通过本篇文章可以对ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题。

每个算法都看了好几个视频,挑出讲的最清晰明了有趣的,便于科普。
以后有时间再对单个算法做深入地解析。

今天的算法如下:

1. 决策树

2. 随机森林算法

3. 逻辑回归

4. SVM

5. 朴素贝叶斯

6. K最近邻算法

7. K均值算法

8. Adaboost 算法

9. 神经网络

10. 马尔可夫

1. 决策树(树的脉络就是特征属性)

根据一些 feature 进行分类,每个节点提一个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。

2. 随机森林

在源数据中随机选取数据,组成几个子集

S 矩阵是源数据,有 1-N 条数据,A B C 是feature,最后一列C是类别

由 S 随机生成 M 个子矩阵(子矩阵和原矩阵比,列数没变行数变了)

这 M 个子集得到 M 个决策树
将新数据投入到这 M 个树中,得到 M 个分类结果,计数看预测成哪一类的数目最多,就将此类别作为最后的预测结果

3. 逻辑回归

当预测目标是概率这样的,值域需要满足大于等于0,小于等于1的,这个时候单纯的线性模型是做不到的,因为在定义域不在某个范围之内时,值域也超出了规定区间。

所以此时需要这样的形状的模型会比较好

那么怎么得到这样的模型呢?

这个模型需要满足两个条件 大于等于0,小于等于1
大于等于0 的模型可以选择 绝对值,平方值,这里用 指数函数,一定大于0
小于等于1 用除法,分子是自己,分母是自身加上1,那一定是小于1的了

再做一下变形,就得到了 logistic regression 模型

通过源数据计算可以得到相应的系数了

最后得到 logistic 的图形

4. SVM

support vector machine

要将两类分开,想要得到一个超平面,最优的超平面是到两个类的 margin 均达到最大,margin就是超平面与离它最近一点的距离(即实现两个点的距离都最大),如下图,Z2>Z1,所以绿色的超平面比较好

将这个超平面表示成一个线性方程,在线上方的一类,都大于等于1,另一类小于等于-1

点到面的距离根据图中的公式计算

所以得到 total margin 的表达式如下,目标是最大化这个 margin,就需要最小化分母,于是变成了一个优化问题

举个栗子,三个点,找到最优的超平面,定义了 weight vector=(2,3)-(1,1)

得到 weight vector 为(a,2a),将两个点代入方程,代入(2,3)另其值=1,代入(1,1)另其值=-1,求解出 a 和 截矩 w0 的值,进而得到超平面的表达式。

a 求出来后,代入(a,2a)得到的就是 support vector

a 和 w0 代入超平面的方程就是 support vector machine

5. 朴素贝叶斯(通过特征出现的后验事实概率来进行分类)

举个在 NLP 的应用

给一段文字,返回情感分类,这段文字的态度是positive,还是negative

为了解决这个问题,可以只看其中的一些单词

这段文字,将仅由一些单词和它们的计数代表

原始问题是:给你一句话,它属于哪一类
通过 bayes rules 变成一个比较简单容易求得的问题

问题变成,这一类中这句话出现的概率是多少,当然,别忘了公式里的另外两个概率

栗子:单词 love 在 positive 的情况下出现的概率是 0.1,在 negative 的情况下出现的概率是 0.001

6. K最近邻

k nearest neighbours

给一个新的数据时,离它最近的 k 个点中,哪个类别多,这个数据就属于哪一类

栗子:要区分 猫 和 狗,通过 claws 和 sound 两个feature来判断的话,圆形和三角形是已知分类的了,那么这个 star 代表的是哪一类呢

k=3时,这三条线链接的点就是最近的三个点,那么圆形多一些,所以这个star就是属于猫

7. K均值

视频

想要将一组数据,分为三类,粉色数值大,黄色数值小
最开心先初始化,这里面选了最简单的 3,2,1 作为各类的初始值
剩下的数据里,每个都与三个初始值计算距离,然后归类到离它最近的初始值所在类别

分好类后,计算每一类的平均值,作为新一轮的中心点

几轮之后,分组不再变化了,就可以停止了

8. Adaboost

视频

adaboost 是 bosting 的方法之一

bosting就是把若干个分类效果并不好的分类器综合起来考虑,会得到一个效果比较好的分类器。

下图,左右两个决策树,单个看是效果不怎么好的,但是把同样的数据投入进去,把两个结果加起来考虑,就会增加可信度

adaboost 的栗子,手写识别中,在画板上可以抓取到很多 features,例如 始点的方向,始点和终点的距离等等

training 的时候,会得到每个 feature 的 weight,例如 2 和 3 的开头部分很像,这个 feature 对分类起到的作用很小,它的权重也就会较小

而这个 alpha 角 就具有很强的识别性,这个 feature 的权重就会较大,最后的预测结果是综合考虑这些 feature 的结果

9. 神经网络

Neural Networks 适合一个input可能落入至少两个类别里

NN 由若干层神经元,和它们之间的联系组成
第一层是 input 层,最后一层是 output 层

在 hidden 层 和 output 层都有自己的 classifier

input 输入到网络中,被激活,计算的分数被传递到下一层,激活后面的神经层,最后output 层的节点上的分数代表属于各类的分数,下图例子得到分类结果为 class 1

同样的 input 被传输到不同的节点上,之所以会得到不同的结果是因为各自节点有不同的weights 和 bias

这也就是 forward propagation

10. 马尔可夫

Markov Chains 由 state 和 transitions 组成

栗子,根据这一句话 ‘the quick brown fox jumps over the lazy dog’,要得到 markov chain

步骤,先给每一个单词设定成一个状态,然后计算状态间转换的概率

这是一句话计算出来的概率,当你用大量文本去做统计的时候,会得到更大的状态转移矩阵,例如 the 后面可以连接的单词,及相应的概率

生活中,键盘输入法的备选结果也是一样的原理,模型会更高级

机器学习应该了解的十大算法

转载 2016年08月23日 11:32:42

大数据 /

· 深度学习 /

· 人工智能 /

· 机器学习

毫无疑问,近些年机器学习和人工智能领域受到了越来越多的关注。随着大数据成为当下工业界最火爆的技术趋势,机器学习也借助大数据在预测和推荐方面取得了惊人的成绩。比较有名的机器学习案例包括Netflix根据用户历史浏览行为给用户推荐电影,亚马逊基于用户的历史购买行为来推荐图书。

那么,如果你想要学习机器学习的算法,该如何入门呢?就我而言,我的入门课程是在哥本哈根留学时选修的人工智能课程。老师是丹麦科技大学应用数学和计算机专业的全职教授,他的研究方向是逻辑学和人工智能,主要是用逻辑学的方法来建模。课程包括了理论/核心概念的探讨和动手实践两个部分。我们使用的教材是人工智能的经典书籍之一:Peter Norvig教授的《人工智能——一种现代方法》,课程涉及到了智能代理、基于搜索的求解、对抗搜索、概率论、多代理系统、社交化人工智能,以及人工智能的伦理和未来等话题。在课程的后期,我们三个人还组队做了编程项目,实现了基于搜索的简单算法来解决虚拟环境下的交通运输任务。

我从课程中学到了非常多的知识,并且打算在这个专题里继续深入学习。在过去几周内,我参与了旧金山地区的多场深度学习、神经网络和数据架构的演讲 —— 还有一场众多知名教授云集的机器学习会议。最重要的是,我在六月初注册了Udacity的《机器学习导论》在线课程,并且在几天前学完了课程内容。在本文中,我想分享几个我从课程中学到的常用机器学习算法。

机器学习算法通常可以被分为三大类 —— 监督式学习,非监督式学习和强化学习。监督式学习主要用于一部分数据集(训练数据)有某些可以获取的熟悉(标签),但剩余的样本缺失并且需要预测的场景。非监督式学习主要用于从未标注数据集中挖掘相互之间的隐含关系。强化学习介于两者之间 —— 每一步预测或者行为都或多或少有一些反馈信息,但是却没有准确的标签或者错误提示。由于这是入门级的课程,并没有提及强化学习,但我希望监督式学习和非监督式学习的十个算法足够吊起你的胃口了。

监督式学习

1.决策树:

决策树是一种决策支持工具,它使用树状图或者树状模型来表示决策过程以及后续得到的结果,包括概率事件结果等。请观察下图来理解决策树的结构。

从商业决策的角度来看,决策树就是通过尽可能少的是非判断问题来预测决策正确的概率。这种方法可以帮你用一种结构性的、系统性的方法来得出合理的结论。

2.朴素贝叶斯分类器:

朴素贝叶斯分类器是一类基于贝叶斯理论的简单的概率分类器,它假设特征之间是相互独立的。下图所示的就是公式 —— P(A|B)表示后验概率,P(B|A)是似然值,P(A)是类别的先验概率,P(B)代表预测器的先验概率。

现实场景中的一些例子包括:

· 检测垃圾电子邮件

· 将新闻分为科技、政治、体育等类别

· 判断一段文字表达积极的情绪还是消极的情绪

· 用于人脸检测软件

3.最小平方回归:

如果你学过统计课程,也许听说过线性回归的概念。最小平方回归是求线性回归的一种方法。你可以把线性回归想成是用一条直线拟合若干个点。拟合的方法有许多种,“最小平方”的策略相当于你画一条直线,然后计算每个点到直线的垂直距离,最后把各个距离求和;最佳拟合的直线就是距离和最小的那一条。

线性指的是用于拟合数据的模型,而最小平方指的是待优化的损失函数。

4.逻辑回归:

逻辑回归模型是一种强大的统计建模方式,它用一个或多个解释性变量对二值输出结果建模。它用逻辑斯蒂函数估计概率值,以此衡量分类依赖变量和一个或多个独立的变量之间的关系,这属于累积的逻辑斯蒂分布。

通常来说,逻辑回归模型在现实场景中的应用包括:

· 信用评分

· 预测商业活动的成功概率

· 预测某款产品的收益

· 预测某一天发生地震的概率

5.支持向量机:

支持向量机是一种二分类算法。在N维空间中给定两类点,支持向量机生成一个(N-1)维的超平面将这些点分为两类。举个例子,比如在纸上有两类线性可分的点。支持向量机会寻找一条直线将这两类点区分开来,并且与这些点的距离都尽可能远。

利用支持向量机(结合具体应用场景做了改进)解决的大规模问题包括展示广告、人体结合部位识别、基于图像的性别检查、大规模图像分类等……

6.集成方法:

集成方法是先构建一组分类器,然后用各个分类器带权重的投票来预测新数据的算法。最初的集成方法是贝叶斯平均,但最新的算法包括误差纠正输出编码和提升算法。

那么集成模型的原理是什么,以及它为什么比独立模型的效果好呢?

· 它们消除了偏置的影响:比如把民主党的问卷和共和党的问卷混合,从中得到的将是一个不伦不类的偏中立的信息。

· 它们能减小预测的方差:多个模型聚合后的预测结果比单一模型的预测结果更稳定。在金融界,这被称为是多样化 —— 多个股票的混合产品波动总是远小于单个股票的波动。这也解释了为何增加训练数据,模型的效果会变得更好。

· 它们不容易产生过拟合:如果单个模型不会产生过拟合,那么将每个模型的预测结果简单地组合(取均值、加权平均、逻辑回归),没有理由产生过拟合。

非监督学习

7.聚类算法:

聚类算法的任务是将一群物体聚成多个组,分到同一个组(簇)的物体比其它组的物体更相似。

每种聚类算法都各不相同,这里列举了几种:

· 基于类心的聚类算法,基于连接的聚类算法,基于密度的聚类算法,概率型算法,降维算法,神经网络/深度学习

8.主成分分析:

主成分分析属于统计学的方法,过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。

主成分分析的一些实际应用包括数据压缩,简化数据表示,数据可视化等。值得一提的是需要领域知识来判断是否适合使用主成分分析算法。如果数据的噪声太大(即各个成分的方差都很大),就不适合使用主成分分析算法。

9.奇异值分解:

奇异值分解是线性代数中一种重要的矩阵分解,是矩阵分析中正规矩阵酉对角化的推广。对于给定的m*n矩阵M,可以将其分解为M = UΣV,其中U和V是m×m阶酉矩阵,Σ是半正定m×n阶对角矩阵。

主成分分析其实就是一种简单的奇异值分解算法。在计算机视觉领域中,第一例人脸识别算法使用了主成分分析和奇异值分解将人脸表示为一组“特征脸(eigenfaces)”的线性组合,经过降维,然后利用简单的方法匹配候选人脸。尽管现代的方法更加精细,许多技术还是于此很相似。

10.独立成分分析:

独立成分分析是一种利用统计原理进行计算来揭示随机变量、测量值或者信号背后的隐藏因素的方法。独立成分分析算法给所观察到的多变量数据定义了一个生成模型,通常这些变量是大批量的样本。在该模型中,数据变量被假定为一些未知的潜变量的线性混合,而且混合系统也未知。潜变量被假定是非高斯和相互独立的,它们被称为所观察到的数据的独立分量。

独立成分分析与主成分分析有关联,但它是一个更强大的技术。它能够在这些经典方法失效时仍旧找到数据源的潜在因素。它的应用包括数字图像、文档数据库、经济指标和心理测量。

现在,请运用你所理解的算法,去创造机器学习应用,改善全世界人们的生活质量吧。

机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)

前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大。

  纵观IT行业的招聘岗位,机器学习之类的岗位还是挺少的,国内大点的公司里百度,阿里,腾讯,网易,搜狐,华为(华为的岗位基本都是随机分配,机器学习等岗位基本面向的是博士)等会有相关职位,另外一些国内的中小型企业和外企也会招一小部分。当然了,其中大部分还是百度北京要人最多,上百人。阿里的算法岗位很大一部分也是搞机器学习相关的。另外本人有幸签约了网易杭州研究院的深度学习算法岗位,打算从事机器学习领域至少5年。非常感谢小易收留了我!

  下面是本人在找机器学习岗位工作时,总结的常见机器学习算法(主要是一些常规分类器)大概流程和主要思想,希望对大家找机器学习岗位时有点帮助。实际上在面试过程中,懂这些算法的基本思想和大概流程是远远不够的,那些面试官往往问的都是一些公司内部业务中的课题,往往要求你不仅要懂得这些算法的理论过程,而且要非常熟悉怎样使用它,什么场合用它,算法的优缺点,以及调参经验等等。说白了,就是既要会点理论,也要会点应用,既要有点深度,也要有点广度,否则运气不好的话很容易就被刷掉,因为每个面试官爱好不同。

朴素贝叶斯:

  有以下几个地方需要注意:

1. 如果给出的特征向量长度可能不同,这是需要归一化为通长度的向量(这里以文本分类为例),比如说是句子单词的话,则长度为整个词汇量的长度,对应位置是该单词出现的次数。

2. 计算公式如下:

  其中一项条件概率可以通过朴素贝叶斯条件独立展开。要注意一点就是 的计算方法,而由朴素贝叶斯的前提假设可知, = ,因此一般有两种,一种是在类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本的总和;第二种方法是类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本中所有特征出现次数的总和。

3. 如果 中的某一项为0,则其联合概率的乘积也可能为0,即2中公式的分子为0,为了避免这种现象出现,一般情况下会将这一项初始化为1,当然为了保证概率相等,分母应对应初始化为2(这里因为是2类,所以加2,如果是k类就需要加k,术语上叫做laplace光滑, 分母加k的原因是使之满足全概率公式)。

朴素贝叶斯的优点:

  对小规模的数据表现很好,适合多分类任务,适合增量式训练。

缺点

  对输入数据的表达形式很敏感。

决策树:

  决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。

  信息熵的计算公式如下:

  其中的n代表有n个分类类别(比如假设是2类问题,那么n=2)。分别计算这2类样本在总样本中出现的概率p1和p2,这样就可以计算出未选中属性分枝前的信息熵。

  现在选中一个属性xi用来进行分枝,此时分枝规则是:如果xi=vx的话,将样本分到树的一个分支;如果不相等则进入另一个分支。很显然,分支中的样本很有可能包括2个类别,分别计算这2个分支的熵H1和H2,计算出分枝后的总信息熵H’=p1*H1+p2*H2.,则此时的信息增益ΔH=H-H’。以信息增益为原则,把所有的属性都测试一边,选择一个使增益最大的属性作为本次分枝属性。

决策树的优点:

  计算量简单,可解释性强,比较适合处理有缺失属性值的样本,能够处理不相关的特征;

缺点:

  容易过拟合(后续出现了随机森林,减小了过拟合现象);

Logistic回归:

Logistic是用来分类的,是一种线性分类器,需要注意的地方有:

1. logistic函数表达式为:

  其导数形式为:

2. logsitc回归方法主要是用最大似然估计来学习的,所以单个样本的后验概率为:

  到整个样本的后验概率:

  其中:

  通过对数进一步化简为:

3. 其实它的loss function为-l(θ),因此我们需使loss function最小,可采用梯度下降法得到。梯度下降法公式为:

Logistic回归优点:

1、实现简单;

2、分类时计算量非常小,速度很快,存储资源低;

缺点:

1、容易欠拟合,一般准确度不太高

2、只能处理两分类问题(在此基础上衍生出来的softmax可以用于多分类),且必须线性可分;

线性回归:

  线性回归才是真正用于回归的,而不像logistic回归是用于分类,其基本思想是用梯度下降法对最小二乘法形式的误差函数进行优化,当然也可以用normal equation直接求得参数的解,结果为:

  而在LWLR(局部加权线性回归)中,参数的计算表达式为:

  因为此时优化的是:

  由此可见LWLR与LR不同,LWLR是一个非参数模型,因为每次进行回归计算都要遍历训练样本至少一次。

线性回归优点:

  实现简单,计算简单;

缺点:

  不能拟合非线性数据;

KNN算法:

KNN即最近邻算法,其主要过程为:

1. 计算训练样本和测试样本中每个样本点的距离(常见的距离度量有欧式距离,马氏距离等);

2. 对上面所有的距离值进行排序;

3. 选前k个最小距离的样本;

4. 根据这k个样本的标签进行投票,得到最后的分类类别;

  如何选择一个最佳的K值,这取决于数据。一般情况下,在分类时较大的K值能够减小噪声的影响。但会使类别之间的界限变得模糊。一个较好的K值可通过各种启发式技术来获取,比如,交叉验证。另外噪声和非相关性特征向量的存在会使K近邻算法的准确性减小。

  近邻算法具有较强的一致性结果。随着数据趋于无限,算法保证错误率不会超过贝叶斯算法错误率的两倍。对于一些好的K值,K近邻保证错误率不会超过贝叶斯理论误差率。

  注:马氏距离一定要先给出样本集的统计性质,比如均值向量,协方差矩阵等。关于马氏距离的介绍如下:

KNN算法的优点:

1. 思想简单,理论成熟,既可以用来做分类也可以用来做回归;

2. 可用于非线性分类;

3. 训练时间复杂度为O(n);

4. 准确度高,对数据没有假设,对outlier不敏感;

缺点:

1. 计算量大;

2. 样本不平衡问题(即有些类别的样本数量很多,而其它样本的数量很少);

3. 需要大量的内存;

SVM:

  要学会如何使用libsvm以及一些参数的调节经验,另外需要理清楚svm算法的一些思路:

1. svm中的最优分类面是对所有样本的几何裕量最大(为什么要选择最大间隔分类器,请从数学角度上说明?网易深度学习岗位面试过程中有被问到。答案就是几何间隔与样本的误分次数间存在关系: ,其中的分母就是样本到分类间隔距离,分子中的R是所有样本中的最长向量值),即:

  经过一系列推导可得为优化下面原始目标:

2. 下面来看看拉格朗日理论:

  可以将1中的优化目标转换为拉格朗日的形式(通过各种对偶优化,KKD条件),最后目标函数为:

  我们只需要最小化上述目标函数,其中的α为原始优化问题中的不等式约束拉格朗日系数。

3. 对2中最后的式子分别w和b求导可得:

  由上面第1式子可以知道,如果我们优化出了α,则直接可以求出w了,即模型的参数搞定。而上面第2个式子可以作为后续优化的一个约束条件。

4. 对2中最后一个目标函数用对偶优化理论可以转换为优化下面的目标函数:

  而这个函数可以用常用的优化方法求得α,进而求得w和b。

5. 按照道理,svm简单理论应该到此结束。不过还是要补充一点,即在预测时有:

  那个尖括号我们可以用核函数代替,这也是svm经常和核函数扯在一起的原因。

6. 最后是关于松弛变量的引入,因此原始的目标优化公式为:

  此时对应的对偶优化公式为:

  与前面的相比只是α多了个上界。

SVM算法优点:

  可用于线性/非线性分类,也可以用于回归;

  低泛化误差;

  容易解释;

  计算复杂度较低;

缺点:

  对参数和核函数的选择比较敏感;

  原始的SVM只比较擅长处理二分类问题;

Boosting:

  主要以Adaboost为例,首先来看看Adaboost的流程图,如下:

  从图中可以看到,在训练过程中我们需要训练出多个弱分类器(图中为3个),每个弱分类器是由不同权重的样本(图中为5个训练样本)训练得到(其中第一个弱分类器对应输入样本的权值是一样的),而每个弱分类器对最终分类结果的作用也不同,是通过加权平均输出的,权值见上图中三角形里面的数值。那么这些弱分类器和其对应的权值是怎样训练出来的呢?

  下面通过一个例子来简单说明。

  书中(machine learning in action)假设的是5个训练样本,每个训练样本的维度为2,在训练第一个分类器时5个样本的权重各为0.2. 注意这里样本的权值和最终训练的弱分类器组对应的权值α是不同的,样本的权重只在训练过程中用到,而α在训练过程和测试过程都有用到。

  现在假设弱分类器是带一个节点的简单决策树,该决策树会选择2个属性(假设只有2个属性)的一个,然后计算出这个属性中的最佳值用来分类。

Adaboost的简单版本训练过程如下:

1. 训练第一个分类器,样本的权值D为相同的均值。通过一个弱分类器,得到这5个样本(请对应书中的例子来看,依旧是machine learning in action)的分类预测标签。与给出的样本真实标签对比,就可能出现误差(即错误)。如果某个样本预测错误,则它对应的错误值为该样本的权重,如果分类正确,则错误值为0. 最后累加5个样本的错误率之和,记为ε。

2. 通过ε来计算该弱分类器的权重α,公式如下:

3. 通过α来计算训练下一个弱分类器样本的权重D,如果对应样本分类正确,则减小该样本的权重,公式为:

  如果样本分类错误,则增加该样本的权重,公式为:

4. 循环步骤1,2,3来继续训练多个分类器,只是其D值不同而已。

  测试过程如下:

  输入一个样本到训练好的每个弱分类中,则每个弱分类都对应一个输出标签,然后该标签乘以对应的α,最后求和得到值的符号即为预测标签值。

Boosting算法的优点:

  低泛化误差;

  容易实现,分类准确率较高,没有太多参数可以调;

缺点:

  对outlier比较敏感;

聚类:

  根据聚类思想划分:

1. 基于划分的聚类:

K-means, k-medoids(每一个类别中找一个样本点来代表),CLARANS.

k-means是使下面的表达式值最小:

 k-means算法的优点:

  (1)k-means算法是解决聚类问题的一种经典算法,算法简单、快速。

  (2)对处理大数据集,该算法是相对可伸缩的和高效率的,因为它的复杂度大约是O(nkt),其中n是所有对象的数目,k是簇的数目,t是迭代的次数。通常k<<n。这个算法通常局部收敛。

  (3)算法尝试找出使平方误差函数值最小的k个划分。当簇是密集的、球状或团状的,且簇与簇之间区别明显时,聚类效果较好。

缺点:

  (1)k-平均方法只有在簇的平均值被定义的情况下才能使用,且对有些分类属性的数据不适合。

  (2)要求用户必须事先给出要生成的簇的数目k。

  (3)对初值敏感,对于不同的初始值,可能会导致不同的聚类结果。

  (4)不适合于发现非凸面形状的簇,或者大小差别很大的簇。

  (5)对于"噪声"和孤立点数据敏感,少量的该类数据能够对平均值产生极大影响。

2. 基于层次的聚类:

  自底向上的凝聚方法,比如AGNES。

  自上向下的分裂方法,比如DIANA。

3. 基于密度的聚类:

DBSACN,OPTICS,BIRCH(CF-Tree),CURE.

4. 基于网格的方法:

STING, WaveCluster.

5. 基于模型的聚类:

EM,SOM,COBWEB.

  以上这些算法的简介可参考聚类(百度百科)。

 推荐系统:

  推荐系统的实现主要分为两个方面:基于内容的实现和协同滤波的实现。

  基于内容的实现:

  不同人对不同电影的评分这个例子,可以看做是一个普通的回归问题,因此每部电影都需要提前提取出一个特征向量(即x值),然后针对每个用户建模,即每个用户打的分值作为y值,利用这些已有的分值y和电影特征值x就可以训练回归模型了(最常见的就是线性回归)。这样就可以预测那些用户没有评分的电影的分数。(值得注意的是需对每个用户都建立他自己的回归模型)

  从另一个角度来看,也可以是先给定每个用户对某种电影的喜好程度(即权值),然后学出每部电影的特征,最后采用回归来预测那些没有被评分的电影。

  当然还可以是同时优化得到每个用户对不同类型电影的热爱程度以及每部电影的特征。具体可以参考Ng在coursera上的ml教程:https://www.coursera.org/course/ml

  基于协同滤波的实现:

  协同滤波(CF)可以看做是一个分类问题,也可以看做是矩阵分解问题。协同滤波主要是基于每个人自己的喜好都类似这一特征,它不依赖于个人的基本信息。比如刚刚那个电影评分的例子中,预测那些没有被评分的电影的分数只依赖于已经打分的那些分数,并不需要去学习那些电影的特征。

SVD将矩阵分解为三个矩阵的乘积,公式如下所示:

  中间的矩阵sigma为对角矩阵,对角元素的值为Data矩阵的奇异值(注意奇异值和特征值是不同的),且已经从大到小排列好了。即使去掉特征值小的那些特征,依然可以很好的重构出原始矩阵。如下图所示:

  其中更深的颜色代表去掉小特征值重构时的三个矩阵。

  果m代表商品的个数,n代表用户的个数,则U矩阵的每一行代表商品的属性,现在通过降维U矩阵(取深色部分)后,每一个商品的属性可以用更低的维度表示(假设为k维)。这样当新来一个用户的商品推荐向量X,则可以根据公式X'*U1*inv(S1)得到一个k维的向量,然后在V’中寻找最相似的那一个用户(相似度测量可用余弦公式等),根据这个用户的评分来推荐(主要是推荐新用户未打分的那些商品)。具体例子可以参考网页:SVD在推荐系统中的应用

