目标检测

  • 3.1 目标定位(Object localization)
    • 3.1.1概念
    • 3.1.2 监督学习任务定义目标标签y
  • 3.2 特征点检测(Landmark detection)
  • 3.3 基于滑动窗口的目标检测(Object detection based on sliding windows)
  • 3.4 滑动窗口的卷积实现(Convolutional implementation of sliding windows)
  • 参考连接:

3.1 目标定位(Object localization)

3.1.1概念

首先明白一个概念,什么是分类?什么是定位?


如果你正在构建汽车自动驾驶系统,那么对象可能包括以下几类:行人、汽车、摩托车和背景,这意味着图片中不含有前三种对象,也就是说图片中没有行人、汽车和摩托车,输出结果会是背景对象,这四个分类就是softmax函数可能输出的结果。

这就是标准的分类过程,如果你还想定位图片中汽车的位置,该怎么做呢?我们可以让神经网络多输出几个单元,输出一个边界框。具体说就是让神经网络再多输出4个数字,标记为bx,by,bh和bw,这四个数字是被检测对象的边界框的参数化表示。

我们先来约定本周课程将使用的符号表示,图片左上角的坐标为(0,0),右下角标记为(1,1)。要确定边界框的具体位置,需要指定红色方框的中心点,这个点表示为(bx,by),边界框的高度为bh,宽度为bw。因此训练集不仅包含神经网络要预测的对象分类标签,还要包含表示边界框的这四个数字,接着采用监督学习算法,输出一个分类标签,还有四个参数值,从而给出检测对象的边框位置。此例中,bx的理想值是0.5,因为它表示汽车位于图片水平方向的中间位置;by大约是0.7,表示汽车位于距离图片底部的位置3/10;bh约为0.3,因为红色方框的高度是图片高度的0.3倍;bw约为0.4,红色方框的宽度是图片宽度的0.4倍。

3.1.2 监督学习任务定义目标标签y


请注意,这有四个分类,神经网络输出的是这四个数字和一个分类标签,或分类标签出现的概率。它是一个向量,第一个组件表示是否含有对象,如果对象属于前三类(行人、汽车、摩托车),则,如果是背景,则图片中没有要检测的对象,则。我们可以这样理解,它表示被检测对象属于某一分类的概率,背景分类除外。

如果检测到对象,就输出被检测对象的边界框参数bx、by、bw和bh。最后,如果存在某个对象,那么Pc=1,同时输出c1、c2和c3,表示该对象属于1-3类中的哪一类,是行人,汽车还是摩托车。鉴于我们所要处理的问题,我们假设图片中只含有一个对象,所以针对这个分类定位问题,图片最多只会出现其中一个对象。

我们再看几个样本,假如这是一张训练集图片,标记为x,即上图的汽车图片。而在y当中,第一个元素Pc=1,因为图中有一辆车,bx、by、bh和bw会指明边界框的位置,所以标签训练集需要标签的边界框。图片中是一辆车,所以结果属于分类2,因为定位目标不是行人或摩托车,而是汽车,所以c1=0,c2=1,c3=0,c1、c2和c3中最多只有一个等于1。

这是图片中只有一个检测对象的情况,如果图片中没有检测对象呢?如果训练样本是这样一张图片呢?

这种情况下,Pc=0,y的其它参数将变得毫无意义,这里我全部写成问号,表示“毫无意义”的参数,因为图片中不存在检测对象,所以不用考虑网络输出中边界框的大小,也不用考虑图片中的对象是属于c1、c2和c3中的哪一类。针对给定的被标记的训练样本,不论图片中是否含有定位对象,构建输入图片x和分类标签y的具体过程都是如此。这些数据最终定义了训练集。

最后,我们介绍一下神经网络的损失函数,其参数为类别y和y^网络输出,如果采用平方误差策略,损失值等于每个元素相应差值的平方和,如下图。

为了让大家了解对象定位的细节,这里我用平方误差简化了描述过程。实际应用中,你可以不对c1、c2、c3和softmax激活函数应用对数损失函数,并输出其中一个元素值,通常做法是对边界框坐标应用平方差或类似方法,对Pc应用逻辑回归函数,甚至采用平方预测误差也是可以的。

