前言:

为了方便查看博客,特意申请了一个公众号,附上二维码,有兴趣的朋友可以关注,和我一起讨论学习,一起享受技术,一起成长。


转载自看完这篇“史密斯圆图”告别懵逼射频!


文章出处: http://www.mweda.com/hfss-cst-29038-1.html


这是什么东东?

今天解答三个问题:

1.是什么?

2.为什么?

3.干什么?


1.是什么?

该图表是由菲利普·史密斯(Phillip Smith)于1939年发明的,当时他在美国的RCA公司工作。史密斯曾说过,“在我能够使用计算尺的时候,我对以图表方式来表达数学上的关联很有兴趣”。

史密斯图表的基本在于以下的算式。

当中的Γ代表其线路的反射系数(reflection coefficient)

即S参数(S-parameter)里的S11,ZL是归一负载值,即ZL / Z0。当中,ZL是线路本身的负载值,Z0是传输线的特征阻抗(本征阻抗)值,通常会使用50Ω

简单的说:就是类似于数学用表一样,通过查找,知道反射系数的数值。


2.为什么?

我们现在也不知道,史密斯先生是怎么想到“史密斯圆图”表示方法的灵感,是怎么来的。

很多同学看史密斯原图,屎记硬背,不得要领,其实没有揣摩,史密斯老先生的创作意图。

我个人揣测:是不是受到黎曼几何的启发,把一个平面的坐标系,给“掰弯”了。

世界地图,其实是一个用平面表示球体的过程,这个过程是一个“掰直”。

史密斯原图,巧妙之处,在于用一个圆形表示一个无穷大的平面。

2.1 首先,我们先理解“无穷大”的平面

首先的首先,我们复习一下理想的电阻、电容、电感的阻抗。

在具有电阻、电感和电容的电路里,对电路中的电流所起的阻碍作用叫做阻抗。阻抗常用Z表示,是一个复数,实部称为电阻,虚部称为电抗,其中电容在电路中对交流电所起的阻碍作用称为容抗 ,电感在电路中对交流电所起的阻碍作用称为感抗,电容和电感在电路中对交流电引起的阻碍作用总称为电抗。 阻抗的单位是欧姆。

R,电阻:在同一电路中,通过某一导体的电流跟这段导体两端的电压成正比,跟这段导体的电阻成反比,这就是欧姆定律。

(理想的电阻就是 实数,不涉及复数的概念)。

如果引入数学中复数的概念,就可以将电阻、电感、电容用相同的形式复阻抗来表示。既:电阻仍然是实数R(复阻抗的实部),电容、电感用虚数表示,分别为:

说明:负载是电阻、电感的感抗、电容的容抗三种类型的复物,复合后统称“阻抗”,写成数学公式即是:阻抗Z= R+i(ωL–1/(ωC))。其中R为电阻,ωL为感抗,1/(ωC)为容抗。

(1)如果(ωL–1/ωC) > 0,称为“感性负载”;

(2)反之,如果(ωL–1/ωC)<0,称为“容性负载”;

我们仔细看阻抗公式,它不再是一个实数。它因为电容、电感的存在,它变成了一个复数。

电路中如果只有电阻,只影响幅度变化。

我们通过上图,我们知道,正弦波的幅度发生了变化,同时,相位也发生了变化,同时频率特性也会变化。所以我们在计算的过程中,即需要考虑实部,也需要考虑虚部。

我们可以在一个复平面里面,以实部为x轴、以虚部为y轴,表示任意一个复数。我们的阻抗,不管多少电阻、电容、电感串联、并联,之后,都可以表示在一个复平面里面。

在 RLC 串联电路中,交流电源电压 U = 220 V,频率 f = 50 Hz,R = 30 Ω,L =445 mH,C =32 mF。

在上图中,我们看到通过几个矢量的叠加,最终阻抗在复平面中,落在了蓝色的圆点位置。

所以,任意一个阻抗的计算结果,我们都可以放在这个复平面的对应位置。

各种阻抗的情况,组成了这个无穷大的平面。

2.2.反射公式

信号沿传输线向前传播时,每时每刻都会感受到一个瞬态阻抗,这个阻抗可能是传输线本身的,也可能是中途或末端其他元件的。对于信号来说,它不会区分到底是什么,信号所感受到的只有阻抗。如果信号感受到的阻抗是恒定的,那么他就会正常向前传播,只要感受到的阻抗发生变化,不论是什么引起的(可能是中途遇到的电阻,电容,电感,过孔,PCB转角,接插件),信号都会发生反射。

