1AWR报告介绍

AWR是Oracle  10g版本 推出的新特性, 全称叫Automatic Workload Repository-自动负载信息库, AWR是通过对比两次快照(snapshot)收集到的统计信息,来生成报表数据,生成的报表包括多个部分。

下面将对AWR报告的每个部分做详细的讲解。

2WORKLOAD

REPOSITORY

WORKLOAD

REPOSITORY report for

DB Name

DB Id

Instance

Inst num

Release

RAC

Host

ICCI

1314098396

ICCI1

1

10.2.0.3.0

YES

HPGICCI1

Snap Id

Snap Time

Sessions

Cursors/Session

Begin Snap:

2678

25-Dec-08

14:04:50

24

1.5

End Snap:

2680

25-Dec-08

15:23:37

26

1.5

Elapsed:

78.79

(mins)

DB Time:

11.05

(mins)

DB

Time不包括Oracle后台进程消耗的时间。如果DB

Time远远小于Elapsed时间,说明数据库比较空闲。

db time= cpu time +

wait time(不包含空闲等待)

(非后台进程)说白了就是db time就是记录的服务器花在数据库运算(非后台进程)和等待(非空闲等待)上的时间

DB time = cpu time +

all of nonidle wait event time

在79分钟里(其间收集了3次快照数据),数据库耗时11分钟,RDA数据中显示系统有8个逻辑CPU(4个物理CPU),平均每个CPU耗时1.4分钟,CPU利用率只有大约2%(1.4/79)。说明系统压力非常小。

列出下面这两个来做解释:Report A:

Snap Id Snap Time Sessions Curs/Sess

--------- ------------------- -------- ---------

Begin Snap: 4610 24-Jul-08 22:00:54 68 19.1

End Snap: 4612 24-Jul-08 23:00:25 17 1.7

Elapsed: 59.51 (mins)

DB Time: 466.37 (mins)

Report B:

Snap Id Snap Time Sessions Curs/Sess

--------- ------------------- -------- ---------

Begin Snap: 3098 13-Nov-07 21:00:37 39 13.6

End Snap: 3102 13-Nov-07 22:00:15 40 16.4

Elapsed: 59.63 (mins)

DB Time: 19.49 (mins)服务器是AIX的系统,4个双核cpu,共8个核:

/sbin> bindprocessor -q

The available processors are: 0 1 2 3 4 5 6 7

先说Report A,在snapshot间隔中,总共约60分钟,cpu就共有60*8=480分钟,DB time为466.37分钟,则:cpu花费了466.37分钟在处理Oralce非空闲等待和运算上(比方逻辑读)也就是说cpu有466.37/480*100%花费在处理Oracle的操作上,这还不包括后台进程看Report B,总共约60分钟,cpu有19.49/480*100%花费在处理Oracle的操作上很显然,2中服务器的平均负载很低。从awr report的Elapsed time和DB Time就能大概了解db的负载。

可是对于批量系统,数据库的工作负载总是集中在一段时间内。如果快照周期不在这一段时间内,或者快照周期跨度太长而包含了大量的数据库空闲时间,所得出的分析结果是没有意义的。这也说明选择分析时间段很关键,要选择能够代表性能问题的时间段。

3Report

Summary

1.

2.

3.

3.1.Cache Sizes

Begin

End

Buffer Cache:

3,344M

3,344M

Std Block Size:

8K

Shared Pool Size:

704M

704M

Log Buffer:

14,352K

显示SGA中每个区域的大小(在AMM改变它们之后),可用来与初始参数值比较。

shared pool主要包括library

cache和dictionary cache。library

cache用来存储最近解析(或编译)后SQL、PL/SQL和Java classes等。library cache用来存储最近引用的数据字典。发生在library cache或dictionary cache的cache miss代价要比发生在buffer cache的代价高得多。因此shared pool的设置要确保最近使用的数据都能被cache。