以上就是利用神经网络解决对象分类和定位问题的详细过程,结果证明,利用神经网络输出批量实数来识别图片中的对象是个非常有用的算法。

3.2 特征点检测(Landmark detection)


假设你正在构建一个人脸识别应用,出于某种原因,你希望算法可以给出眼角的具体位置。眼角坐标为(x,y),你可以让神经网络的最后一层多输出两个数字lx和ly,作为眼角的坐标值。如果你想知道两只眼睛的四个眼角的具体位置,那么从左到右,依次用四个特征点来表示这四个眼角。对神经网络稍做些修改,输出第一个特征点(l1x,l1y),第二个特征点(l2x,l2y),依此类推,这四个脸部特征点的位置就可以通过神经网络输出了。

最后一个例子,如果你对人体姿态检测感兴趣,你还可以定义一些关键特征点,如胸部的中点,左肩,左肘,腰等等。然后通过神经网络标注人物姿态的关键特征点,再输出这些标注过的特征点,就相当于输出了人物的姿态动作。当然,要实现这个功能,你需要设定这些关键特征点,从胸部中心点(l1x,l1y)一直往下,直到(l32x,l32y)。

一旦了解如何用二维坐标系定义人物姿态,操作起来就相当简单了,批量添加输出单元,用以输出要识别的各个特征点的(x,y)坐标值。要明确一点,特征点1的特性在所有图片中必须保持一致,就好比,特征点1始终是右眼的外眼角,特征点2是右眼的内眼角,特征点3是左眼内眼角,特征点4是左眼外眼角等等。所以标签在所有图片中必须保持一致,假如你雇用他人或自己标记了一个足够大的数据集,那么神经网络便可以输出上述所有特征点,你可以利用它们实现其他有趣的效果,比如判断人物的动作姿态,识别图片中的人物表情等等。

3.3 基于滑动窗口的目标检测(Object detection based on sliding windows)

下面我们将学习如何通过卷积网络进行对象检测,采用的是基于滑动窗口的目标检测算法。

假如你想构建一个汽车检测算法,步骤是,首先创建一个标签训练集,也就是x和y表示适当剪切的汽车图片样本,这张图片(编号1)x是一个正样本,因为它是一辆汽车图片,这几张图片(编号2、3)也有汽车,但这两张(编号4、5)没有汽车。出于我们对这个训练集的期望,你一开始可以使用适当剪切的图片,就是整张图片x几乎都被汽车占据,你可以照张照片,然后剪切,剪掉汽车以外的部分,使汽车居于中间位置,并基本占据整张图片。有了这个标签训练集,你就可以开始训练卷积网络了,输入这些适当剪切过的图片(编号6),卷积网络输出y,0或1表示图片中有汽车或没有汽车。训练完这个卷积网络,就可以用它来实现滑动窗口目标检测,具体步骤如下。

假设这是一张测试图片,首先选定一个特定大小的窗口,比如图片下方这个窗口,将这个红色小方块输入卷积神经网络,卷积网络开始进行预测,即判断红色方框内有没有汽车。

滑动窗口目标检测算法接下来会继续处理第二个图像,即红色方框稍向右滑动之后的区域,并输入给卷积网络,因此输入给卷积网络的只有红色方框内的区域,再次运行卷积网络,然后处理第三个图像,依次重复操作,直到这个窗口滑过图像的每一个角落。

为了滑动得更快,我这里选用的步幅比较大,思路是以固定步幅移动窗口,遍历图像的每个区域,把这些剪切后的小图像输入卷积网络,对每个位置按0或1进行分类,这就是所谓的图像滑动窗口操作

重复上述操作,不过这次我们选择一个更大的窗口,截取更大的区域,并输入给卷积神经网络处理,你可以根据卷积网络对输入大小调整这个区域,然后输入给卷积网络,输出0或1。再以某个固定步幅滑动窗口,重复以上操作,遍历整个图像,输出结果。