  另外关于SVD分解后每个矩阵的实际含义可以参考google吴军的《数学之美》一书(不过个人感觉吴军解释UV两个矩阵时好像弄反了,不知道大家怎样认为)。或者参考machine learning in action其中的svd章节。

pLSA:

pLSA由LSA发展过来,而早期LSA的实现主要是通过SVD分解。pLSA的模型图如下:

  公式中的意义如下:

  具体可以参考2010龙星计划:机器学习中对应的主题模型那一讲

LDA:

  主题模型,概率图如下:

  和pLSA不同的是LDA中假设了很多先验分布,且一般参数的先验分布都假设为Dirichlet分布,其原因是共轭分布时先验概率和后验概率的形式相同。

GDBT:

GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),好像在阿里内部用得比较多(所以阿里算法岗位面试时可能会问到),它是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的输出结果累加起来就是最终答案。它在被提出之初就和SVM一起被认为是泛化能力(generalization)较强的算法。近些年更因为被用于搜索排序的机器学习模型而引起大家关注。

GBDT是回归树,不是分类树。其核心就在于,每一棵树是从之前所有树的残差中来学习的。为了防止过拟合,和Adaboosting一样,也加入了boosting这一项。

  关于GDBT的介绍可以可以参考:GBDT(MART)迭代决策树入门教程 | 简介

Regularization:

  作用是(网易电话面试时有问到):

1. 数值上更容易求解;

2. 特征数目太大时更稳定;

3. 控制模型的复杂度,光滑性。复杂性越小且越光滑的目标函数泛化能力越强。而加入规则项能使目标函数复杂度减小,且更光滑。

4. 减小参数空间;参数空间越小,复杂度越低。

5. 系数越小,模型越简单,而模型越简单则泛化能力越强(Ng宏观上给出的解释)。

6. 可以看成是权值的高斯先验。

异常检测:

  可以估计样本的密度函数,对于新样本直接计算其密度,如果密度值小于某一阈值,则表示该样本异常。而密度函数一般采用多维的高斯分布。如果样本有n维,则每一维的特征都可以看作是符合高斯分布的,即使这些特征可视化出来不太符合高斯分布,也可以对该特征进行数学转换让其看起来像高斯分布,比如说x=log(x+c), x=x^(1/c)等。异常检测的算法流程如下:

  其中的ε也是通过交叉验证得到的,也就是说在进行异常检测时,前面的p(x)的学习是用的无监督,后面的参数ε学习是用的有监督。那么为什么不全部使用普通有监督的方法来学习呢(即把它看做是一个普通的二分类问题)?主要是因为在异常检测中,异常的样本数量非常少而正常样本数量非常多,因此不足以学习到好的异常行为模型的参数,因为后面新来的异常样本可能完全是与训练样本中的模式不同。

  另外,上面是将特征的每一维看成是相互独立的高斯分布,其实这样的近似并不是最好的,但是它的计算量较小,因此也常被使用。更好的方法应该是将特征拟合成多维高斯分布,这时有特征之间的相关性,但随之计算量会变复杂,且样本的协方差矩阵还可能出现不可逆的情况(主要在样本数比特征数小,或者样本特征维数之间有线性关系时)。

  上面的内容可以参考Ng的https://www.coursera.org/course/ml

EM算法:

  有时候因为样本的产生和隐含变量有关(隐含变量是不能观察的),而求模型的参数时一般采用最大似然估计,由于含有了隐含变量,所以对似然函数参数求导是求不出来的,这时可以采用EM算法来求模型的参数的(对应模型参数个数可能有多个),EM算法一般分为2步:

E步:选取一组参数,求出在该参数下隐含变量的条件概率值;

M步:结合E步求出的隐含变量条件概率,求出似然函数下界函数(本质上是某个期望函数)的最大值。

  重复上面2步直至收敛。

  公式如下所示:

M步公式中下界函数的推导过程:

EM算法一个常见的例子就是GMM模型,每个样本都有可能由k个高斯产生,只不过由每个高斯产生的概率不同而已,因此每个样本都有对应的高斯分布(k个中的某一个),此时的隐含变量就是每个样本对应的某个高斯分布。

GMM的E步公式如下(计算每个样本对应每个高斯的概率):

  更具体的计算公式为:

M步公式如下(计算每个高斯的比重,均值,方差这3个参数):

  关于EM算法可以参考Ng的cs229课程资料 或者网易公开课:斯坦福大学公开课:机器学习课程

Apriori:

Apriori是关联分析中比较早的一种方法,主要用来挖掘那些频繁项集合。其思想是:

1. 如果一个项目集合不是频繁集合,那么任何包含它的项目集合也一定不是频繁集合;

2. 如果一个项目集合是频繁集合,那么它的任何非空子集也是频繁集合;

Aprioir需要扫描项目表多遍,从一个项目开始扫描,舍去掉那些不是频繁的项目,得到的集合称为L,然后对L中的每个元素进行自组合,生成比上次扫描多一个项目的集合,该集合称为C,接着又扫描去掉那些非频繁的项目,重复…

  看下面这个例子:

  元素项目表格:

  如果每个步骤不去掉非频繁项目集,则其扫描过程的树形结构如下:

  在其中某个过程中,可能出现非频繁的项目集,将其去掉(用阴影表示)为:

  上面的内容主要参考的是machine learning in action这本书。

FP Growth:

FP Growth是一种比Apriori更高效的频繁项挖掘方法,它只需要扫描项目表2次。其中第1次扫描获得当个项目的频率,去掉不符合支持度要求的项,并对剩下的项排序。第2遍扫描是建立一颗FP-Tree(frequent-patten tree)。

  接下来的工作就是在FP-Tree上进行挖掘。

  比如说有下表:

  它所对应的FP_Tree如下:

  然后从频率最小的单项P开始,找出P的条件模式基,用构造FP_Tree同样的方法来构造P的条件模式基的FP_Tree,在这棵树上找出包含P的频繁项集。

  依次从m,b,a,c,f的条件模式基上挖掘频繁项集,有些项需要递归的去挖掘,比较麻烦,比如m节点,具体的过程可以参考博客:Frequent Pattern 挖掘之二(FP Growth算法),里面讲得很详细。

数据挖掘十大经典算法

原创 2009年05月01日 00:45:00

· 标签:

· 算法 /

· 数据挖掘 /

· classification /

· algorithm /

国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART.

不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。

1. C4.5

C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.  C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:

1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;
    2) 在树构造过程中进行剪枝;
    3) 能够完成对连续属性的离散化处理;
    4) 能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。

2. The k-means algorithm 即K-Means算法

k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均 方误差总和最小。

3. Support vector machines

支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更 高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假 定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。

4. The Apriori algorithm

Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。

5. 最大期望(EM)算法

在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然 估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。

6. PageRank

PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。

PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票, 被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自 学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。

7. AdaBoost

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器 (强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权 值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。

8. kNN: k-nearest neighbor classification

K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

9. Naive Bayes

在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBC)。 朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以 及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。 但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属 性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。

10. CART: 分类与回归树

CART, Classification and Regression Trees。 在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。

本文来源:http://blog.csdn.net/aladdina/

上面的10篇文章的摘要来源全部转载自网络搜索,百度百科内容最多,少量来自中文维基百科以及其他网页。

    数据挖掘十大经典算法

 一、 C4.5  
C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3 算法.   C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:  
1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;  
2) 在树构造过程中进行剪枝;  
3) 能够完成对连续属性的离散化处理;  
4) 能够对不完整数据进行处理。  
C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。

1、机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则 
对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。  
2、从数据产生决策树的机器学习技术叫做决策树学习,  通俗说就是决策树。  
3、决策树学习也是数据挖掘中一个普通的方法。在这里,每个决策树都表述了一种树型结构,他由他的分支来对该类型的对象依靠属性进行分类。每个决策树可以依靠对源数据库的分割 
进行数据测试。这个过程可以递归式的对树进行修剪。当不能再进行分割或一个单独的类可以被应用于某一分支时,递归过程就完成了。另外,随机森林分类器将许多决策树结合起来 
以提升分类的正确率。

决策树是如何工作的?   
1、决策树一般都是自上而下的来生成的。  
2、选择分割的方法有好几种,但是目的都是一致的:对目标类尝试进行最佳的分割。  
3、从根到叶子节点都有一条路径,这条路径就是一条―规则  
4、决策树可以是二叉的,也可以是多叉的。  
对每个节点的衡量:  
1)         通过该节点的记录数  
2)         如果是叶子节点的话,分类的路径  
3)         对叶子节点正确分类的比例。  
有些规则的效果可以比其他的一些规则要好。  
由于ID3算法在实际应用中存在一些问题,于是Quilan提出了C4.5算法,严格上说C4.5只能是ID3的一个改进算法。相信大家对ID3算法都很.熟悉了,这里就不做介绍。  
C4.5算法继承了ID3算法的优点, 并在以下几方面对ID3算法进行了改进:  
1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 
2) 在树构造过程中进行剪枝;  
3) 能够完成对连续属性的离散化处理;  
4) 能够对不完整数据进行处理。  
C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。此外,C4.5只适合于 
能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。  来自搜索的其他内容:  
 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.  分类决策树算法是从大量事例中进行提取分类规则的自上而下的决策树. 决策树的各部分是:  
             根:    学习的事例集.  
             枝:    分类的判定条件.  
             叶:    分好的各个类.

