线性判别分析(Linear Discriminant Analysis)(一)

1. 问题

之前我们讨论的PCA、ICA也好,对样本数据来言,可以是没有类别标签y的。回想我们做回归时,如果特征太多,那么会产生不相关特征引入、过度拟合等问题。我们可以使用PCA来降维,但PCA没有将类别标签考虑进去,属于无监督的。

比如回到上次提出的文档中含有“learn”和“study”的问题,使用PCA后,也许可以将这两个特征合并为一个,降了维度。但假设我们的类别标签y是判断这篇文章的topic是不是有关学习方面的。那么这两个特征对y几乎没什么影响,完全可以去除。

再举一个例子,假设我们对一张100*100像素的图片做人脸识别,每个像素是一个特征,那么会有10000个特征,而对应的类别标签y仅仅是0/1值,1代表是人脸。这么多特征不仅训练复杂,而且不必要特征对结果会带来不可预知的影响,但我们想得到降维后的一些最佳特征(与y关系最密切的),怎么办呢?

2. 线性判别分析(二类情况)

回顾我们之前的logistic回归方法,给定m个n维特征的训练样例(i从1到m),每个对应一个类标签。我们就是要学习出参数,使得(g是sigmoid函数)。

现在只考虑二值分类情况,也就是y=1或者y=0。

为了方便表示,我们先换符号重新定义问题,给定特征为d维的N个样例,,其中有个样例属于类别,另外个样例属于类别

现在我们觉得原始特征数太多,想将d维特征降到只有一维,而又要保证类别能够“清晰”地反映在低维数据上,也就是这一维就能决定每个样例的类别。

我们将这个最佳的向量称为w(d维),那么样例x(d维)到w上的投影可以用下式来计算

这里得到的y值不是0/1值,而是x投影到直线上的点到原点的距离。

当x是二维的,我们就是要找一条直线(方向为w)来做投影,然后寻找最能使样本点分离的直线。如下图:

从直观上来看,右图比较好,可以很好地将不同类别的样本点分离。

接下来我们从定量的角度来找到这个最佳的w。

首先我们寻找每类样例的均值(中心点),这里i只有两个

由于x到w投影后的样本点均值为

由此可知,投影后的的均值也就是样本中心点的投影。

什么是最佳的直线(w)呢?我们首先发现,能够使投影后的两类样本中心点尽量分离的直线是好的直线,定量表示就是:

J(w)越大越好。

但是只考虑J(w)行不行呢?不行,看下图

样本点均匀分布在椭圆里,投影到横轴x1上时能够获得更大的中心点间距J(w),但是由于有重叠,x1不能分离样本点。投影到纵轴x2上,虽然J(w)较小,但是能够分离样本点。因此我们还需要考虑样本点之间的方差,方差越大,样本点越难以分离。

我们使用另外一个度量值,称作散列值(scatter),对投影后的类求散列值,如下

从公式中可以看出,只是少除以样本数量的方差值,散列值的几何意义是样本点的密集程度,值越大,越分散,反之,越集中。

而我们想要的投影后的样本点的样子是:不同类别的样本点越分开越好,同类的越聚集越好,也就是均值差越大越好,散列值越小越好。正好,我们可以使用J(w)和S来度量,最终的度量公式是

接下来的事就比较明显了,我们只需寻找使J(w)最大的w即可。

先把散列值公式展开

我们定义上式中中间那部分

这个公式的样子不就是少除以样例数的协方差矩阵么,称为散列矩阵(scatter matrices)

我们继续定义

称为Within-class scatter matrix。

那么回到上面的公式,使用替换中间部分,得

然后,我们展开分子

称为Between-class scatter,是两个向量的外积,虽然是个矩阵,但秩为1。

那么J(w)最终可以表示为

在我们求导之前,需要对分母进行归一化,因为不做归一的话,w扩大任何倍,都成立,我们就无法确定w。因此我们打算令,那么加入拉格朗日乘子后,求导

其中用到了矩阵微积分,求导时可以简单地把当做看待。

如果可逆,那么将求导后的结果两边都乘以,得

这个可喜的结果就是w就是矩阵的特征向量了。

这个公式称为Fisher linear discrimination。

等等,让我们再观察一下,发现前面的公式

那么

代入最后的特征值公式得

由于对w扩大缩小任何倍不影响结果,因此可以约去两边的未知常数,得到

至此,我们只需要求出原始样本的均值和方差就可以求出最佳的方向w,这就是Fisher于1936年提出的线性判别分析。

看上面二维样本的投影结果图:

3. 线性判别分析(多类情况)

前面是针对只有两个类的情况,假设类别变成多个了,那么要怎么改变,才能保证投影后类别能够分离呢?

