 部署Cassandra

  111. 第六章容器基础6.4.10.5节——Statefulset原理剖析

  112. 第六章容器基础6.4.11.1节——Ingress综述

1 使用 Service 连接到应用实操

1.1 Kubernetes 连接容器的模型

既然有了一个持续运行、可复制的应用,我们就能够将它暴露到网络上。

Kubernetes 假设 Pod 可与其它 Pod 通信,不管它们在哪个主机上。 Kubernetes 给每一个 Pod 分配一个集群私有 IP 地址,所以没必要在 Pod 与 Pod 之间创建连接或将容器的端口映射到主机端口。 这意味着同一个 Pod 内的所有容器能通过 localhost 上的端口互相连通,集群中的所有 Pod 也不需要通过 NAT 转换就能够互相看到。 本文档的剩余部分详述如何在上述网络模型之上运行可靠的服务。

本节使用一个简单的 Nginx 服务器来演示概念验证原型。

1.2 在集群中暴露 Pod

我们在之前的示例中已经做过,然而让我们以网络连接的视角再重做一遍。 创建一个 Nginx Pod,注意其中包含一个容器端口的规约:service/networking/run-my-nginx.yaml

apiVersion: apps/v1
kind: Deployment
metadata: name: my-nginx
spec: selector: matchLabels: run: my-nginx replicas: 2 template: metadata: labels: run: my-nginx spec: containers: - name: my-nginx image: nginx ports: - containerPort: 80

这使得可以从集群中任何一个节点来访问它。检查节点,该 Pod 正在运行:

kubectl apply -f ./run-my-nginx.yaml
kubectl get pods -l run=my-nginx -o wideNAME                      READY STATUS  RESTARTS AGE     IP             NODE
my-nginx-3800858182-jr4a2  1/1  Running    0     13s 10.244.3.4 kubernetes-minion-905m
my-nginx-3800858182-kna2y  1/1  Running    0     13s 10.244.2.5 kubernetes-minion-ljyd

检查 Pod 的 IP 地址:

kubectl get pods -l run=my-nginx -o custom-columns=POD_IP:.status.podIPs POD_IP [map[ip:10.244.3.4]] [map[ip:10.244.2.5]]

你应该能够通过 ssh 登录到集群中的任何一个节点上,并使用诸如 curl 之类的工具向这两个 IP 地址发出查询请求。 需要注意的是,容器 不会 使用该节点上的 80 端口,也不会使用任何特定的 NAT 规则去路由流量到 Pod 上。 这意味着可以在同一个节点上运行多个 Nginx Pod,使用相同的 containerPort,并且可以从集群中任何其他的 Pod 或节点上使用 IP 的方式访问到它们。 如果你想的话,你依然可以将宿主节点的某个端口的流量转发到 Pod 中,但是出于网络模型的原因,你不必这么做。

如果对此好奇,请参考 Kubernetes 网络模型。

1.3 创建 Service

我们有一组在一个扁平的、集群范围的地址空间中运行 Nginx 服务的 Pod。 理论上,你可以直接连接到这些 Pod,但如果某个节点死掉了会发生什么呢? Pod 会终止,Deployment 将创建新的 Pod,且使用不同的 IP。这正是 Service 要解决的问题。

Kubernetes Service 是集群中提供相同功能的一组 Pod 的抽象表达。 当每个 Service 创建时,会被分配一个唯一的 IP 地址(也称为 clusterIP)。 这个 IP 地址与 Service 的生命周期绑定在一起,只要 Service 存在,它就不会改变。 可以配置 Pod 使它与 Service 进行通信,Pod 知道与 Service 通信将被自动地负载均衡到该 Service 中的某些 Pod 上。

可以使用 kubectl expose 命令为 2个 Nginx 副本创建一个 Service:

kubectl expose deployment/my-nginx service/my-nginx exposed

这等价于使用 kubectl create -f 命令及如下的 yaml 文件创建:service/networking/nginx-svc.yaml

apiVersion: v1
kind: Service
metadata: name: my-nginx labels: run: my-nginx
spec: ports: - port: 80 protocol: TCP selector: run: my-nginx