钱塘江大潮,就是河道的宽度变化引起了反射,这跟电路中阻抗不连续,导致信号反射,可以类比。反射聚集的能量叠加在一起,引起的过冲。也许这个比喻不恰当,但是挺形象。

那么有多少被反射回传输线的起点?衡量信号反射量的重要指标是反射系数,表示反射电压和原传输信号电压的比值。

反射系数定义为:

其中:Z0为变化前的阻抗,ZIN为变化后的阻抗。假设PCB线条的特性阻抗为50欧姆,传输过程中遇到一个100欧姆的贴片电阻,暂时不考虑寄生电容电感的影响,把电阻看成理想的纯电阻,那么反射系数为:

信号有1/3被反射回源端。

如果传输信号的电压是3.3V电压,反射电压就是1.1V。 纯电阻性负载的反射是研究反射现象的基础,阻性负载的变化无非是以下四种情况:阻抗增加有限值、减小有限值、开路(阻抗变为无穷大)、短路(阻抗突然变为0)。

初始电压,是源电压Vs(2V)经过Zs(25欧姆)和传输线阻抗(50欧姆)分压。

Vinitial=1.33V

后续的反射率按照反射系数公式进行计算

源端的反射率,是根据源端阻抗(25欧姆)和传输线阻抗(50欧姆)根据反射系数公式计算为-0.33;

终端的反射率,是根据终端阻抗(无穷大)和传输线阻抗(50欧姆)根据反射系数公式计算为1;

我们按照每次反射的幅度和延时,在最初的脉冲波形上进行叠加就得到了这个波形,这也就是为什么,阻抗不匹配造成信号完整性不好的原因

那么我们做一个重要的假设!

为了减少未知参数的数量,可以固化一个经常出现并且在应用中经常使用的参数。这里Z0 (特性阻抗)通常为常数并且是实数,是常用的归一化标准值,如50Ω、75Ω、100Ω和600Ω。

假设Z0一定,为50欧姆。(为什么是50欧姆,此处暂时不表;当然也可以做其他假设,便于理解,我们先定死为50Ω)。

那么,根据反射公式,我们得到一个重要的结论:

每一个Zin对应唯一的 “Γ”,反射系数。

我们把对应关系描绘到刚刚我们说的“复平面”。

于是我们可以定义归一化的负载阻抗:

据此,将反射系数的公式重新写为:

好了,我们在复平面里面,忘记Zin,只记得z(小写)和反射系数“Γ”。

准备工作都做好了,下面我们准备“弯了”

2.3 掰弯

在复平面中,有三个点,反射系数都为1,就是横坐标的无穷大,纵坐标的正负无穷大。历史上的某天,史密斯老先生,如有神助,把黑色线掰弯了,把上图中,三个红色圈标注的点,捏到一起。

完美的圆:

虽然,无穷大的平面变成了一个圆,但是,红线还是红线,黑线还是黑线。

同时我们在,原来的复平面中增加三根线,它们也随着平面闭合而弯曲。

黑色的线上的阻抗,有个特点:实部为0;(电阻为0)

红色的线上的阻抗,有个特点:虚部为0;(电感、电容为0)

绿色的线上的阻抗,有个特点:实部为1;(电阻为50欧姆)

紫色的线上的阻抗,有个特点:虚部为-1;

蓝色的线上的阻抗,有个特点:虚部为1;

线上的阻抗特性,我们是从复平面,平移到史密斯原图的,所以特性跟着颜色走,特性不变。

下半圆与上班圆是一样的划分。

因为史密斯圆图是一种基于图形的解法,所得结果的精确度直接依赖于图形的精度。下面是一个用史密斯圆图表示的RF应用实例:
例: 已知特性阻抗为50Ω,负载阻抗如下:

对上面的值进行归一化并标示在圆图中(见图5):

我们看不清上图。

如果是“串联”,我们可以在清晰的史密斯原图上,先确定实部(红线上查找,原来复平面的横坐标),再根据虚部的正负,顺着圆弧滑动,找到我们对应的阻抗。(先忽略下图中的绿色线)