3.2.Load Profile

Per Second

Per Transaction

Redo size:

918,805.72

775,912.72

Logical reads:

3,521.77

2,974.06

Block changes:

1,817.95

1,535.22

Physical reads:

68.26

57.64

Physical writes:

362.59

306.20

User calls:

326.69

275.88

Parses:

38.66

32.65

Hard parses:

0.03

0.03

Sorts:

0.61

0.51

Logons:

0.01

0.01

Executes:

354.34

299.23

Transactions:

1.18

% Blocks changed per Read:

51.62

Recursive Call %:

51.72

Rollback per transaction %:

85.49

Rows per Sort:

########

显示数据库负载概况,将之与基线数据比较才具有更多的意义,如果每秒或每事务的负载变化不大,说明应用运行比较稳定。单个的报告数据只说明应用的负载情况,绝大多数据并没有一个所谓“正确”的值,然而Logons大于每秒1~2个、Hard parses大于每秒100、全部parses超过每秒300表明可能有争用问题。

Redo size:每秒产生的日志大小(单位字节),可标志数据变更频率,数据库任务的繁重与否。Logical reads:每秒/每事务逻辑读的块数.平决每秒产生的逻辑读的block数。Logical

Reads= Consistent Gets + DB Block Gets

Block

changes:每秒/每事务修改的块数

Physical

reads:每秒/每事务物理读的块数

Physical

writes:每秒/每事务物理写的块数

User calls:每秒/每事务用户call次数

Parses:SQL解析的次数.每秒解析次数,包括fast parse,soft parse和hard parse三种数量的综合。 软解析每秒超过300次意味着你的"应用程序"效率不高,调整session_cursor_cache。在这里,fast parse指的是直接在PGA中命中的情况(设置了session_cached_cursors=n);soft parse是指在shared pool中命中的情形;hard parse则是指都不命中的情况。

Hard parses:其中硬解析的次数,硬解析太多,说明SQL重用率不高。每秒产生的硬解析次数,每秒超过100次,就可能说明你绑定使用的不好,也可能是共享池设置不合理。这时候可以启用参数cursor_sharing=similar|force,该参数默认值为exact。但该参数设置为similar时,存在bug,可能导致执行计划的不优。

Sorts:每秒/每事务的排序次数

Logons:每秒/每事务登录的次数

Executes:每秒/每事务SQL执行次数

Transactions:每秒事务数.每秒产生的事务数,反映数据库任务繁重与否。

Blocks

changed per Read:表示逻辑读用于修改数据块的比例.在每一次逻辑读中更改的块的百分比。

Recursive

Call:递归调用占所有操作的比率.递归调用的百分比,如果有很多PL/SQL,那么这个值就会比较高。

Rollback

per transaction:每事务的回滚率.看回滚率是不是很高,因为回滚很耗资源,如果回滚率过高,可能说明你的数据库经历了太多的无效操作,过多的回滚可能还会带来Undo Block的竞争 该参数计算公式如下: Round(User

rollbacks / (user commits + user rollbacks) ,4)* 100%。

Rows per

Sort:每次排序的行数

注:

Oracle的硬解析和软解析

提到软解析(soft prase)和硬解析(hard prase),就不能不说一下Oracle对sql的处理过程。当你发出一条sql语句交付Oracle,在执行和获取结果前,Oracle对此sql将进行几个步骤的处理过程:

1、语法检查(syntax check)

检查此sql的拼写是否语法。

2、语义检查(semantic check)

诸如检查sql语句中的访问对象是否存在及该用户是否具备相应的权限。

3、对sql语句进行解析(prase)

利用内部算法对sql进行解析,生成解析树(parse tree)及执行计划(execution plan)。

4、执行sql,返回结果(execute and return)

其中,软、硬解析就发生在第三个过程里。

Oracle利用内部的hash算法来取得该sql的hash值,然后在library cache里查找是否存在该hash值;

假设存在,则将此sql与cache中的进行比较;