上述规约将创建一个 Service,该 Service 会将所有具有标签 run: my-nginx 的 Pod 的 TCP 80 端口暴露到一个抽象的 Service 端口上(targetPort:容器接收流量的端口;port:可任意取值的抽象的 Service 端口,其他 Pod 通过该端口访问 Service)。 查看 Service API 对象以了解 Service 所能接受的字段列表。 查看你的 Service 资源:

kubectl get svc my-nginx NAME        TYPE    CLUSTER-IP  EXTERNAL-IP PORT(S) AGE
my-nginx ClusterIP 10.0.162.149    <none>   80/TCP  21s

正如前面所提到的,一个 Service 由一组 Pod 提供支撑。这些 Pod 通过 EndpointSlices 暴露出来。 Service Selector 将持续评估,结果被 POST 到使用标签与该 Service 连接的一个 EndpointSlice。 当 Pod 终止后,它会自动从包含该 Pod 的 EndpointSlices 中移除。 新的能够匹配上 Service Selector 的 Pod 将自动地被为该 Service 添加到 EndpointSlice 中。 检查 Endpoint,注意到 IP 地址与在第一步创建的 Pod 是相同的。

kubectl describe svc my-nginx Name: my-nginx
Namespace: default
Labels: run=my-nginx
Annotations: <none>
Selector: run=my-nginx
Type: ClusterIP
IP: 10.0.162.149
Port: <unset> 80/TCP
Endpoints: 10.244.2.5:80,10.244.3.4:80
Session Affinity: None
Events: <none>kubectl get endpointslices -l kubernetes.io/service-name=my-nginx NAME           ADDRESSTYPE PORTS       ENDPOINTS       AGE
my-nginx-7vzhx     IPv4      80  10.244.2.5,10.244.3.4 21s

现在,你应该能够从集群中任意节点上使用 curl 命令向 : 发送请求以访问 Nginx Service。 注意 Service IP 完全是虚拟的,它从来没有走过网络,如果对它如何工作的原理感到好奇, 可以进一步阅读服务代理的内容。

1.4 访问 Service

Kubernetes支持两种查找服务的主要模式: 环境变量和 DNS。前者开箱即用,而后者则需要 CoreDNS 集群插件。

说明:

如果不需要服务环境变量(因为可能与预期的程序冲突,可能要处理的变量太多,或者仅使用DNS等),则可以通过在 pod spec 上将 enableServiceLinks 标志设置为 false 来禁用此模式。

1.4.1 环境变量

当 Pod 在节点上运行时,kubelet 会针对每个活跃的 Service 为 Pod 添加一组环境变量。 这就引入了一个顺序的问题。为解释这个问题,让我们先检查正在运行的 Nginx Pod 的环境变量(你的环境中的 Pod 名称将会与下面示例命令中的不同):

kubectl exec my-nginx-3800858182-jr4a2 -- printenv | grep SERVICE KUBERNETES_SERVICE_HOST=10.0.0.1
KUBERNETES_SERVICE_PORT=443
KUBERNETES_SERVICE_PORT_HTTPS=443

能看到环境变量中并没有你创建的 Service 相关的值。这是因为副本的创建先于 Service。 这样做的另一个缺点是,调度器可能会将所有 Pod 部署到同一台机器上,如果该机器宕机则整个 Service 都会离线。 要改正的话,我们可以先终止这 2 个 Pod,然后等待 Deployment 去重新创建它们。 这次 Service 会 先于 副本存在。这将实现调度器级别的 Pod 按 Service 分布(假定所有的节点都具有同样的容量),并提供正确的环境变量:

kubectl scale deployment my-nginx --replicas=0; kubectl scale deployment my-nginx --replicas=2; kubectl get pods -l run=my-nginx -o wide NAME                      READY  STATUS RESTARTS AGE     IP             NODE
my-nginx-3800858182-e9ihh  1/1  Running    0     5s  10.244.2.7 kubernetes-minion-ljyd
my-nginx-3800858182-j4rm4  1/1  Running    0     5s  10.244.3.8 kubernetes-minion-905m

