2019独角兽企业重金招聘Python工程师标准>>>

线程不安全的HashMap

因为多线程环境下,使用HashMap进行put操作会引起死循环,导致CPU利用率接近100%,所以在并发情况下不能使用HashMap,如以下代码

final HashMap<String, String> map = new HashMap<String, String>(2);
Thread t = new Thread(new Runnable() {@Overridepublic void run() {for (int i = 0; i < 10000; i++) {new Thread(new Runnable() {@Overridepublic void run() {map.put(UUID.randomUUID().toString(), "");}}, "ftf" + i).start();}}
}, "ftf");
t.start();
t.join();

效率低下的HashTable容器

HashTable容器使用synchronized来保证线程安全,但在线程竞争激烈的情况下HashTable的效率非常低下。因为当一个线程访问HashTable的同步方法时,其他线程访问HashTable的同步方法时,可能会进入阻塞或轮询状态。如线程1使用put进行添加元素,线程2不但不能使用put方法添加元素,并且也不能使用get方法来获取元素,所以竞争越激烈效率越低。

锁分段技术

HashTable容器在竞争激烈的并发环境下表现出效率低下的原因是所有访问HashTable的线程都必须竞争同一把锁,那假如容器里有多把锁,每一把锁用于锁容器其中一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就不会存在锁竞争,从而可以有效的提高并发访问效率,这就是ConcurrentHashMap所使用的锁分段技术,首先将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问。

ConcurrentHashMap的结构

我们通过ConcurrentHashMap的类图来分析ConcurrentHashMap的结构。

ConcurrentHashMap是由Segment数组结构和HashEntry数组结构组成。Segment是一种可重入锁ReentrantLock,在ConcurrentHashMap里扮演锁的角色,HashEntry则用于存储键值对数据。一个ConcurrentHashMap里包含一个Segment数组,Segment的结构和HashMap类似,是一种数组和链表结构, 一个Segment里包含一个HashEntry数组,每个HashEntry是一个链表结构的元素, 每个Segment守护者一个HashEntry数组里的元素,当对HashEntry数组的数据进行修改时,必须首先获得它对应的Segment锁。

ConcurrentHashMap的初始化

ConcurrentHashMap初始化方法是通过initialCapacity,loadFactor, concurrencyLevel几个参数来初始化segments数组,段偏移量segmentShift,段掩码segmentMask和每个segment里的HashEntry数组 。

初始化segments数组。让我们来看一下初始化segmentShift,segmentMask和segments数组的源代码。

if (concurrencyLevel > MAX_SEGMENTS)concurrencyLevel = MAX_SEGMENTS;// Find power-of-two sizes best matching arguments
int sshift = 0;
int ssize = 1;
while (ssize < concurrencyLevel) {++sshift;ssize <<= 1;
}
segmentShift = 32 - sshift;
segmentMask = ssize - 1;
this.segments = Segment.newArray(ssize);

由上面的代码可知segments数组的长度ssize通过concurrencyLevel计算得出。为了能通过按位与的哈希算法来定位segments数组的索引,必须保证segments数组的长度是2的N次方(power-of-two size),所以必须计算出一个是大于或等于concurrencyLevel的最小的2的N次方值来作为segments数组的长度。假如concurrencyLevel等于14,15或16,ssize都会等于16,即容器里锁的个数也是16。注意concurrencyLevel的最大大小是65535,意味着segments数组的长度最大为65536,对应的二进制是16位。

初始化segmentShift和segmentMask。这两个全局变量在定位segment时的哈希算法里需要使用,sshift等于ssize从1向左移位的次数,在默认情况下concurrencyLevel等于16,1需要向左移位移动4次,所以sshift等于4。segmentShift用于定位参与hash运算的位数,segmentShift等于32减sshift,所以等于28,这里之所以用32是因为ConcurrentHashMap里的hash()方法输出的最大数是32位的,后面的测试中我们可以看到这点。segmentMask是哈希运算的掩码,等于ssize减1,即15,掩码的二进制各个位的值都是1。因为ssize的最大长度是65536,所以segmentShift最大值是16,segmentMask最大值是65535,对应的二进制是16位,每个位都是1。