假设“相同”,就将利用已有的解析树与执行计划,而省略了优化器的相关工作。这也就是软解析的过程。

诚然,如果上面的2个假设中任有一个不成立,那么优化器都将进行创建解析树、生成执行计划的动作。这个过程就叫硬解析。

创建解析树、生成执行计划对于sql的执行来说是开销昂贵的动作,所以,应当极力避免硬解析,尽量使用软解析。

3.3.Instance Efficiency Percentages (Target 100%)

Buffer Nowait %:

100.00

Redo NoWait %:

100.00

Buffer Hit %:

98.72

In-memory Sort %:

99.86

Library Hit %:

99.97

Soft Parse %:

99.92

Execute to Parse %:

89.09

Latch Hit %:

99.99

Parse CPU to Parse Elapsd %:

7.99

% Non-Parse CPU:

99.95

本节包含了Oracle关键指标的内存命中率及其它数据库实例操作的效率。其中Buffer Hit Ratio也称Cache Hit Ratio,Library Hit ratio也称Library Cache Hit ratio。同Load Profile一节相同,这一节也没有所谓“正确”的值,而只能根据应用的特点判断是否合适。在一个使用直接读执行大型并行查询的DSS环境,20%的Buffer Hit

Ratio是可以接受的,而这个值对于一个OLTP系统是完全不能接受的。根据Oracle的经验,对于OLTP系统,Buffer

Hit Ratio理想应该在90%以上。

注:OLAP:联机分析处理

OLTP:联机事务处理

OLAP是主要应用数据仓库系统,OLTP是一般的项目开发用到的基本的、日常的事务处理;比如数据库记录的增、删、改、查。

Buffer

Nowait表示在内存获得数据的未等待比例。在缓冲区中获取Buffer的未等待比率。Buffer Nowait的这个值一般需要大于99%。否则可能存在争用,可以在后面的等待事件中进一步确认。

buffer hit表示进程从内存中找到数据块的比率,监视这个值是否发生重大变化比这个值本身更重要。对于一般的OLTP系统,如果此值低于80%,应该给数据库分配更多的内存。数据块在数据缓冲区中的命中率,通常应在95%以上。否则,小于95%,需要调整重要的参数,小于90%可能是要加db_cache_size。一个高的命中率,不一定代表这个系统的性能是最优的,比如大量的非选择性的索引被频繁访问,就会造成命中率很高的假相(大量的db file sequential read),但是一个比较低的命中率,一般就会对这个系统的性能产生影响,需要调整。命中率的突变,往往是一个不好的信息。如果命中率突然增大,可以检查top buffer get SQL,查看导致大量逻辑读的语句和索引,如果命中率突然减小,可以检查top physical reads SQL,检查产生大量物理读的语句,主要是那些没有使用索引或者索引被删除的。

Redo NoWait表示在LOG缓冲区获得BUFFER的未等待比例。如果太低(可参考90%阀值),考虑增加LOG BUFFER。当redo buffer达到1M时,就需要写到redo log文件,所以一般当redo buffer设置超过1M,不太可能存在等待buffer空间分配的情况。当前,一般设置为2M的redo buffer,对于内存总量来说,应该不是一个太大的值。

library hit表示Oracle从Library Cache中检索到一个解析过的SQL或PL/SQL语句的比率,当应用程序调用SQL或存储过程时,Oracle检查Library Cache确定是否存在解析过的版本,如果存在,Oracle立即执行语句;如果不存在,Oracle解析此语句,并在Library Cache中为它分配共享SQL区。低的library hit ratio会导致过多的解析,增加CPU消耗,降低性能。如果library hit ratio低于90%,可能需要调大shared pool区。STATEMENT在共享区的命中率,通常应该保持在95%以上,否则需要要考虑:加大共享池;使用绑定变量;修改cursor_sharing等参数。