然后第三次重复操作,这次选用更大的窗口。如果你这样做,不论汽车在图片的什么位置,总有一个窗口可以检测到它。

这种算法叫作滑动窗口目标检测,因为我们以某个步幅滑动这些方框窗口遍历整张图片,对这些方形区域进行分类,判断里面有没有汽车。

滑动窗口目标检测算法也有很明显的缺点,就是计算成本,因为你在图片中剪切出太多小方块,卷积网络要一个个地处理。如果你选用的步幅很大,显然会减少输入卷积网络的窗口个数,但是粗糙间隔尺寸可能会影响性能。反之,如果采用小粒度或小步幅,传递给卷积网络的小窗口会特别多,这意味着超高的计算成本。

所以在神经网络兴起之前,人们通常采用更简单的分类器进行对象检测,比如通过采用手工处理工程特征的简单的线性分类器来执行对象检测。至于误差,因为每个分类器的计算成本都很低,它只是一个线性函数,所以滑动窗口目标检测算法表现良好,是个不错的算法。然而,卷积网络运行单个分类人物的成本却高得多,像这样滑动窗口太慢。除非采用超细粒度或极小步幅,否则无法准确定位图片中的对象。

不过,庆幸的是,计算成本问题已经有了很好的解决方案,大大提高了卷积层上应用滑动窗口目标检测器的效率。

3.4 滑动窗口的卷积实现(Convolutional implementation of sliding windows)

为了构建滑动窗口的卷积应用,首先要知道如何把神经网络的全连接层转化成卷积层。我们先讲解这部分内容,下一张幻灯片,我们将按照这个思路来演示卷积的应用过程。

假设对象检测算法输入一个14×14×3的图像,图像很小,不过演示起来方便。在这里过滤器大小为5×5,数量是16,14×14×3的图像在过滤器处理之后映射为10×10×16。然后通过参数为2×2的最大池化操作,图像减小到5×5×16。然后添加一个连接400个单元的全连接层,接着再添加一个全连接层,最后通过softmax单元输出y。为了跟下图区分开,我先做一点改动,用4个数字来表示y,它们分别对应softmax单元所输出的4个分类出现的概率。这4个分类可以是行人、汽车、摩托车和背景或其它对象。

现在我要演示的就是如何把这些全连接层转化为卷积层,画一个这样的卷积网络,它的前几层和之前的一样,而对于下一层,也就是这个全连接层,我们可以用5×5的过滤器来实现,数量是400个(编号1所示),输入图像大小为5×5×16,用5×5的过滤器对它进行卷积操作,过滤器实际上是5×5×16,因为在卷积过程中,过滤器会遍历这16个通道,所以这两处的通道数量必须保持一致,输出结果为1×1。假设应用400个这样的5×5×16过滤器,输出维度就是1×1×400,我们不再把它看作一个含有400个节点的集合,而是一个1×1×400的输出层。从数学角度看,它和全连接层是一样的,因为这400个节点中每个节点都有一个5×5×16维度的过滤器,所以每个值都是上一层这些5×5×16激活值经过某个任意线性函数的输出结果。

我们再添加另外一个卷积层(编号2所示),这里用的是1×1卷积,假设有400个1×1的过滤器,在这400个过滤器的作用下,下一层的维度是1×1×400,它其实就是上个网络中的这一全连接层。最后经由1×1过滤器的处理,得到一个softmax激活值,通过卷积网络,我们最终得到这个1×1×4的输出层,而不是这4个数字(编号3所示)。

以上就是用卷积层代替全连接层的过程,结果这几个单元集变成了1×1×400和1×1×4的维度。

掌握了卷积知识,我们再看看如何通过卷积实现滑动窗口对象检测算法。

假设向滑动窗口卷积网络输入14×14×3的图片,为了简化演示和计算过程,这里我们依然用14×14的小图片。和前面一样,神经网络最后的输出层,即softmax单元的输出是1×1×4,我画得比较简单,严格来说,14×14×3应该是一个长方体,第二个10×10×16也是一个长方体,但为了方便,我只画了正面。所以,对于1×1×400的这个输出层,我也只画了它1×1的那一面,所以这里显示的都是平面图,而不是3D图像。