初始化每个Segment。输入参数initialCapacity是ConcurrentHashMap的初始化容量,loadfactor是每个segment的负载因子,在构造方法里需要通过这两个参数来初始化数组中的每个segment。

if (initialCapacity > MAXIMUM_CAPACITY)initialCapacity = MAXIMUM_CAPACITY;
int c = initialCapacity / ssize;
if (c * ssize < initialCapacity)++c;
int cap = 1;
while (cap < c)cap <<= 1;
for (int i = 0; i < this.segments.length; ++i)this.segments[i] = new Segment<K,V>(cap, loadFactor);

上面代码中的变量cap就是segment里HashEntry数组的长度,它等于initialCapacity除以ssize的倍数c,如果c大于1,就会取大于等于c的2的N次方值,所以cap不是1,就是2的N次方。segment的容量threshold=(int)cap*loadFactor,默认情况下initialCapacity等于16,loadfactor等于0.75,通过运算cap等于1,threshold等于零。

定位Segment

既然ConcurrentHashMap使用分段锁Segment来保护不同段的数据,那么在插入和获取元素的时候,必须先通过哈希算法定位到Segment。可以看到ConcurrentHashMap会首先使用Wang/Jenkins hash的变种算法对元素的hashCode进行一次再哈希。

private static int hash(int h) {h += (h << 15) ^ 0xffffcd7d;h ^= (h >>> 10);h += (h << 3);h ^= (h >>> 6);h += (h << 2) + (h << 14);return h ^ (h >>> 16);}

之所以进行再哈希,其目的是为了减少哈希冲突,使元素能够均匀的分布在不同的Segment上,从而提高容器的存取效率。假如哈希的质量差到极点,那么所有的元素都在一个Segment中,不仅存取元素缓慢,分段锁也会失去意义。我做了一个测试,不通过再哈希而直接执行哈希计算。

System.out.println(Integer.parseInt("0001111", 2) & 15);
System.out.println(Integer.parseInt("0011111", 2) & 15);
System.out.println(Integer.parseInt("0111111", 2) & 15);
System.out.println(Integer.parseInt("1111111", 2) & 15);

计算后输出的哈希值全是15,通过这个例子可以发现如果不进行再哈希,哈希冲突会非常严重,因为只要低位一样,无论高位是什么数,其哈希值总是一样。我们再把上面的二进制数据进行再哈希后结果如下,为了方便阅读,不足32位的高位补了0,每隔四位用竖线分割下。

0100|0111|0110|0111|1101|1010|0100|1110
1111|0111|0100|0011|0000|0001|1011|1000
0111|0111|0110|1001|0100|0110|0011|1110
1000|0011|0000|0000|1100|1000|0001|1010

可以发现每一位的数据都散列开了,通过这种再哈希能让数字的每一位都能参加到哈希运算当中,从而减少哈希冲突。ConcurrentHashMap通过以下哈希算法定位segment。

final Segment<K,V> segmentFor(int hash) {return segments[(hash >>> segmentShift) & segmentMask];}

默认情况下segmentShift为28,segmentMask为15,再哈希后的数最大是32位二进制数据,向右无符号移动28位,意思是让高4位参与到hash运算中, (hash >>> segmentShift) & segmentMask的运算结果分别是4,15,7和8,可以看到hash值没有发生冲突。

ConcurrentHashMap的get操作

Segment的get操作实现非常简单和高效。先经过一次再哈希,然后使用这个哈希值通过哈希运算定位到segment,再通过哈希算法定位到元素,代码如下:

public V get(Object key) {int hash = hash(key.hashCode());return segmentFor(hash).get(key, hash);
}

get操作的高效之处在于整个get过程不需要加锁,除非读到的值是空的才会加锁重读,我们知道HashTable容器的get方法是需要加锁的,那么ConcurrentHashMap的get操作是如何做到不加锁的呢?原因是它的get方法里将要使用的共享变量都定义成volatile,如用于统计当前Segement大小的count字段和用于存储值的HashEntry的value。定义成volatile的变量,能够在线程之间保持可见性,能够被多线程同时读,并且保证不会读到过期的值,但是只能被单线程写(有一种情况可以被多线程写,就是写入的值不依赖于原值),在get操作里只需要读不需要写共享变量count和value,所以可以不用加锁。之所以不会读到过期的值,是根据java内存模型的happen before原则,对volatile字段的写入操作先于读操作,即使两个线程同时修改和获取volatile变量,get操作也能拿到最新的值,这是用volatile替换锁的经典应用场景。

transient volatile int count;
volatile V value;