Latch Hit:Latch是一种保护内存结构的锁,可以认为是SERVER进程获取访问内存数据结构的许可。要确保Latch Hit>99%,否则意味着Shared Pool latch争用,可能由于未共享的SQL,或者Library Cache太小,可使用绑定变更或调大Shared Pool解决。要确保>99%,否则存在严重的性能问题。当该值出现问题的时候,我们可以借助后面的等待时间和latch分析来查找解决问题。

Parse CPU

to Parse Elapsd:解析实际运行时间/(解析实际运行时间+解析中等待资源时间),越高越好。计算公式为:Parse

CPU to Parse Elapsd %= 100*(parse time cpu / parse time elapsed)。即:解析实际运行时间/(解析实际运行时间+解析中等待资源时间)。如果该比率为100%,意味着CPU等待时间为0,没有任何等待。

Non-Parse

CPU:SQL实际运行时间/(SQL实际运行时间+SQL解析时间),太低表示解析消耗时间过多。计算公式为:% Non-Parse CPU =round(100*1-PARSE_CPU/TOT_CPU),2)。如果这个值比较小,表示解析消耗的CPU时间过多。与PARSE_CPU相比,如果TOT_CPU很高,这个比值将接近100%,这是很好的,说明计算机执行的大部分工作是执行查询的工作,而不是分析查询的工作。

Execute to

Parse:是语句执行与分析的比例,如果要SQL重用率高,则这个比例会很高。该值越高表示一次解析后被重复执行的次数越多。计算公式为:Execute to Parse =100 * (1 -

Parses/Executions)。本例中,差不多每execution 5次需要一次parse。所以如果系统Parses > Executions,就可能出现该比率小于0的情况。该值<0通常说明shared pool设置或者语句效率存在问题,造成反复解析,reparse可能较严重,或者是可能同snapshot有关,通常说明数据库性能存在问题。

In-memory

Sort:在内存中排序的比率,如果过低说明有大量的排序在临时表空间中进行。考虑调大PGA(10g)。如果低于95%,可以通过适当调大初始化参数PGA_AGGREGATE_TARGET或者SORT_AREA_SIZE来解决,注意这两个参数设置作用的范围时不同的,SORT_AREA_SIZE是针对每个session设置的,PGA_AGGREGATE_TARGET则时针对所有的sesion的。

Soft Parse:软解析的百分比(softs/softs+hards),近似当作sql在共享区的命中率,太低则需要调整应用使用绑定变量。sql在共享区的命中率,小于<95%,需要考虑绑定,如果低于80%,那么就可以认为sql基本没有被重用。

3.4.Shared Pool Statistics

Begin

End

Memory Usage %:

47.19

47.50

% SQL with executions>1:

88.48

79.81

% Memory for SQL w/exec>1:

79.99

73.52

Memory

Usage %:对于一个已经运行一段时间的数据库来说,共享池内存使用率,应该稳定在75%-90%间,如果太小,说明Shared Pool有浪费,而如果高于90,说明共享池中有争用,内存不足。这个数字应该长时间稳定在75%~90%。如果这个百分比太低,表明共享池设置过大,带来额外的管理上的负担,从而在某些条件下会导致性能的下降。如果这个百分率太高,会使共享池外部的组件老化,如果SQL语句被再次执行,这将使得SQL语句被硬解析。在一个大小合适的系统中,共享池的使用率将处于75%到略低于90%的范围内.