假设输入给卷积网络的图片大小是14×14×3,测试集图片是16×16×3,现在给这个输入图片加上黄色条块,在最初的滑动窗口算法中,你会把这片蓝色区域输入卷积网络(红色笔标记)生成0或1分类。接着滑动窗口,步幅为2个像素,向右滑动2个像素,将这个绿框区域输入给卷积网络,运行整个卷积网络,得到另外一个标签0或1。继续将这个橘色区域输入给卷积网络,卷积后得到另一个标签,最后对右下方的紫色区域进行最后一次卷积操作。我们在这个16×16×3的小图像上滑动窗口,卷积网络运行了4次,于是输出了了4个标签。

结果发现,这4次卷积操作中很多计算都是重复的。所以执行滑动窗口的卷积时使得卷积网络在这4次前向传播过程中共享很多计算,尤其是在这一步操作中(编号1),卷积网络运行同样的参数,使得相同的5×5×16过滤器进行卷积操作,得到12×12×16的输出层。然后执行同样的最大池化(编号2),输出结果6×6×16。照旧应用400个5×5的过滤器(编号3),得到一个2×2×400的输出层,现在输出层为2×2×400,而不是1×1×400。应用1×1过滤器(编号4)得到另一个2×2×400的输出层。再做一次全连接的操作(编号5),最终得到2×2×4的输出层,而不是1×1×4。最终,在输出层这4个子方块中,蓝色的是图像左上部分14×14的输出(红色箭头标识),右上角方块是图像右上部分(绿色箭头标识)的对应输出,左下角方块是输入层左下角(橘色箭头标识),也就是这个14×14区域经过卷积网络处理后的结果,同样,右下角这个方块是卷积网络处理输入层右下角14×14区域(紫色箭头标识)的结果。


如果你想了解具体的计算步骤,以绿色方块为例,假设你剪切出这块区域(编号1),传递给卷积网络,第一层的激活值就是这块区域(编号2),最大池化后的下一层的激活值是这块区域(编号3),这块区域对应着后面几层输出的右上角方块(编号4,5,6)。

所以该卷积操作的原理是我们不需要把输入图像分割成四个子集,分别执行前向传播,而是把它们作为一张图片输入给卷积网络进行计算,其中的公共区域可以共享很多计算,就像这里我们看到的这个4个14×14的方块一样。

下面我们再看一个更大的图片样本,假如对一个28×28×3的图片应用滑动窗口操作,如果以同样的方式运行前向传播,最后得到8×8×4的结果。跟上一个范例一样,以14×14区域滑动窗口,首先在这个区域应用滑动窗口,其结果对应输出层的左上角部分。接着以大小为2的步幅不断地向右移动窗口,直到第8个单元格,得到输出层的第一行。然后向图片下方移动,最终输出这个8×8×4的结果。因为最大池化参数为2,相当于以大小为2的步幅在原始图片上应用神经网络。

总结一下滑动窗口的实现过程,在图片上剪切出一块区域,假设它的大小是14×14,把它输入到卷积网络。继续输入下一块区域,大小同样是14×14,重复操作,直到某个区域识别到汽车。

以上就是在卷积层上应用滑动窗口算法的内容,它提高了整个算法的效率。不过这种算法仍然存在一个缺点,就是边界框的位置可能不够准确。

参考连接:

  • 第三周 目标检测(Object detection)

吴恩达 深度学习系列--卷积神经网络(Convolutional Neural Networks)-03(目标检测)相关推荐

  1. 深度学习之卷积神经网络(Convolutional Neural Networks, CNN)(二)

    前面我们说了CNN的一般层次结构, 每个层的作用及其参数的优缺点等内容.深度学习之卷积神经网络(Convolutional Neural Networks, CNN)_fenglepeng的博客-CS ...