在定位元素的代码里我们可以发现定位HashEntry和定位Segment的哈希算法虽然一样,都与数组的长度减去一相与,但是相与的值不一样,定位Segment使用的是元素的hashcode通过再哈希后得到的值的高位,而定位HashEntry直接使用的是再哈希后的值。其目的是避免两次哈希后的值一样,导致元素虽然在Segment里散列开了,但是却没有在HashEntry里散列开。

hash >>> segmentShift) & segmentMask//定位Segment所使用的hash算法
int index = hash & (tab.length - 1);// 定位HashEntry所使用的hash算法

ConcurrentHashMap的Put操作

由于put方法里需要对共享变量进行写入操作,所以为了线程安全,在操作共享变量时必须得加锁。Put方法首先定位到Segment,然后在Segment里进行插入操作。插入操作需要经历两个步骤,第一步判断是否需要对Segment里的HashEntry数组进行扩容,第二步定位添加元素的位置然后放在HashEntry数组里。

是否需要扩容。在插入元素前会先判断Segment里的HashEntry数组是否超过容量(threshold),如果超过阀值,数组进行扩容。值得一提的是,Segment的扩容判断比HashMap更恰当,因为HashMap是在插入元素后判断元素是否已经到达容量的,如果到达了就进行扩容,但是很有可能扩容之后没有新元素插入,这时HashMap就进行了一次无效的扩容。

如何扩容。扩容的时候首先会创建一个两倍于原容量的数组,然后将原数组里的元素进行再hash后插入到新的数组里。为了高效ConcurrentHashMap不会对整个容器进行扩容,而只对某个segment进行扩容。

ConcurrentHashMap的size操作

如果我们要统计整个ConcurrentHashMap里元素的大小,就必须统计所有Segment里元素的大小后求和。Segment里的全局变量count是一个volatile变量,那么在多线程场景下,我们是不是直接把所有Segment的count相加就可以得到整个ConcurrentHashMap大小了呢?不是的,虽然相加时可以获取每个Segment的count的最新值,但是拿到之后可能累加前使用的count发生了变化,那么统计结果就不准了。所以最安全的做法,是在统计size的时候把所有Segment的put,remove和clean方法全部锁住,但是这种做法显然非常低效。 因为在累加count操作过程中,之前累加过的count发生变化的几率非常小,所以ConcurrentHashMap的做法是先尝试2次通过不锁住Segment的方式来统计各个Segment大小,如果统计的过程中,容器的count发生了变化,则再采用加锁的方式来统计所有Segment的大小。

那么ConcurrentHashMap是如何判断在统计的时候容器是否发生了变化呢?使用modCount变量,在put , remove和clean方法里操作元素前都会将变量modCount进行加1,那么在统计size前后比较modCount是否发生变化,从而得知容器的大小是否发生变化。

转载于:https://my.oschina.net/u/1014520/blog/192434

并发---ConcurrentHashMap相关推荐

  1. Java 并发---ConcurrentHashMap

    concurrent包下的并发容器 JDK5中添加了新的concurrent包,相对同步容器而言,并发容器通过一些机制改进了并发性能.因为同步容器将所有对容器状态的访问都串行化了,这样保证了线程的安全 ...

  2. 海量数据处理:从并发编程到分布式系统

    来自:DBAplus社群 作者介绍 Mark,一个正在成长的小码农. 本系列文章主要围绕高并发这一话题展开,分享笔者在并发处理上的学习思路以及踩过的坑.具体思路大体分为三部分: Java多线程编程: ...

  3. 解读Java 8 中为并发而生的 ConcurrentHashMap

    点击上方"方志朋",选择"设为星标" 回复"666"获取新整理的面试文章 作者 | Single_Yam 来源 | cnblogs.com/ ...

  4. LeetCode 1242. Web Crawler Multithreaded--Java 解法--网路爬虫并发系列--ConcurrentHashMap/Collections.synchroni

    题目地址:Web Crawler Multithreaded - LeetCode Given a url startUrl and an interface HtmlParser, implemen ...