SQL with

executions>1:执行次数大于1的sql比率,如果此值太小,说明需要在应用中更多使用绑定变量,避免过多SQL解析。在一个趋向于循环运行的系统中,必须认真考虑这个数字。在这个循环系统中,在一天中相对于另一部分时间的部分时间里执行了一组不同的SQL语句。在共享池中,在观察期间将有一组未被执行过的SQL语句,这仅仅是因为要执行它们的语句在观察期间没有运行。只有系统连续运行相同的SQL语句组,这个数字才会接近100%。

Memory for

SQL w/exec>1:执行次数大于1的SQL消耗内存的占比。这是与不频繁使用的SQL语句相比,频繁使用的SQL语句消耗内存多少的一个度量。这个数字将在总体上与% SQL with executions>1非常接近,除非有某些查询任务消耗的内存没有规律。在稳定状态下,总体上会看见随着时间的推移大约有75%~85%的共享池被使用。如果Statspack报表的时间窗口足够大到覆盖所有的周期,执行次数大于一次的SQL语句的百分率应该接近于100%。这是一个受观察之间持续时间影响的统计数字。可以期望它随观察之间的时间长度增大而增大。

小结:通过ORACLE的实例有效性统计数据,我们可以获得大概的一个整体印象,然而我们并不能由此来确定数据运行的性能。当前性能问题的确定,我们主要还是依靠下面的等待事件来确认。我们可以这样理解两部分的内容,hit统计帮助我们发现和预测一些系统将要产生的性能问题,由此我们可以做到未雨绸缪。而wait事件,就是表明当前数据库已经出现了性能问题需要解决,所以是亡羊补牢的性质。

3.5.Top 5 Timed Events

Event

Waits

Time(s)

Avg Wait(ms)

% Total Call Time

Wait Class

CPU time

515

77.6

SQL*Net more data from client

27,319

64

2

9.7

Network

log file parallel write

5,497

47

9

7.1

System I/O

db file sequential read

7,900

35

4

5.3

User I/O

db file parallel write

4,806

34

7

5.1

System I/O

这是报告概要的最后一节,显示了系统中最严重的5个等待,按所占等待时间的比例倒序列示。当我们调优时,总希望观察到最显著的效果,因此应当从这里入手确定我们下一步做什么。例如如果‘buffer busy wait’是较严重的等待事件,我们应当继续研究报告中Buffer Wait和File/Tablespace IO区的内容,识别哪些文件导致了问题。如果最严重的等待事件是I/O事件,我们应当研究按物理读排序的SQL语句区以识别哪些语句在执行大量I/O,并研究Tablespace和I/O区观察较慢响应时间的文件。如果有较高的LATCH等待,就需要察看详细的LATCH统计识别哪些LATCH产生的问题。

一个性能良好的系统,cpu

time应该在top 5的前面,否则说明你的系统大部分时间都用在等待上。

在这里,log

file parallel write是相对比较多的等待,占用了7%的CPU时间。

通常,在没有问题的数据库中,CPU time总是列在第一个。

更多的等待事件,参见本报告 的Wait Events一节。

收集方法,请参考 http://support.huawei.com/huaweiconnect/enterprise/zh/forum.php?mod=viewthread&tid=291051&page=1#pid1304029

本帖最后由 岁月葱葱 于 2018-01-19 15:00 编辑

oracle awr书籍,Oracle AWR介绍相关推荐

  1. oracle tirger_又一次发现Oracle太美之awr相关脚本简介

    又一次发现Oracle太美之awr相关脚本简介 大家知道在$ORACLE_HOME/rdbms/admin下,有例如以下的相关脚本(我的环境为11.2.0.4.2): [oracle@rh64 ~]$ ...

  2. oracle性能优化之awr分析

    oracle性能优化之awr分析 作者:bingjava 最近某证券公司系统在业务期间系统运行缓慢,初步排查怀疑是数据库存在性能问题,因此导出了oracle的awr报告进行分析,在此进行记录. 导致系 ...

  3. 11g awr oracle 系列_Oracle 11g AWR 系列七:Active Sessi...-Oracle 11G新特性(共36个)-父子节点问题_169IT.COM...

    Oracle 11G新特性(共36个) 一.数据库管理部分 ·      1. 数据库重演(Database Replay) 这一特性可以捕捉整个数据的负载,并且传递到一个从备份或者standby数据 ...