  ID3算法  
   1.概念提取算法CLS  
1)      初始化参数C={E},E包括所有的例子,为根.  
2)        IF      C中的任一元素e同属于同一个决策类则创建一个叶子      
               节点YES终止.  
           ELSE      依启发式标准,选择特征Fi={V1,V2,V3,...Vn}并创建  
                       判定节点  
   
划分C为互不相交的N个集合C1,C2,C3,...,Cn;  
3)      对任一个Ci递归.  
    2.      ID3算法  
1)      随机选择C的一个子集W    (窗口).  
2)      调用CLS生成W的分类树DT(强调的启发式标准在后).  
3)      顺序扫描C搜集DT的意外(即由DT无法确定的例子).  
4)      组合W与已发现的意外,形成新的W.  
  
  
5)      重复2)到4),直到无例外为止.  
   
启发式标准:  
       只跟本身与其子树有关,采取信息理论用熵来量度.  
       熵是选择事件时选择自由度的量度,其计算方法为  
               P    =    freq(Cj,S)/|S|;  
       INFO(S)=    -    SUM(    P*LOG(P)    )    ;        SUM()函数是求j 从1到n和.  
       Gain(X)=Info(X)-Infox(X);  
       Infox(X)=SUM(    (|Ti|/|T|)*Info(X);  
为保证生成的决策树最小,ID3 算法在生成子树时,选取使生成的子树的熵(即Gain(S))最小的 
的特征来生成子树.  
   
  3、  ID3算法对数据的要求  
1).      所有属性必须为离散量.  
2).      所有的训练例的所有属性必须有一个明确的值.  
3).      相同的因素必须得到相同的结论且训练例必须唯一.  
   
   C4.5对ID3算法的改进:  
       1.      熵的改进,加上了子树的信息.  
             Split_Infox(X)=    -    SUM(      (|T|/|Ti|    )    *LOG(|Ti|/|T|)      );  
             Gain    ratio(X)=      Gain(X)/Split    Infox(X);  
        2.      在输入数据上的改进.  
         1)  
因素属性的值可以是连续量,C4.5 对其排序并分成不同的集合后按照ID3 算法当作离散量进 行处理,但结论属性的值必须是离散值.  
       2)    训练例的因素属性值可以是不确定的,以    ?    表示,但结论必须是确定的  
       3.      对已生成的决策树进行裁剪,减小生成树的规模.

二、数据挖掘十大经典算法(2) k-means  
术语“k-means”最早是由James MacQueen在1967年提出的,这一观点可以追溯到1957年 Hugo Steinhaus所提出的想法。1957年,斯图亚特·劳埃德最先提出这一标准算法,当初是作为一门应用于脉码调制的技术,直到1982年,这一算法才在贝尔实验室被正式提出。1965年, E.W.Forgy发表了一个本质上是相同的方法,1975年和1979年,Hartigan和Wong分别提出了一个更高效的版本。
算法描述 
输入:簇的数目k;包含n个对象的数据集D。 
输出:k个簇的集合。 
方法: 
从D中任意选择k个对象作为初始簇中心; 
repeat; 
根据簇中对象的均值,将每个对象指派到最相似的簇; 
更新簇均值,即计算每个簇中对象的均值; 
计算准则函数; 
until准则函数不再发生变化。 
算法的性能分析 
   1)优点 
(1)k-平均算法是解决聚类问题的一种经典算法,算法简单、快速。 
(2)对处理大数据集,该算法是相对可伸缩的和高效率的,因为它的复杂度大约是O(nkt),其中n是所有对象的数目,k是簇的数目,t是迭代的次数。通常k<<n。这个算法经常以局部最优结束。
(3)算法尝试找出使平方误差函数值最小的k个划分。当簇是密集的、球状或团状的,而簇与簇之间区别明显时,它的聚类效果很好。 
   2)缺点 
(1)k-平均方法只有在簇的平均值被定义的情况下才能使用,不适用于某些应用,如涉及有分类属性的数据不适用。 
(2)要求用户必须事先给出要生成的簇的数目k。 
(3)对初值敏感,对于不同的初始值,可能会导致不同的聚类结果。 
(4)不适合于发现非凸面形状的簇,或者大小差别很大的簇。 
(5)对于"噪声"和孤立点数据敏感,少量的该类数据能够对平均值产生极大影响。 
算法的改进 
针对算法存在的问题,对K-means算法提出一些改进: 
一是数据预处理, 
二是初始聚类中心选择, 
三是迭代过程中聚类种子的选择。 
1、首先对样本数据进行正规化处理,这样就能防止某些大值属性的数据左右样本间的距离。给定一组含有n个数据的数据集,每个数据含有m个属性,分别计算每一个属性的均值、标准差对每条数据进行标准化。 
3、其次,初始聚类中心的选择对最后的聚类效果有很大的影响,原K-means算法是随机选取k个数据作为聚类中心,而聚类的结果要是同类间尽可能相似,不同类间尽可能相异,所以初始聚类中心的选取要尽可能做到这一点。采用基于距离和的孤立点定义来进行孤立点的预先筛选,并利用两两数据之间的最大距离在剩余数据集合中寻找初始聚类中心。但对于实际数据,孤立点个数往往不可预知。在选择初始聚类中心时,先将孤立点纳入统计范围,在样本中计算对象两两之间的距离,选出距离最大的两个点作为两个不同类的聚类中心,接着从其余的样本对象中找出已经选出来的所有聚类中心的距离和最大的点为另一个聚类中心,直到选出k个聚类中心。这样做就降低了样本输入顺序对初始聚类中心选择的影响。 
聚类中心选好以后,就要进行不断的迭代计算,在K-means算法中,是将聚类均值点(类中所有数据的几何中心点)作为新的聚类种子进行新一轮的聚类计算,在这种情况下,新的聚类种子可能偏离真正的数据密集区,从而导致偏差,特别是在有孤立点存在的情况下,有很大的局限性。在选择初始中心点时,由于将孤立点计算在内,所以在迭代过程中要避免孤立点的影响。这里根据聚类种子的计算时,采用簇中那些与第k-1轮聚类种子相似度较大的数据,计算他们的均值点作为第k轮聚类的种子,相当于将孤立点排除在外,孤立点不参与聚类中心的计算,这样聚类中心就不会因为孤立点的原因而明显偏离数据集中的地方。在计算聚类中心的时候,要运用一定的算法将孤立点排除在计算均值点那些数据之外,这里主要采用类中与聚类种子相似度大于某一阈值的数据组成每个类的一个子集,计算子集中的均值点作为下一轮聚类的聚类种子。为了能让更多的数据参与到聚类中心的计算种去,阈值范围要包含大多数的数据。在第k-1轮聚类获得的类,计算该类中所有数据与该类聚类中心的平均距离S,选择类中与聚类种子相似度大于2S的数据组成每个类的一个子集,以此子集的均值点作为第k轮聚类的聚类种子。在数据集中无论是否有明显的孤立点存在,两倍的平均距离都能包含大多数的数据。 
对孤立点的改进—基于距离法 
经典k均值算法中没有考虑孤立点。所谓孤立点都是基于距离的, 是数据U集中到U中最近邻居的距离最大的对象, 换言之, 数据集中与其最近邻居的平均距离最大的对象。针对经典k均值算法易受孤立点的影响这一问题, 基于距离法移除孤立点, 具体过程如下: 
首先扫描一次数据集, 计算每一个数据对象与其临近对象的距离, 累加求其距离和, 并计算出距离和均值。如果某个数据对象的距离和大于距离和均值, 则视该点为孤立点。把这个对象从数据集中移除到孤立点集合中, 重复直到所有孤立点都找到。最后得到新的数据集就是聚类的初始集合。 
对随机选取初始聚类中心的改进 
经典k均值算法随机选取k个点作为初始聚类中心进行操作。由于是随机选取, 则变化较大, 初始点选取不同, 获得聚类的结果也不同。并且聚类分析得到的聚类的准确率也不一样。对k均值算法的初始聚类中心选择方法—随机法进行改进, 其依据是聚类过程中相同聚类中的对象是相似的, 相异聚类中的对象是不相似的。因此提出了一种基于数据对象两两间的距离来动态寻找并确定初始聚类中心的思路, 具体过程如下: 
首先整理移除孤立点后的数据集U,记录数据个数y,令m=1。比较数据集中所有数据对象两两之间的距离。找出距离最近的2个数据对象形成集合Am;比较Am中每一个数据对象与数据对象集合U中每一个对象的距离,在U中找出与Am 中最近的数据对象,优先吸收到Am 中,直到Am 中的数据对象个数到达一定数值,然后令m=m+1。再从U中找到对象两两间距离最近的2个数据对象构成Am,重复上面的过程,直到形成k个对象集合。这些集合内部的数据是相似的,而集合间是相异的。可以看出,这种聚类方法同时满足以下2个条件:①每个组至少包含一个数据对象; ②每个数据对象必须属于且仅属于一个组。即数据对象Xi ∈Ai ,且U={{A1 ∪A2 ∪…∪Ak} ∪A0} ,且Ai ∩Aj =Φ。最后对k个对象集合分别进行算术平均,形成k个初始聚类中心。 
  