你可能注意到,Pod 具有不同的名称,这是因为它们是被重新创建的。

kubectl exec my-nginx-3800858182-e9ihh -- printenv | grep SERVICE KUBERNETES_SERVICE_PORT=443
MY_NGINX_SERVICE_HOST=10.0.162.149
KUBERNETES_SERVICE_HOST=10.0.0.1
MY_NGINX_SERVICE_PORT=80
KUBERNETES_SERVICE_PORT_HTTPS=443

1.4.2 DNS

Kubernetes 提供了一个自动为其它 Service 分配 DNS 名字的 DNS 插件 Service。 你可以通过如下命令检查它是否在工作:

kubectl get services kube-dns --namespace=kube-system NAME       TYPE    CLUSTER-IP EXTERNAL-IP    PORT(S)    AGE
kube-dns ClusterIP 10.0.0.10  <none>      53/UDP,53/TCP 8m

本段剩余的内容假设你已经有一个拥有持久 IP 地址的 Service(my-nginx),以及一个为其 IP 分配名称的 DNS 服务器。 这里我们使用 CoreDNS 集群插件(应用名为 kube-dns), 所以在集群中的任何 Pod 中,你都可以使用标准方法(例如:gethostbyname())与该 Service 通信。 如果 CoreDNS 没有在运行,你可以参照 CoreDNS README 或者安装 CoreDNS 来启用它。 让我们运行另一个 curl 应用来进行测试:

kubectl run curl --image=radial/busyboxplus:curl -i --tty Waiting for pod default/curl-131556218-9fnch to be running, status is Pending, pod ready: false Hit enter for command prompt

然后,按回车并执行命令 nslookup my-nginx:

[ root@curl-131556218-9fnch:/ ]$ nslookup my-nginx Server:    10.0.0.10
Address 1: 10.0.0.10 Name:      my-nginx
Address 1: 10.0.162.149

1.5 保护 Service

到现在为止,我们只在集群内部访问了 Nginx 服务器。在将 Service 暴露到因特网之前,我们希望确保通信信道是安全的。 为实现这一目的,需要:

  • 用于 HTTPS 的自签名证书(除非已经有了一个身份证书)
  • 使用证书配置的 Nginx 服务器
  • 使 Pod 可以访问证书的 Secret

你可以从 Nginx https 示例获取所有上述内容。 你需要安装 go 和 make 工具。如果你不想安装这些软件,可以按照后文所述的手动执行步骤执行操作。简要过程如下:

make keys KEY=/tmp/nginx.key CERT=/tmp/nginx.crt
kubectl create secret tls nginxsecret --key /tmp/nginx.key --cert /tmp/nginx.crt
secret/nginxsecret createdkubectl get secrets NAME              TYPE        DATA AGE
nginxsecret kubernetes.io/tls  2   1m

以下是 configmap:

kubectl create configmap nginxconfigmap --from-file=default.conf configmap/nginxconfigmap createdkubectl get configmaps NAME           DATA AGE
nginxconfigmap  1   114s

以下是你在运行 make 时遇到问题时要遵循的手动步骤(例如,在 Windows 上):

# 创建公钥和相对应的私钥
openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout /d/tmp/nginx.key -out /d/tmp/nginx.crt -subj "/CN=my-nginx/O=my-nginx" # 对密钥实施 base64 编码
cat /d/tmp/nginx.crt | base64
cat /d/tmp/nginx.key | base64