  2. 吴恩达深度学习笔记——卷积神经网络(Convolutional Neural Networks)

    深度学习笔记导航 前言 传送门 卷积神经网络(Convolutional Neural Networks) 卷积神经网络基础(Foundations of Convolutional Neural N ...

  3. 吴恩达深度学习 | (18) 卷积神经网络专项课程第二周学习笔记

    课程视频 第二周PPT汇总 吴恩达深度学习专项课程共分为五个部分,本篇博客将介绍第四部分卷积神经网络专项的第二周课程:深度卷积网络:实例探究. 目录 1. 为什么要进行实例探究 2. 经典网络 3. ...

  4. 深度学习之卷积神经网络(Convolutional Neural Networks, CNN)

    前面, 介绍了DNN及其参数求解的方法(深度学习之 BP 算法),我们知道DNN仍然存在很多的问题,其中最主要的就是BP求解可能造成的梯度消失和梯度爆炸.那么,人们又是怎么解决这个问题的呢?本节的卷积 ...

  5. 吴恩达深度学习笔记——卷积神经网络(CNN)

    目录 一.计算机视觉(Computer vision) 二.边缘检测示例(Edge detection example) 三.更多的边缘检测内容(More edge detection) 四.Padd ...

  6. 吴恩达.深度学习系列-C1神经网络与深度学习-W1介绍

    什么是神经网络 用神经网络进行监督学习 why is Deep Learning taking off?为啥神经网络能流行起来? About this Course Heroes of Deep Le ...

  7. 吴恩达.深度学习系列-C4卷积神经网络-W2深度卷积模型案例

    吴恩达.深度学习系列-C4卷积神经网络-W2深度卷积模型案例 (本笔记部分内容直接引用redstone的笔记http://redstonewill.com/1240/.原文整理的非常好,引入并添加我自 ...

  8. 吴恩达深度学习之一《神经网络和深度学习》学习笔记

    一.深度学习概论 1.2 什么是神经网络 如上图所示的房价预测,我们可以把它的线性回归看作一个神经元构成的神经网络.神经元就是那个圈,是一个用于映射计算的函数. 图中使用的是十分常见的 ReLU函数, ...

  9. 吴恩达深度学习一:神经网络

    三种典型神经网络 standard NN : 传统神经网络 解决一般问题 卷积神经网络 convolutional NN : CNN 网络 适用于图像 循环神经网络 Recurrent NN 适用于一 ...

最新文章

  1. Ubuntu 打 deb 包报错(fpm not found、dos2unix not found)
  2. 微信公众号的网页授权如何在本地调试?
  3. labview 串口通信开发基础详解
  4. Java将网络地址对应的图片转成本地的图片
  5. Android--使用剪切板在Activity中传值
  6. HDFS的读写限流方案
  7. hibernate执行sql语句 查询 删除
  8. distcp用于集群中数据传输解读
  9. 软件工程实践——软件评测
  10. Java SE 正则表达式
  11. Android 调起微信扫一扫
  12. 王阳明:能攻心反侧自消
  13. 使用VS2019配置EDK2安装教程
  14. vue上传大文件/视频前后端(java)代码
  15. python打气球小游戏(一)
  16. 弧齿锥齿轮零件图_弧齿锥齿轮画法类别
  17. html打印预览 分页,有分页功能的WEB打印_js
  18. Java Web Start(Jnlp)教程
  19. matlab与c/c++混合...,matlab与c/c++ 混合编程之 MCR | 学步园
  20. python 字典

热门文章

  1. word格式化字符技巧
  2. JAVA多线程使用场景和注意事项
  3. sprintf, snprintf, _snprintf, sprintf_s 等的区别
  4. 作业周转时间以及平均等待时间
  5. 软件与哲学(2)——对不同世界的抽象
  6. ORACLE 日期加减函数
  7. MySQL学习笔记:过滤数据+数据过滤
  8. 高数 03.02洛必达法则
  9. 性能测试连载 (7)-jmeter 压力测试中的难点解析
  10. for…in循环语句应用