近似的k平均算法已经被设计用于原始数据子集的计算。从算法的表现上来说,它并不保证一定得到全局最优解,最终解的质量很大程度上取决于初始化的分组。由于该算法的速度很快,因此常用的一种方法是多次运行k平均算法,选择最优解。  
k平均算法的一个缺点是,分组的数目k是一个输入参数,不合适的k可能返回较差的结果。另外,算法还假设均方误差是计算群组分散度的最佳参数。

三、数据挖掘十大经典算法(3) Svm  
支持向量机,英文为Support  Vector  Machine,简称SV机(论文中一般简称SVM)。它是一 
种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。  
   
支持向量机属于一般化线性分类器.他们也可以认为是提克洛夫规范化(Tikhonov  Regularization)方法的一个特例.这族分类器的特点是他们能够同时最小化经验误差与最大化 
几何边缘区.因此支持向量机也被称为最大边缘区分类器。在统计计算中,最大期望(EM) 算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无 
法观测的隐藏变量(Latent  Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚 (Data Clustering)领域。最大期望算法经过两个步骤交替进行计算:

第一步是计算期望(E), 也就是将隐藏变量象能够观测到的一样包含在内从而计算最大似然的期望值;

另外一步是最 大化(M),也就是最大化在  E 步上找到的最大似然的期望值从而计算参数的最大似然估计。 M 步上找到的参数然后用于另外一个  E 步计算,这个过程不断交替进行。  
   
Vapnik等人在多年研究统计学习理论基础上对线性分类器提出了另一种设计最佳准则。其原 理也从线性可分说起,然后扩展到线性不可分的情况。甚至扩展到使用非线性函数中去,这 
种分类器被称为支持向量机(Support Vector Machine,简称SVM)。支持向量机的提出有很深的 理论背景。支持向量机方法是在近年来提出的一种新方法。  
SVM 的主要思想可以概括为两点:

(1) 它是针对线性可分情况进行分析,对于线性不可分 的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使 
其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可 能;

(2) 它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得 到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。  
在学习这种方法时,首先要弄清楚这种方法考虑问题的特点,这就要从线性可分的最简单情 况讨论起,在没有弄懂其原理之前,不要急于学习线性不可分等较复杂的情况,支持向量机

在设计时,需要用到条件极值问题的求解,因此需用拉格朗日乘子理论,但对多数人来说, 以前学到的或常用的是约束条件为等式表示的方式,但在此要用到以不等式作为必须满足的 条件,此时只要了解拉格朗日理论的有关结论就行。  
   
介绍  
支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。 在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距 离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是 C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和  Barnard 将支持向量机和其他 分类器进行了比较。  
   
   
动机

有很多个分类器(超平面)可以把数据分开,但是只有一个能够达到最大分割。  我们通常希望分类的过程是一个机器学习的过程。这些数据点并不需要是中的点,而可以是 任意(统计学符号)中或者  (计算机科学符号) 的点。我们希望能够把这些点通过一个n-1维的 超平面分开,通常这个被称为线性分类器。有很多分类器都符合这个要求,但是我们还希望 找到分类最佳的平面,即使得属于两个不同类的数据点间隔最大的那个面,该面亦称为最大 间隔超平面。如果我们能够找到这个面,那么这个分类器就称为最大间隔分类器。  
   
四、数据挖掘十大经典算法(4)Apriori 
 
Apriori算法是种最有影响的挖掘布尔关联规则频繁项集的算法。它的核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集(简称频集),也常称为最大项目集。 
在Apriori算法中,寻找最大项目集(频繁项集)的基本思想是:算法需要对数据集进行多步处理。第一步,简单统计所有含一个元素项目集出现的频数,并找出那些不小于最小支持度的项目集,即一维最大项目集。从第二步开始循环处理直到再没有最大项目集生成。循环过程是:第k步中,根据第k-1步生成的(k-1)维最大项目集产生k维侯选项目集,然后对数据库进行搜索,得到侯选项目集的项集支持度,与最小支持度进行比较,从而找到k维最大项目集。

从算法的运行过程,我们可以看出该Apriori算法的优点:简单、易理解、数据要求低,然而我们也可以看到Apriori算法的缺点:

(1)在每一步产生侯选项目集时循环产生的组合过多,没有排除不应该参与组合的元素;

(2)每次计算项集的支持度时,都对数据库D中的全部记录进行了一遍扫描比较,如果是一个大型的数据库的话,这种扫描比较会大大增加计算机系统的I/O开销。而这种代价是随着数据库的记录的增加呈现出几何级数的增加。因此人们开始寻求更好性能的算法,如F-P算法。

五、数据挖掘十大经典算法(5) EM  
 最大期望算法(Expectation-maximization algorithm,又译期望最大化算法)在统计中被用于寻找,依赖于不可观察的隐性变量的概率模型中,参数的最大似然估计。 
在统计计算中,最大期望(EM)算法是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。

M是一个在已知部分相关变量的情况下,估计未知变量的迭代技术。 EM的算法流程如下:

1. 初始化分布参数

2. 重复直到收敛:

1. E步骤:估计未知参数的期望值,给出当前的参数估计。

2. M步骤:重新估计分布参数,以使得数据的似然性最大,给出未知变量的期望估计。

应用于缺失值

最大期望过程说明 
我们用  表示能够观察到的不完整的变量值,用  表示无法观察到的变量值,这样  和  一起组成了完整的数据。可能是实际测量丢失的数据,也可能是能够简化问题的隐藏变量,如果它的值能够被知道的话。例如,在混合模型(Mixture Model)中,如果“产生”样本的混合元素成分已知的话最大似然公式将变得更加便利(参见下面的例子)。 
估计无法观测的数据 
让  代表矢量 :  定义的参数的全部数据的概率分布(连续情况下)或者概率聚类函数(离散情况下),那么从这个函数就可以得到全部数据的最大似然值,另外,在给定的观察到的数据条件下未知数据的条件分布可以表示为:


六、数据挖掘十大经典算法(6) PageRank  

PageRank,网页排名,又称网页级别、Google左侧排名或佩奇排名,是一种由搜索引擎根据网页之间相互的超链接计算的技术,而作为网页排名的要素之一,以Google公司创办人拉里·佩奇(Larry Page)之姓来命名。Google用它来体现网页的相关性和重要性,在搜索引擎优化操作中是经常被用来评估网页优化的成效因素之一。Google的创始人拉里·佩奇和谢尔盖·布林于1998年在斯坦福大学发明了这项技术。

PageRank通过网络浩瀚的超链接关系来确定一个页面的等级。Google把从A页面到B页面的链接解释为A页面给B页面投票,Google根据投票来源(甚至来源的来源,即链接到A页面的页面)和投票目标的等级来决定新的等级。简单的说,一个高等级的页面可以使其他低等级页面的等级提升。

PageRank让链接来"投票" 
一个页面的“得票数”由所有链向它的页面的重要性来决定,到一个页面的超链接相当于对该页投一票。一个页面的PageRank是由所有链向它的页面(“链入页面”)的重要性经过递归算法得到的。一个有较多链入的页面会有较高的等级,相反如果一个页面没有任何链入页面,那么它没有等级。 
2005年初,Google为网页链接推出一项新属性nofollow,使得网站管理员和网志作者可以做出一些Google不计票的链接,也就是说这些链接不算作"投票"。nofollow的设置可以抵制垃圾评论。 
Google工具条上的PageRank指标从0到10。它似乎是一个对数标度算法,细节未知。PageRank是Google的商标,其技术亦已经申请专利。 
PageRank算法中的点击算法是由Jon Kleinberg提出的。

PageRank算法

1.PageRank  
基本思想:如果网页T存在一个指向网页A的连接,则表明T的所有者认为A比较重要,从而把T的一部分重要性得分赋予A。这个重要性得分值为:PR(T)/C(T)  
其中PR(T)为T的PageRank值,C(T)为T的出链数,则A的PageRank值为一系列类似于T的页面重要性得分值的累加。  
优点:是一个与查询无关的静态算法,所有网页的PageRank值通过离线计算获得;有效减少在线查询时的计算量,极大降低了查询响应时间。  
不足:人们的查询具有主题特征,PageRank忽略了主题相关性,导致结果的相关性和主题性降低;另外,PageRank有很严重的对新网页的歧视。  
2.Topic-Sensitive PageRank(主题敏感的PageRank)  
基本思想:针对PageRank对主题的忽略而提出。核心思想:通过离线计算出一个  PageRank向量集合,该集合中的每一个向量与某一主题相关,即计算某个页面关于不同主题的得分。 
主要分为两个阶段:主题相关的PageRank向量集合的计算和在线查询时主题的确定。