使用前面命令的输出来创建 yaml 文件,如下所示。 base64 编码的值应全部放在一行上。

apiVersion: "v1"
kind: "Secret"
metadata: name: "nginxsecret" namespace: "default"
type: kubernetes.io/tls
data: tls.crt: "LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSURIekNDQWdlZ0F3SUJBZ0lKQUp5M3lQK0pzMlpJTUEwR0NTcUdTSWIzRFFFQkJRVUFNQ1l4RVRBUEJnTlYKQkFNVENHNW5hVzU0YzNaak1SRXdEd1lEVlFRS0V3aHVaMmx1ZUhOMll6QWVGdzB4TnpFd01qWXdOekEzTVRKYQpGdzB4T0RFd01qWXdOekEzTVRKYU1DWXhFVEFQQmdOVkJBTVRDRzVuYVc1NGMzWmpNUkV3RHdZRFZRUUtFd2h1CloybHVlSE4yWXpDQ0FTSXdEUVlKS29aSWh2Y05BUUVCQlFBRGdnRVBBRENDQVFvQ2dnRUJBSjFxSU1SOVdWM0IKMlZIQlRMRmtobDRONXljMEJxYUhIQktMSnJMcy8vdzZhU3hRS29GbHlJSU94NGUrMlN5ajBFcndCLzlYTnBwbQppeW1CL3JkRldkOXg5UWhBQUxCZkVaTmNiV3NsTVFVcnhBZW50VWt1dk1vLzgvMHRpbGhjc3paenJEYVJ4NEo5Ci82UVRtVVI3a0ZTWUpOWTVQZkR3cGc3dlVvaDZmZ1Voam92VG42eHNVR0M2QURVODBpNXFlZWhNeVI1N2lmU2YKNHZpaXdIY3hnL3lZR1JBRS9mRTRqakxCdmdONjc2SU90S01rZXV3R0ljNDFhd05tNnNTSzRqYUNGeGpYSnZaZQp2by9kTlEybHhHWCtKT2l3SEhXbXNhdGp4WTRaNVk3R1ZoK0QrWnYvcW1mMFgvbVY0Rmo1NzV3ajFMWVBocWtsCmdhSXZYRyt4U1FVQ0F3RUFBYU5RTUU0d0hRWURWUjBPQkJZRUZPNG9OWkI3YXc1OUlsYkROMzhIYkduYnhFVjcKTUI4R0ExVWRJd1FZTUJhQUZPNG9OWkI3YXc1OUlsYkROMzhIYkduYnhFVjdNQXdHQTFVZEV3UUZNQU1CQWY4dwpEUVlKS29aSWh2Y05BUUVGQlFBRGdnRUJBRVhTMW9FU0lFaXdyMDhWcVA0K2NwTHI3TW5FMTducDBvMm14alFvCjRGb0RvRjdRZnZqeE04Tzd2TjB0clcxb2pGSW0vWDE4ZnZaL3k4ZzVaWG40Vm8zc3hKVmRBcStNZC9jTStzUGEKNmJjTkNUekZqeFpUV0UrKzE5NS9zb2dmOUZ3VDVDK3U2Q3B5N0M3MTZvUXRUakViV05VdEt4cXI0Nk1OZWNCMApwRFhWZmdWQTRadkR4NFo3S2RiZDY5eXM3OVFHYmg5ZW1PZ05NZFlsSUswSGt0ejF5WU4vbVpmK3FqTkJqbWZjCkNnMnlwbGQ0Wi8rUUNQZjl3SkoybFIrY2FnT0R4elBWcGxNSEcybzgvTHFDdnh6elZPUDUxeXdLZEtxaUMwSVEKQ0I5T2wwWW5scE9UNEh1b2hSUzBPOStlMm9KdFZsNUIyczRpbDlhZ3RTVXFxUlU9Ci0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0K" tls.key: "LS0tLS1CRUdJTiBQUklWQVRFIEtFWS0tLS0tCk1JSUV2UUlCQURBTkJna3Foa2lHOXcwQkFRRUZBQVNDQktjd2dnU2pBZ0VBQW9JQkFRQ2RhaURFZlZsZHdkbFIKd1V5eFpJWmVEZWNuTkFhbWh4d1NpeWF5N1AvOE9ta3NVQ3FCWmNpQ0RzZUh2dGtzbzlCSzhBZi9WemFhWm9zcApnZjYzUlZuZmNmVUlRQUN3WHhHVFhHMXJKVEVGSzhRSHA3VkpMcnpLUC9QOUxZcFlYTE0yYzZ3MmtjZUNmZitrCkU1bEVlNUJVbUNUV09UM3c4S1lPNzFLSWVuNEZJWTZMMDUrc2JGQmd1Z0ExUE5JdWFubm9UTWtlZTRuMG4rTDQKb3NCM01ZUDhtQmtRQlAzeE9JNHl3YjREZXUraURyU2pKSHJzQmlIT05Xc0RadXJFaXVJMmdoY1kxeWIyWHI2UAozVFVOcGNSbC9pVG9zQngxcHJHclk4V09HZVdPeGxZZmcvbWIvNnBuOUYvNWxlQlkrZStjSTlTMkQ0YXBKWUdpCkwxeHZzVWtGQWdNQkFBRUNnZ0VBZFhCK0xkbk8ySElOTGo5bWRsb25IUGlHWWVzZ294RGQwci9hQ1Zkank4dlEKTjIwL3FQWkUxek1yall6Ry9kVGhTMmMwc0QxaTBXSjdwR1lGb0xtdXlWTjltY0FXUTM5SjM0VHZaU2FFSWZWNgo5TE1jUHhNTmFsNjRLMFRVbUFQZytGam9QSFlhUUxLOERLOUtnNXNrSE5pOWNzMlY5ckd6VWlVZWtBL0RBUlBTClI3L2ZjUFBacDRuRWVBZmI3WTk1R1llb1p5V21SU3VKdlNyblBESGtUdW1vVlVWdkxMRHRzaG9reUxiTWVtN3oKMmJzVmpwSW1GTHJqbGtmQXlpNHg0WjJrV3YyMFRrdWtsZU1jaVlMbjk4QWxiRi9DSmRLM3QraTRoMTVlR2ZQegpoTnh3bk9QdlVTaDR2Q0o3c2Q5TmtEUGJvS2JneVVHOXBYamZhRGR2UVFLQmdRRFFLM01nUkhkQ1pKNVFqZWFKClFGdXF4cHdnNzhZTjQyL1NwenlUYmtGcVFoQWtyczJxWGx1MDZBRzhrZzIzQkswaHkzaE9zSGgxcXRVK3NHZVAKOWRERHBsUWV0ODZsY2FlR3hoc0V0L1R6cEdtNGFKSm5oNzVVaTVGZk9QTDhPTm1FZ3MxMVRhUldhNzZxelRyMgphRlpjQ2pWV1g0YnRSTHVwSkgrMjZnY0FhUUtCZ1FEQmxVSUUzTnNVOFBBZEYvL25sQVB5VWs1T3lDdWc3dmVyClUycXlrdXFzYnBkSi9hODViT1JhM05IVmpVM25uRGpHVHBWaE9JeXg5TEFrc2RwZEFjVmxvcG9HODhXYk9lMTAKMUdqbnkySmdDK3JVWUZiRGtpUGx1K09IYnRnOXFYcGJMSHBzUVpsMGhucDBYSFNYVm9CMUliQndnMGEyOFVadApCbFBtWmc2d1BRS0JnRHVIUVV2SDZHYTNDVUsxNFdmOFhIcFFnMU16M2VvWTBPQm5iSDRvZUZKZmcraEppSXlnCm9RN3hqWldVR3BIc3AyblRtcHErQWlSNzdyRVhsdlhtOElVU2FsbkNiRGlKY01Pc29RdFBZNS9NczJMRm5LQTQKaENmL0pWb2FtZm1nZEN0ZGtFMXNINE9MR2lJVHdEbTRpb0dWZGIwMllnbzFyb2htNUpLMUI3MkpBb0dBUW01UQpHNDhXOTVhL0w1eSt5dCsyZ3YvUHM2VnBvMjZlTzRNQ3lJazJVem9ZWE9IYnNkODJkaC8xT2sybGdHZlI2K3VuCnc1YytZUXRSTHlhQmd3MUtpbGhFZDBKTWU3cGpUSVpnQWJ0LzVPbnlDak9OVXN2aDJjS2lrQ1Z2dTZsZlBjNkQKckliT2ZIaHhxV0RZK2Q1TGN1YSt2NzJ0RkxhenJsSlBsRzlOZHhrQ2dZRUF5elIzT3UyMDNRVVV6bUlCRkwzZAp4Wm5XZ0JLSEo3TnNxcGFWb2RjL0d5aGVycjFDZzE2MmJaSjJDV2RsZkI0VEdtUjZZdmxTZEFOOFRwUWhFbUtKCnFBLzVzdHdxNWd0WGVLOVJmMWxXK29xNThRNTBxMmk1NVdUTThoSDZhTjlaMTltZ0FGdE5VdGNqQUx2dFYxdEYKWSs4WFJkSHJaRnBIWll2NWkwVW1VbGc9Ci0tLS0tRU5EIFBSSVZBVEUgS0VZLS0tLS0K"