  5. 探索 ConcurrentHashMap 高并发性的实现机制

    简介 ConcurrentHashMap 是 util.concurrent 包的重要成员.本文将结合 Java 内存模型,分析 JDK 源代码,探索 ConcurrentHashMap 高并发的具体 ...

  6. Java集合,ConcurrentHashMap底层实现和原理(常用于并发编程)

    为什么80%的码农都做不了架构师?>>>    概述 ConcurrentHashMap常用于并发编程,这里就从源码上来分析一下ConcurrentHashMap数据结构和底层原理. ...

  7. 探索 ConcurrentHashMap 高并发性的实现机制--转

    ConcurrentHashMap 是 Java concurrent 包的重要成员.本文将结合 Java 内存模型,来分析 ConcurrentHashMap 的 JDK 源代码.通过本文,读者将了 ...

  8. Java Review - 并发组件ConcurrentHashMap使用时的注意事项及源码分析

    文章目录 概述 案例 原因分析 修复 小结 概述 ConcurrentHashMap虽然为并发安全的组件,但是使用不当仍然会导致程序错误.我们这里通过一个简单的案例来复现这些问题,并给出开发时如何避免 ...

  9. java高并发(二十)HashMap与ConcurrentHashMap

    HashMap HashMap底层就是一个数组,而数组的每一项都是一个链表,当我们新建一个HashMap时就会初始化一个数组.HashMap有两个参数影响性能,分别是初始容量和加载因子. HashMa ...

  10. currenthashmap扩容原理_高并发编程系列:深入探讨ConcurrentHashMap的实现原理(JDK1.7和JDK1.8)...

    HashMap.CurrentHashMap 的实现原理基本都是BAT面试必考内容,阿里P8架构师谈:深入探讨HashMap的底层结构.原理.扩容机制深入谈过hashmap的实现原理以及在JDK 1. ...

最新文章

  1. Java设计模式圣经连载(05)-代理模式
  2. 将JavaScript字符串全部转换为小写吗?
  3. 测验8.2 指针与字符串 6-1 函数实现字符串逆序
  4. 使用 Direct Initial Load 初始化 GoldenGate 同步数据
  5. python编译为机器码_通过 GraalVM 将 Java 程序编译成本地机器码!
  6. ASP.NET MVC之文件上传【一】(八)
  7. 【Linux】Linux的关机和虚拟机克隆、快照
  8. Sentinel热点Key降级下_分布式系统集群限流_线程数隔离_削峰填谷_流量控制_速率控制_服务熔断_服务降级---微服务升级_SpringCloud Alibaba工作笔记0043
  9. Maple 全面基础
  10. aforge java_C#使用Aforge调用摄像头拍照的方法
  11. Android 在系统启动时设置声卡权限,[RK3288][Android7.1]强制使用默认声卡播放声音...
  12. 应聘新要求:填写恋爱经历?
  13. linux路由登录密码忘记,路由器重置密码
  14. TeX 家族(TeX, XeTeX, LuaTeX,XeLaTeX …看完这篇就懂了)
  15. Cesium加载GeoJson数据(shp转化的json数据)
  16. 钙钛矿Cs2AgBiBr6|三氟乙胺碘F3EAI|4-三氟甲基苯胺溴CF3PhABr
  17. 微软独家采访龟叔! 大爆料13个问题,快来看看龟叔的怎么说!
  18. docker 安装jaeger
  19. 技术人的江湖,看不见的刀光剑影
  20. MNE学习笔记(四):Evoked数据结构

热门文章

  1. 用php实现mongoDB的基本操作
  2. 机器学习基础:K近邻算法(Machine Learning Fundamentals: KNN)
  3. Aberrant DSP SketchCassette II Mac(磁带混音效果插件)
  4. 苹果公布 macOS Monterey 兼容机型列表
  5. Mac实用技巧:怎样使用终端在macOS Big Sur Finder中锁定文件!
  6. Service Work生命周期
  7. 删数问题(Noip1994)--贪心
  8. Java之品优购课程讲义_day12(6)
  9. 支付宝——(JAVA)支付测试开发
  10. webpack+vue动态加载组件尝试