  4. oracle awr ash,Oracle AWR ASH

    AWR基础知识 1.自动工作负荷仓库 Oracle收集了大量与性能和动作相关的统计信息.这些信息在内存中累加,并且有规律地写入磁盘(也就是写入构成AWR的表).最终,这些信息会过期并被重写. 1.1. ...

  5. oracle awr top5,ORACLE AWR简介

    Automatic Workload Repository(AWR)收集.处理和维护性能系统信息,为性能调优的问题检测提供了有力的帮助. AWR收集和处理的统计信息包括: 1. 段的统计信息: 2. ...

  6. oracle系统user$,Oracle 系统变量函数介绍

    Oracle函数多种多样,系统变量函数就是其中之一,下面就为您介绍三种最常见的系统变量函数,希望对您学习Oracle能有所帮助. Oracle系统变量函数: (1)SYSDATE 该函数返回当前的日期 ...

  7. 【转】Oracle DECODE函数的语法介绍

    Oracle DECODE函数功能很强,下面就为您详细介绍Oracle DECODE函数的用法,希望可以让您对Oracle DECODE函数有更多的了解. Oracle DECODE函数 Oracle ...

  8. Oracle ASM理论及实践介绍

    ASM 首先讲ASM之前,我们先了解一下RAID0和RAID1的故事吧: RAID0:最少由两块磁盘组成,以两个100G的磁盘为例,组成200G的磁盘阵列,那用户写入的数据就会往200G的磁盘内进行写 ...

  9. DBA必知的170张Oracle常用动态性能表介绍

     DBA必知的170张Oracle常用动态性能表介绍 常用动态性能表.pdf 附录C 动态性能(V$)视图 本附录介绍动态性能视图.这些视图一般作为V$视图引用.本附录包括下列内容: ???? 动态性 ...

最新文章

  1. 设计模式-合成复用原则
  2. perl数组硬引用_perl引用和数组 - SibylY的个人空间 - OSCHINA - 中文开源技术交流社区...
  3. Android逆向与病毒分析
  4. 同步的概念(python 版)
  5. 阿里DRUID数据源
  6. linux中KVM桥接网卡br0
  7. user32.dll 函数说明
  8. HTML静态网页作业——仿天猫购物商城(7页) 网页设计作业,网页制作作业, 学生网页作业, 网页作业成品, 网页作业模板
  9. 解决AD13不能复制原理图的问题
  10. 呼吸机吸气触发:压力触发与流量触发
  11. 迁移学习Transfer Learning
  12. 什么是串行端口?分哪几种类?-道合顺大数据Infinigo
  13. TOP100summit分享实录 | JFrog高欣:Kubernetes is hard!JFrog的Kubernetes实践
  14. Android系统教程PPT,Android教程之架构详解.ppt
  15. 没有对比就没有伤害:《明日之后》竟成最良心国产末日手游?
  16. Laravel第三方登录开发之实现QQ登录
  17. Linux 从入门到了解
  18. 论文导读 | 基于多臂赌博机(MAB)建模的SimRank计算
  19. Salesforce 能依靠Einstein在人工智能领域“突破重围”吗?...
  20. 注销后计算机会重启么,注销与重新启动计算机有什么不同?

热门文章

  1. 语音识别一、语音识别介绍
  2. debugbar php漏洞,Laravel-debugbar 开发调试利器
  3. php larval框架运行环境,Laravel框架的运行环境配置(一)
  4. 点餐系统ip地址_易石无线点菜系统--单店,集团餐饮管理系统,餐饮管理专业硬件-Yumstone易石软件...
  5. Android自定义View之实现简单炫酷的球体进度球
  6. Mondrian + JPivot环境配置和演示
  7. excel中提取不重复值(唯一值)方法大全
  8. ie浏览器html打印预览,Javascript实现IE打印页面设置、预览、首页设置的代码
  9. Python:突然发现好看壁纸的都在某度图片库了,这还爬什么壁纸网站?
  10. 经纬高坐标转东北天坐标