现在使用文件创建 Secret:

kubectl apply -f nginxsecrets.yaml kubectl get secrets NAME             TYPE         DATA AGE
nginxsecret kubernetes.io/tls  2   1m

现在修改 nginx 副本以启动一个使用 Secret 中的证书的 HTTPS 服务器以及相应的用于暴露其端口(80 和 443)的 Service:service/networking/nginx-secure-app.yaml

apiVersion: v1
kind: Service
metadata: name: my-nginx labels: run: my-nginx
spec: type: NodePort ports: - port: 8080 targetPort: 80 protocol: TCP name: http - port: 443 protocol: TCP name: https selector: run: my-nginx ---
apiVersion: apps/v1
kind: Deployment
metadata: name: my-nginx
spec: selector: matchLabels: run: my-nginx replicas: 1 template: metadata: labels: run: my-nginx spec: volumes: - name: secret-volume secret: secretName: nginxsecret - name: configmap-volume configMap: name: nginxconfigmap containers: - name: nginxhttps image: bprashanth/nginxhttps:1.0 ports: - containerPort: 443 - containerPort: 80 volumeMounts: - mountPath: /etc/nginx/ssl name: secret-volume - mountPath: /etc/nginx/conf.d name: configmap-volume

关于 nginx-secure-app 清单,值得注意的几点如下:

  • 它将 Deployment 和 Service 的规约放在了同一个文件中。
  • Nginx 服务器通过 80 端口处理 HTTP 流量,通过 443 端口处理 HTTPS 流量,而 Nginx Service 则暴露了这两个端口。
  • 每个容器能通过挂载在 /etc/nginx/ssl 的卷访问秘钥。卷和密钥需要在 Nginx 服务器启动 之前 配置好。
kubectl delete deployments,svc my-nginx; kubectl create -f ./nginx-secure-app.yaml

这时,你可以从任何节点访问到 Nginx 服务器。

kubectl get pods -l run=my-nginx -o custom-columns=POD_IP:.status.podIPs POD_IP [map[ip:10.244.3.5]]node $ curl -k https://10.244.3.5
...
<h1>Welcome to nginx!</h1>

注意最后一步我们是如何提供 -k 参数执行 curl 命令的,这是因为在证书生成时, 我们不知道任何关于运行 nginx 的 Pod 的信息,所以不得不在执行 curl 命令时忽略 CName 不匹配的情况。 通过创建 Service,我们连接了在证书中的 CName 与在 Service 查询时被 Pod 使用的实际 DNS 名字。 让我们从一个 Pod 来测试(为了方便,这里使用同一个 Secret,Pod 仅需要使用 nginx.crt 去访问 Service):service/networking/curlpod.yaml

apiVersion: apps/v1
kind: Deployment
metadata: name: curl-deployment
spec: selector: matchLabels: app: curlpod replicas: 1 template: metadata: labels: app: curlpod spec: volumes: - name: secret-volume secret: secretName: nginxsecret containers: - name: curlpod command: - sh - -c - while true; do sleep 1; done image: radial/busyboxplus:curl volumeMounts: - mountPath: /etc/nginx/ssl name: secret-volume
kubectl apply -f ./curlpod.yaml kubectl get pods -l app=curlpod NAME                             READY  STATUS RESTARTS AGE
curl-deployment-1515033274-1410r  1/1  Running    0     1m
kubectl exec curl-deployment-1515033274-1410r -- curl https://my-nginx --cacert /etc/nginx/ssl/tls.crt
...
<title>Welcome to nginx!</title>
...