优点:根据用户的查询请求和相关上下文判断用户查询相关的主题(用户的兴趣)返回查询结果准确性高。  
不足:没有利用主题的相关性来提高链接得分的准确性。  
3.Hilltop  
基本思想:与PageRank的不同之处:仅考虑专家页面的链接。主要包括两个步骤:专家页面搜索和目标页面排序。  
优点:相关性强,结果准确。  
不足:专家页面的搜索和确定对算法起关键作用,专家页面的质量决定了算法的准确性,而 
  
专家页面的质量和公平性难以保证;忽略了大量非专家页面的影响,不能反应整个Internet的民意;当没有足够的专家页面存在时,返回空,所以Hilltop适合对于查询排序进行求精。  
那么影响google PageRank的因素有哪些呢?  
1 与pr高的网站做链接:  
2 内容质量高的网站链接  
3加入搜索引擎分类目录  
4 加入免费开源目录  
5 你的链接出现在流量大、知名度高、频繁更新的重要网站上  
6 google对DPF格式的文件比较看重。  
7 安装Google工具条  
8 域名和tilte标题出现关键词与meta标签等  
9 反向连接数量和反向连接的等级  
10 Google抓取您网站的页面数量  
11导出链接数量

七、数据挖掘十大经典算法(7) AdaBoost 

AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,是一种机器学习方法,由Yoav Freund和Robert Schapire提出。

AdaBoost方法的自适应在于:前一个分类器分错的样本会被用来训练下一个分类器。AdaBoost方法对于噪声数据和异常数据很敏感。但在一些问题中,AdaBoost方法相对于大多数其它学习算法而言,不会很容易出现过拟合现象。

AdaBoost方法中使用的分类器可能很弱(比如出现很大错误率),但只要它的分类效果比随机好一点(比如两类问题分类错误率略小于0.5),就能够改善最终得到的模型。而错误率高于随机分类器的弱分类器也是有用的,因为在最终得到的多个分类器的线性组合中,可以给它们赋予负系数,同样也能提升分类效果。

如果某个样本点已经被准确地分类,那么在构造下一个训练集中,它被选中的概率就被降低;

相反,如果某个样本点没有被准确地分类,那么它的权重就得到提高。通过这样的方式,AdaBoost方法能“聚焦于”那些较难分(更富信息)的样本上。

在具体实现上,最初令每个样本的权重都相等,对于第k次迭代操作,我们就根据这些权重来选取样本点,进而训练分类器Ck。然后就根据这个分类器,来提高被它分错的的样本的权重,并降低被正确分类的样本权重。然后,权重更新过的样本集被用于训练下一个分类器Ck[2]。整个训练过程如此迭代地进行下去。

Adaboost算法的具体步骤如下:   
1. 给定训练样本集  ,其中  分别对应于正例样本和负例样本;  为训练的最大循环次数;  
2. 初始化样本权重  ,即为训练样本的初始概率分布;  
3. 第一次迭代:  
(1)  训练样本的概率分布  下,训练弱分类器:  
(2) 计算弱分类器的错误率:  
(3) 选取  ,使得  最小  
(4) 更新样本权重:  
(5) 最终得到的强分类器:  
Adaboost算法是经过调整的Boosting算法,其能够对弱学习得到的弱分类器的错误进行适应 
性调整。上述算法中迭代了次的主循环,每一次循环根据当前的权重分布对样本x定一个分 
布P,然后对这个分布下的样本使用若学习算法得到一个错误率为的弱分类器  ,对于这个算 
法定义的弱学习算法,对所有的  ,都有,而这个错误率的上限并不需要事先知道,实际上。 
每一次迭代,都要对权重进行更新。更新的规则是:减小弱分类器分类效果较好的数据的概 
率,增大弱分类器分类效果较差的数据的概率。最终的分类器是个弱分类器的加权平均。

八、数据挖掘十大经典算法(8) kNN 

1、K最近邻(k-Nearest  Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空 
间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。 
2、KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。  KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本, 
而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。  
3、KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的 
邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成正比。  
4、 该算法在分类时有个主要的不足是 ,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。因此可以采用权值的方法(和该样本距离小的邻居权值大)来改进。

该方法的另一个不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。 
算法分类过程如下: 
1 首先我们事先定下k值(就是指k近邻方法的k的大小,代表对于一个待分类的数据点,我们要寻找几个它的邻居)。这边为了说明问题,我们取两个k值,分别为3和9; 
2 根据事先确定的距离度量公式(如:欧氏距离),得出待分类数据点和所有已知类别的样本点中,距离最近的k个样本。 
3 统计这k个样本点中,各个类别的数量。根据k个样本中,数量最多的样本是什么类别,我们就把这个数据点定为什么类别。

训练样本是多维特征空间向量,其中每个训练样本带有一个类别标签。算法的训练阶段只包含存储的特征向量和训练样本的标签。在分类阶段,k是一个用户定义的常数。一个没有类别标签的向量(查询或测试点)将被归类为最接近该点的K个样本点中最频繁使用的一类。

一般情况下,将欧氏距离作为距离度量,但是这是只适用于连续变量。在文本分类这种非连续变量情况下,

另一个度量——重叠度量(或海明距离)可以用来作为度量。

通常情况下,如果运用一些特殊的算法来计算度量的话,K近邻分类精度可显著提高,如运用大边缘最近邻法或者近邻成分分析法。 
“多数表决”分类的一个缺点是出现频率较多的样本将会主导测试点的预测结果,那是因为他们比较大可能出现在测试点的K邻域而测试点的属性又是通过K领域内的样本计算出来的。解决这个缺点的方法之一是在进行分类时将样本到测试点的距离考虑进去。 
K值得选择 
如何选择一个最佳的K值取决于数据。一般情况下,在分类时较大的K值能够减小噪声的影响。但会使类别之间的界限变得模糊。一个较好的K值能通过各种启发式技术来获取,比如,交叉验证。
噪声和非相关性特征向量的存在会使K近邻算法的准确性减小。对于选择特征向量进行分类已经作了很多研究。一个普遍的做法是利用进化算法优化功能扩展[3],还有一种较普遍的方法是利用训练样本的互信息进行选择特征。 
K近邻算法也适用于连续变量估计,比如适用反距离加权平均多个K近邻点确定测试点的值。该算法的功能有: 
1、从目标区域抽样计算欧式或马氏距离; 
2、在交叉验证后的RMSE基础上选择启发式最优的K邻域; 
3、计算多元k-最近邻居的距离倒数加权平均。

九、数据挖掘十大经典算法(9) Naive Baye

简介 
贝叶斯分类的基础是概率推理,就是在各种条件的存在不确定,仅知其出现概率的情况下,如何完成推理和决策任务。概率推理是与确定性推理相对应的。而朴素贝叶斯分类器是基于独立假设的,即假设样本每个特征与其他特征都不相关。举个例子,如果一种水果其具有红,圆,直径大概4英寸等特征,该水果可以被判定为是苹果。 
尽管这些特征相互依赖或者有些特征由其他特征决定,然而朴素贝叶斯分类器认为这些属性在判定该水果是否为苹果的概率分布上独立的。朴素贝叶斯分类器依靠精确的自然概率模型,在有监督学习的样本集中能获取得非常好的分类效果。在许多实际应用中,朴素贝叶斯模型参数估计使用最大似然估计方法,换而言之朴素贝叶斯模型能工作并没有用到贝叶斯概率或者任何贝叶斯模型。 
尽管是带着这些朴素思想和过于简单化的假设,但朴素贝叶斯分类器在很多复杂的现实情形中仍能够取得相当好的效果。2004年,一篇分析贝叶斯分类器问题的文章揭示了朴素贝叶斯分类器取得看上去不可思议的分类效果的若干理论上的原因。尽管如此,2006年有一篇文章详细比较了各种分类方法,发现更新的方法(如boosted trees和随机森林)的性能超过了贝叶斯分类器。朴素贝叶斯分类器的一个优势在于只需要根据少量的训练数据估计出必要的参数(变量的均值和方差)。由于变量独立假设,只需要估计各个变量的方法,而不需要确定整个协方差矩阵。

两种分类模型:

分类是将一个未知样本分到几个预先已知类的过程。数据分类问题的解决是一个两步过程:

第一步,建立一个模型,描述预先的数据集或概念集。通过分析由属性描述的样本(或实例,对象等)来构造模型。假定每一个样本都有一个预先定义的类,由一个被称为类标签的属性 
确定。为建立模型而被分析的数据元组形成训练数据集,该步也称作有指导的学习。 在众多的分类模型中,应用最为广泛的两种分类模型是:

决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive  Bayesian  Model,NBC) 。