我们之前讨论的是如何将d维降到一维,现在类别多了,一维可能已经不能满足要求。假设我们有C个类别,需要K维向量(或者叫做基向量)来做投影。

将这K维向量表示为

我们将样本点在这K维向量投影后结果表示为,有以下公式成立

为了像上节一样度量J(w),我们打算仍然从类间散列度和类内散列度来考虑。

当样本是二维时,我们从几何意义上考虑:

其中与上节的意义一样,是类别1里的样本点相对于该类中心点的散列程度。变成类别1中心点相对于样本中心点的协方差矩阵,即类1相对于的散列程度。

的计算公式不变,仍然类似于类内部样本点的协方差矩阵

需要变,原来度量的是两个均值点的散列情况,现在度量的是每类均值点相对于样本中心的散列情况。类似于将看作样本点,是均值的协方差矩阵,如果某类里面的样本点较多,那么其权重稍大,权重用Ni/N表示,但由于J(w)对倍数不敏感,因此使用Ni。

其中

是所有样本的均值。

上面讨论的都是在投影前的公式变化,但真正的J(w)的分子分母都是在投影后计算的。下面我们看样本点投影后的公式改变:

这两个是第i类样本点在某基向量上投影后的均值计算公式。

下面两个是在某基向量上投影后的

其实就是将换成了

综合各个投影向量(w)上的,更新这两个参数,得到

W是基向量矩阵,是投影后的各个类内部的散列矩阵之和,是投影后各个类中心相对于全样本中心投影的散列矩阵之和。

回想我们上节的公式J(w),分子是两类中心距,分母是每个类自己的散列度。现在投影方向是多维了(好几条直线),分子需要做一些改变,我们不是求两两样本中心距之和(这个对描述类别间的分散程度没有用),而是求每类中心相对于全样本中心的散列度之和。

然而,最后的J(w)的形式是

由于我们得到的分子分母都是散列矩阵,要将矩阵变成实数,需要取行列式。又因为行列式的值实际上是矩阵特征值的积,一个特征值可以表示在该特征向量上的发散程度。因此我们使用行列式来计算(此处我感觉有点牵强,道理不是那么有说服力)。

整个问题又回归为求J(w)的最大值了,我们固定分母为1,然后求导,得出最后结果(我翻查了很多讲义和文章,没有找到求导的过程)

与上节得出的结论一样

最后还归结到了求矩阵的特征值上来了。首先求出的特征值,然后取前K个特征向量组成W矩阵即可。

注意:由于中的 秩为1,因此的秩至多为C(矩阵的秩小于等于各个相加矩阵的秩的和)。由于知道了前C-1个后,最后一个可以有前面的来线性表示,因此的秩至多为C-1。那么K最大为C-1,即特征向量最多有C-1个。特征值大的对应的特征向量分割性能最好。

由于不一定是对称阵,因此得到的K个特征向量不一定正交,这也是与PCA不同的地方。

线性判别分析(Linear Discriminant Analysis)(一)相关推荐

  1. R语言分类算法之线性判别分析(Linear Discriminant Analysis)

    1.线性判别原理解析 基本思想是"投影",即高纬度空间的点向低纬度空间投影,从而简化问题的处理.在原坐标系下,空间中的点可能很难被分开,如图8-1,当类别Ⅰ和类别Ⅱ中的样本点都投影 ...

  2. 线性判别分析(Linear Discriminant Analysis, LDA)(含类内散度矩阵 类间散度矩阵 全局散度矩阵推导

    LDA算法概述: 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discriminant ,FLD),是 ...