1.6 暴露 Service

对应用的某些部分,你可能希望将 Service 暴露在一个外部 IP 地址上。 Kubernetes 支持两种实现方式:NodePort 和 LoadBalancer。 在上一段创建的 Service 使用了 NodePort,因此,如果你的节点有一个公网 IP,那么 Nginx HTTPS 副本已经能够处理因特网上的流量。

kubectl get svc my-nginx -o yaml | grep nodePort -C 5
  uid: 07191fb3-f61a-11e5-8ae5-42010af00002
spec: clusterIP: 10.0.162.149 ports: - name: http nodePort: 31704 port: 8080 protocol: TCP targetPort: 80 - name: https nodePort: 32453 port: 443 protocol: TCP targetPort: 443 selector: run: my-nginx
kubectl get nodes -o yaml | grep ExternalIP -C 1
      - address: 104.197.41.11 type: ExternalIP allocatable:
-- - address: 23.251.152.56 type: ExternalIP allocatable:
... $ curl https://<EXTERNAL-IP>:<NODE-PORT> -k
...
<h1>Welcome to nginx!</h1>

让我们重新创建一个 Service 以使用云负载均衡器。 将 my-nginx Service 的 Type 由 NodePort 改成 LoadBalancer:

kubectl edit svc my-nginx
kubectl get svc my-nginxNAME          TYPE     CLUSTER-IP    EXTERNAL-IP     PORT(S)     AGE
my-nginx LoadBalancer 10.0.162.149 xx.xxx.xxx.xxx 8080:30163/TCP 21s
curl https://<EXTERNAL-IP> -k ...
<title>Welcome to nginx!</title>

在 EXTERNAL-IP 列中的 IP 地址能在公网上被访问到。CLUSTER-IP 只能从集群/私有云网络中访问。

注意,在 AWS 上,类型 LoadBalancer 的服务会创建一个 ELB,且 ELB 使用主机名(比较长),而不是 IP。 ELB 的主机名太长以至于不能适配标准 kubectl get svc 的输出,所以需要通过执行 kubectl describe service my-nginx 命令来查看它。 可以看到类似如下内容:

kubectl describe service my-nginx
...
LoadBalancer Ingress: a320587ffd19711e5a37606cf4a74574-1142138393.us-east-1.elb.amazonaws.com
...

参考链接

使用 Service 连接到应用 | Kubernetes

详解k8s的4种Service类型_Dark_Ice_的博客-CSDN博客_k8s service类型

k8s之Service_江南道人的博客-CSDN博客_k8s查看service

k8s重器之Service

k8s 理解Service工作原理 - 知乎

k8s之service服务 - 李志锋 - 博客园

k8s的Service详解

K8S之Service详解_运维@小兵的博客-CSDN博客_k8sservice

k8s之Service详解-Service介绍 - 路过的柚子厨 - 博客园

一文讲透K8s的Service概念

服务(Service) | Kubernetes

Service · Kubernetes指南

【重识云原生】第六章容器基础6.4.9.2节——使用 Service 连接到应用相关推荐

  1. 【重识云原生】第一章——不谋全局不足以谋一域

    云原生体系知识地图大纲: ​ 锲子 云原生概念这几年非常火爆,本人因有幸参与公司云原生转型项目调研,开始接触这一庞大技术体系,再通过与同业.各大头部云厂商超过150场的密集研讨交流,方得初窥全貌.同时 ...

  2. 【重识云原生】第二章计算第一节——计算虚拟化技术总述

    云平台计算领域知识地图: ​ 楔子:计算虚拟化技术算是云计算技术的擎天之柱,其前两代技术的演进一直引领着云计算的发展,即便到了云原生时代,其作用依然举足轻重. 一.计算虚拟化技术总述 1.1 虚拟化技 ...

  3. 【重识云原生】第六章容器基础6.4.7.1节——K8S Job组件

    <重识云原生系列>专题索引: 第一章--不谋全局不足以谋一域 第二章计算第1节--计算虚拟化技术总述 第二章计算第2节--主流虚拟化技术之VMare ESXi 第二章计算第3节--主流虚拟 ...