决策树模型通过构造树来解决分类问题。

1、首先利用训练数据集来构造一棵决策树,一旦树建立起来,它就可为未知样本产生一个分类。在分类问题中使用决策树模型有很多的优点,决策树便于使用,而且高效;根据决策树可以 
很容易地构造出规则,而规则通常易于解释和理解;决策树可很好地扩展到大型数据库中,同时它的大小独立于数据库的大小;决策树模型的另外一大优点就是可以对有许多属性的数据集构造决策树。

决策树模型也有一些缺点,比如处理缺失数据时的困难,过度拟合问题的出现,以及忽略数据集中属性之间的相关性等。  
2、和决策树模型相比,朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。 
理论上,NBC模型与其他分类方法相比具有最小的误差率。

但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC 
模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。

贝叶斯分类器特点 
1、需要知道先验概率 
先验概率是计算后验概率的基础。在传统的概率理论中,先验概率可以由大量的重复实验所获得的各类样本出现的频率来近似获得,其基础是“大数定律”,这一思想称为“频率主义”。而在称为“贝叶斯主义”的数理统计学派中,他们认为时间是单向的,许多事件的发生不具有可重复性,因此先验概率只能根据对置信度的主观判定来给出,也可以说由“信仰”来确定。 
2、按照获得的信息对先验概率进行修正 
在没有获得任何信息的时候,如果要进行分类判别,只能依据各类存在的先验概率,将样本划分到先验概率大的一类中。而在获得了更多关于样本特征的信息后,可以依照贝叶斯公式对先验概率进行修正,得到后验概率,提高分类决策的准确性和置信度。 
3、分类决策存在错误率 
由于贝叶斯分类是在样本取得某特征值时对它属于各类的概率进行推测,并无法获得样本真实的类别归属情况,所以分类决策一定存在错误率,即使错误率很低,分类错误的情况也可能发生。

十、数据挖掘十大经典算法(10) CART 

分类回归树(CART,Classification And Regression Tree)也属于一种决策树, 分类回归树是一棵二叉树,且每个非叶子节点都有两个孩子,所以对于第一棵子树其叶子节点数比非叶子节点数多1。

决策树生长的核心是确定决策树的分枝准则。 
1、如何从众多的属性变量中选择一个当前的最佳分支变量; 
也就是选择能使异质性下降最快的变量。 
异质性的度量:GINI、TWOING、least squared deviation。 
前两种主要针对分类型变量,LSD针对连续性变量。 
代理划分、加权划分、先验概率 
2、如何从分支变量的众多取值中找到一个当前的最佳分割点(分割阈值)。 
(1) 分割阈值: 
 A、数值型变量——对记录的值从小到大排序,计算每个值作为临界点产生的子节点的异质性统计量。能够使异质性减小程度最大的临界值便是最佳的划分点。 
 B、分类型变量——列出划分为两个子集的所有可能组合,计算每种组合下生成子节点的异质性。同样,找到使异质性减小程度最大的组合作为最佳划分点。

在决策树的每一个节点上我们可以按任一个属性的任一个值进行划分。 按哪种划分最好呢?有3个标准可以用来衡量划分的好坏:GINI指数、双化指数、有序双化指数。

终止条件:

一个节点产生左右孩子后,递归地对左右孩子进行划分即可产生分类回归树。这里的终止条件是什么?什么时候节点就可以停止分裂了?

满足以下一个即停止生长。 
(1)节点达到完全纯性; 
(2)数树的深度达到用户指定的深度; 
(3)节点中样本的个数少于用户指定的个数; 
(4)异质性指标下降的最大幅度小于用户指定的幅度。

剪枝

当分类回归树划分得太细时,会对噪声数据产生过拟合作用。因此我们要通过剪枝来解决。剪枝又分为前剪枝和后剪枝:前剪枝是指在构造树的过程中就知道哪些节点可以剪掉,于是干脆不对这些节点进行分裂,在N皇后问题和背包问题中用的都是前剪枝,上面的χ2方法也可以认为是一种前剪枝;后剪枝是指构造出完整的决策树之后再来考查哪些子树可以剪掉。 
在分类回归树中可以使用的后剪枝方法有多种,比如:代价复杂性剪枝、最小误差剪枝、悲观误差剪枝等等。这里我们只介绍代价复杂性剪枝法。

预测 
回归树——预测值为叶节点目标变量的加权均值 
分类树——某叶节点预测的分类值应是造成错判损失最小的分类值.

机器学习十大常用算法相关推荐

  1. 轻松看懂机器学习十大常用算法 - 基础知识

    通过本篇文章可以对机器学习ML的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下,知道这些算法是什么,它们是怎么应用的,例子主要是分类问题. 算法如下: 决策树 随机森林算法 逻辑 ...

  2. 轻松看懂机器学习十大常用算法

    本文转载自CSDN aliceyangxi1987的博客 通过本篇文章可以对机器学习(machine learning, ML)的常用算法有个常识性的认识,没有代码,没有复杂的理论推导,就是图解一下, ...

  3. 图解:轻松看懂机器学习十大常用算法

    源 / 人人宽客 通过本篇文章大家可以对ML的常用算法形成常识性的认识.没有代码,没有复杂的理论推导,仅是图解,介绍这些算法是什么以及如何应用(例子主要是分类问题).以后有机会再对单个算法做深入地解析 ...

  4. 机器学习十大经典算法:深入浅出聊贝叶斯决策(贝叶斯公式,最小风险贝叶斯,最小错误贝叶斯)

    前言    常听人说,在学习一个东西时,如果能够深入浅出的讲给别人听,才算是真的懂了.最近正好在学模式识别,于是就用它来练笔了.贝叶斯决策(Bayes Decision) 是十大经典机器学习算法之一, ...

  5. 机器学习十大经典算法之岭回归和LASSO回归

    机器学习十大经典算法之岭回归和LASSO回归(学习笔记整理:https://blog.csdn.net/weixin_43374551/article/details/83688913

  6. 我所知道的十大常用算法之普里姆算法(最小生成树)

    前言需求 今天我们学习的是普里姆算法,我们还是从一个场景里引入看看 有7个村庄(A, B, C, D, E, F, G) ,现在需要修路把7个村庄连通 1.各个村庄的距离用边线表示(权) ,比如 A ...

  7. 我所知道的十大常用算法之克鲁斯尔算法(最小生成树)

    前言需求 今天我们学习的是克鲁斯尔算法,我们还是从一个场景里引入看看 有7个村庄(A, B, C, D, E, F, G) ,现在需要修路把7个村庄连通 1.各个村庄的距离用边线表示(权) ,比如 A ...

  8. 十大常用算法之克鲁斯卡尔算法

    十大常用算法的完整实现 一.二分查找算法:https://blog.csdn.net/weixin_46635575/article/details/121532149 二.分治算法:https:// ...

  9. 十大常用算法之佛洛依德算法

    十大常用算法的完整实现 一.二分查找算法:https://blog.csdn.net/weixin_46635575/article/details/121532149 二.分治算法:https:// ...

  10. pagerank数据集_机器学习十大经典算法-PageRank(附实践代码)

    Yo, yo, check it out. 保证看完不晕倒... 如果公式让你脑瓜疼,请忽略公式,或者忽略脑瓜. Kagging咖金:推荐系统之关联规则(附实践代码)​zhuanlan.zhihu.c ...

最新文章

  1. redmine忘记username和password
  2. GIT如何查看本地分支与远程分支的关联配置(git branch --set-upstream)
  3. go 公众号 关注 监听_荐号丨推荐五个适合法学院关注公众号
  4. contos7设置固定ip和dns_CentOS7 修改设置静态IP和DNS
  5. 海量数据处理--位图(BitMap)
  6. 苹果支付:如何解决沙盒环境下获取可恢复购买项为空
  7. 普通人为什么要学习Python
  8. Python全栈开发之2、运算符与基本数据结构
  9. Pycharm安装完出现interpreter field is empty
  10. python脚本 sonar报告
  11. 机顶盒显示网关服务器数据下发超时,智能机顶盒网关服务器数据下发超时
  12. AcWing 兔子与兔子
  13. 学术论文参考文献格式
  14. 面向对象的编程(上)_方法的重载(overload)练习
  15. RocketMQ 延迟消息解析——图解、源码级解析
  16. 如何分析和判断中国经济大势
  17. 算法-程序与系统的灵魂
  18. 在纽约寻找童真——新泽西州乐高乐园探索中心的美好一天
  19. 基于matlab的陷波滤波器设计
  20. Hive数据仓库实战

热门文章

  1. 贪吃蛇c加加代码_c语言贪吃蛇代码
  2. VC2005 运行库解析
  3. ucgui添加自定义汉字库
  4. 第二篇:傅里叶变换与短时傅里叶变换
  5. 无人机螺旋桨测试-螺旋桨效率
  6. 新中大财务软件银色快车问题合集汇总 您遇到的问题基本都可以解决 SE
  7. linux局域网聊天软件,自制局域网内聊天与图片传输小软件
  8. 使用HTML语法图文混排
  9. 黑莓手机使用手册【转】
  10. matlab求阶乘函数的代码,matlab阶乘