  3. 线性判别分析(Linear Discriminant Analysis, LDA)算法分析

    LDA算法入门 一. LDA算法概述: 线性判别式分析(Linear Discriminant Analysis, LDA),也叫做Fisher线性判别(Fisher Linear Discrimin ...

  4. 西瓜书+实战+吴恩达机器学习(五)监督学习之线性判别分析 Linear Discriminant Analysis

    文章目录 0. 前言 1. 线性判别分析参数求解方法 如果这篇文章对你有一点小小的帮助,请给个关注,点个赞喔,我会非常开心的~ 0. 前言 线性判别分析LDA的思想非常朴素:给定数据集,设法将样例投影 ...

  5. 线性判别分析(Linear Dicriminant Analysis)参数推导记录备忘

    线性判别分析(LDA)投影降维的思想,以类内小.类间大(类似于软件工程中高内聚低耦合思想)的目标实现了对数据集进行分类的效果. LDA的原始思想非常简单,在数据集平面(假如二维数据)上,找到一条直线, ...

  6. python判别分析_二次判别分析Quadratic Discriminant Analysis(QDA)

    与线性判别分析类似,二次判别分析是另外一种线性判别分析算法,二者拥有类似的算法特征,区别仅在于:当不同分类样本的协方差矩阵相同时,使用线性判别分析:当不同分类样本的协方差矩阵不同时,则应该使用二次判别 ...

  7. 机器学习算法系列(十)-线性判别分析算法(一)(Linear Discriminant Analysis Algorithm)

    阅读本文需要的背景知识点:拉格朗日乘数法.一丢丢编程知识 一.引言   前面学习了一种用回归的方式来做分类的算法--对数几率回归算法,下面再来学习另一种分类算法--线性判别分析算法1(Linear D ...

  8. 邻域线性判别《Neighborhood linear discriminant analysis》

    模式识别与机器学习老师留了作业说是让找一篇线性判别的论文,所以就记录一下论文(<Neighborhood linear discriminant analysis>)吧,虽然只是一些翻译. ...

  9. 机器学习(三十一)——Linear Discriminant Analysis

    Linear Discriminant Analysis 在<机器学习(十六)>中,我们已经讨论了一个LDA,这里我们来看看另一个LDA. Linear Discriminant Anal ...

最新文章

  1. 让人心动的电子工艺品
  2. ActiveMQ跑起来
  3. c#读取Sybase中文乱码的解决办法
  4. FreeBSD基本命令[转]
  5. 消息通信库ZeroMQ 4.0.4安装指南
  6. Memcached 缓存个体,对象,泛型,表
  7. php调用shell脚本安全,从PHP调用的shell脚本问题
  8. 多个摄像机之间的切换
  9. 不要束缚:为什么我们会错过GitHub条纹
  10. 计算机组成原理中dubs是什么意思,计算机组成原理》课程设计报告.docx
  11. win10 中 如何 按日期 对文件 进行检索(找到目录下,指定日期修改的文件)
  12. PyCharm代码区不能编辑的解决办法
  13. Redis系列(二)-Hredis客户端设计及开源
  14. 计算机主板 也叫系统版,电脑主板是什么
  15. 十个摸鱼,哦,不对,是炫酷(可以玩一整天)的网站!!!
  16. html列表自动无限循环滚动,js 无限循环垂直滚动列表
  17. DSP 仿真调试步骤
  18. HRBU_20211112训练
  19. 【OpenCV】双目相机测距及其深度恢复原理及其算法流程
  20. Android 图片处理工具类封装2

热门文章

  1. 相关系数excel_跟着思想学外汇-如何用Excel计算货币相关性
  2. android studio wcf,将图像从android studio上传到Wcf Service
  3. php编程查错,盘点PHP编程常见失误
  4. tf.reshape 和 tf.transpose 用法
  5. 七层神经网络 PK logstic 回归
  6. tensorflow 就该这么学--1
  7. python笔记:fancyimpute
  8. 文巾解题 12. 整数转罗马数字
  9. MATLAB实战系列(二十八)-用matlab爬取火车票信息
  10. Flink从入门到精通100篇(四)-基于 Flink 和 Drools 的实时日志处理