  4. 【重识云原生】第六章容器基础6.4.5.2节——Deployment配置详细说明

    <重识云原生系列>专题索引: 第一章--不谋全局不足以谋一域 第二章计算第1节--计算虚拟化技术总述 第二章计算第2节--主流虚拟化技术之VMare ESXi 第二章计算第3节--主流虚拟 ...

  5. 【重识云原生】第六章容器基础6.4.5.3节——Deployment实现原理解析

    <重识云原生系列>专题索引: 第一章--不谋全局不足以谋一域 第二章计算第1节--计算虚拟化技术总述 第二章计算第2节--主流虚拟化技术之VMare ESXi 第二章计算第3节--主流虚拟 ...

  6. 【重识云原生】第六章容器基础6.4.5.1节——Deployment概述

    <重识云原生系列>专题索引: 第一章--不谋全局不足以谋一域 第二章计算第1节--计算虚拟化技术总述 第二章计算第2节--主流虚拟化技术之VMare ESXi 第二章计算第3节--主流虚拟 ...

  7. 【重识云原生】第六章容器基础6.4.9.6节——Service 与 Pod 的DNS

    1 Service 与 Pod 的 DNS Kubernetes 为 Service 和 Pod 创建 DNS 记录. 你可以使用一致的 DNS 名称而非 IP 地址访问 Service. Kuber ...

  8. 【重识云原生】第六章容器6.3.5节——Controller Manager概述

    <重识云原生系列>专题索引: 第一章--不谋全局不足以谋一域 第二章计算第1节--计算虚拟化技术总述 第二章计算第2节--主流虚拟化技术之VMare ESXi 第二章计算第3节--主流虚拟 ...

  9. 【重识云原生】第三章云存储3.5节——商用分布式云存储方案

    <重识云原生系列>专题索引: 第一章--不谋全局不足以谋一域 第二章计算第1节--计算虚拟化技术总述 第二章计算第2节--主流虚拟化技术之VMare ESXi 第二章计算第3节--主流虚拟 ...

最新文章

  1. 看过这五条,再离职!
  2. C雨涵课后习题(18)
  3. spring mvc 前后端数据交互笔记(解决415,400问题)
  4. Pygame最小开发框架
  5. hbase中为何不能向表中插入数据_生产环境使用HBase,你必须知道的最佳实践 | 百万人学AI...
  6. Django 上下文处理器
  7. 查看各浏览器各版本的兼容情况
  8. [bbk2193] 第34集 - Chapter 09-Optimizing Sore Perations(03)
  9. C语言面试部分知识点整理总结
  10. 无光驱服务器操作系统安装系统吗,没有光驱的老机型如何安装操作系统。
  11. 第二代支付系统专题之报文篇(一)小额支付报文完整版(含二代新增功能业务说明)...
  12. Base32编码转换
  13. 企业微信发送信息异常的临时处理方案
  14. 制作一个简单的倒计时动画
  15. 挂断电话的实现(即类似于电话号码黑名单)
  16. ubuntu14.04系统假死及强制关机后产生的问题解决
  17. 基于XMPP的即时通信系统的建立(一)— XMPP基础概念
  18. OSG场景漫游(一)
  19. oracle账号过期和账号被锁
  20. 信号的扩展是因果_反因果信号的拉普拉斯变换收敛域是

热门文章

  1. 【智能推荐】阿里云智能推荐AIRec文档说明与SDK测试
  2. 麻将番型计算(二人麻将)
  3. Linux服务器配置与管理项目教程(CentOS7 /RHEL 7)(第三版)题库带答案
  4. 转载 冯羽的程序生涯之我见
  5. 替代WinPcap的新型Windows网络数据包截获软件——NPcap
  6. 从知识溢出的视角分析开放式协作
  7. 嵌入式STM32—第一天GPIO实现led呼吸灯
  8. Codeforces Round #807 (Div. 2)补题
  9. YOLOV3论文阅读(学习笔记)
  10. 录屏储存失败因为5823_屏幕录制存储失败因为5823