现在可以通过圆图直接解出反射系数Γ。

我们既可以通过直角坐标,去直接读取反射系数的值,也可以通过极坐标,读取反射系数的值。

直角坐标

画出阻抗点(等阻抗圆和等电抗圆的交点),只要读出它们在直角坐标水平轴和垂直轴上的投影,就得到了反射系数的实部Γr和虚部Γi (见图6)。
该范例中可能存在八种情况,在图6所示史密斯圆图上可以直接得到对应的反射系数Γ:

从X-Y轴直接读出反射系数Γ的实部和虚部

极坐标表示,有什么用?非常有用,这其实也是史密斯原图的目的。

2.4 红色阵营VS绿色阵营

刚刚我们已经注意到,史密斯原图,除了有红色的曲线,是从阻抗复平面掰弯,过来的红色世界。同时,在图中,还有绿色的曲线,他们是从导纳复平面,掰弯产生的。过程跟刚刚的过程是一样的。

那么这个导纳的绿色,有什么用呢?

并联电路,用导纳计算,我们会很便利。同时在史密斯原图中,我们用导纳的绿色曲线进行查询,也会很方便。

如图,这样并联一个电容,通过绿色的曲线很快就可以查询到对应的归一化阻抗和反射系数。


3、干什么?

解释和介绍了史密斯圆图这么长的段落,别忘了,我们想干什么。我们实际是希望,我们设计的电路反射系数越接近0越好

但是,什么样的电路是合格的电路呢?反射系数不可能理想的为0,那么我们对反射系数,有什么样的要求呢?

我们希望反射系数的绝对值小于1/3,即反射系数落入史密斯圆图的蓝色区域中(如下图)。

这个蓝色的球,有什么特色呢?其实我们通过史密斯原图的数值已经清楚的发现。在中轴线,也就是之前说的红线上,分别是25欧姆,和100欧姆两个位置。即:Zin在1/2 Zo和2倍Zo之间的区域。

也就是,我们打靶打在蓝色区域,即认为反射系数是可以接受的。

看完这篇“史密斯圆图”告别懵逼射频!相关推荐

  1. 互联网黑话最全收录|还在说大白话?看完这篇包你成为职场“社牛”

    文章目录 互联网黑话是怎么产生的? 互联网黑话是好是坏? 互联网黑话入门级教学指南 写在最后 刚刚加入字节时,比起高强度.快节奏的工作,最先迎面而来的不适应居然是--沟通障碍! "你说这话的 ...

  2. 程序员要怎么高效学习Java,大学生or小白的你看完这篇的你离BAT又近了一大步

    这篇文章大体上会从以下几个部分展开: 认清自己. 学习目的. 时间管理. 学习方法. 学习的步骤. 获取知识的途径 影响学习的几个因素 自己的心态. 外物的影响. 其他想说的 大学生的学习 一些感悟 ...

  3. 我就不信看完这篇你还搞不懂信息熵

    我就不信看完这篇你还搞不懂信息熵 https://mp.weixin.qq.com/s/7NrB0UtmELXD3UNO3C6jGA 让我们说人话!好的数学概念都应该是通俗易懂的. 信息熵,信息熵,怎 ...

  4. python装饰器原理-看完这篇文章还不懂Python装饰器?

    原标题:看完这篇文章还不懂Python装饰器? 1.必备 2.需求来了 初创公司有N个业务部门,1个基础平台部门,基础平台负责提供底层的功能,如:数据库操作.redis调用.监控API等功能.业务部门 ...

  5. 看完这篇文章之后,终于明白了编译到底怎么回事。

    看完这篇文章之后,终于明白了编译到底怎么回事. 1 对于同一个语句,有如下三种:高级语言.低级语言.机器语言的表示 C语言  a=b+1; 汇编语言  mov -0xc(%ebp),%eax add ...

  6. linux shell find depth,搞定 Linux Shell 文本处理工具,看完这篇集锦就够了

    原标题:搞定 Linux Shell 文本处理工具,看完这篇集锦就够了 Linux Shell是一种基本功,由于怪异的语法加之较差的可读性,通常被Python等脚本代替.既然是基本功,那就需要掌握,毕 ...

  7. 看完这篇文章之后,终于明白了编译到底怎么回事

    看完这篇文章之后,终于明白了编译到底怎么回事. 1 对于同一个语句,有如下三种:高级语言.低级语言.机器语言的表示 C语言  a=b+1; 汇编语言  mov -0xc(%ebp),%eax add ...

  8. html5 游戏前景怎么样,独家 HTML5游戏目前究竟怎么样?看完这篇文章,你或许会清晰很多...

    原标题:独家 HTML5游戏目前究竟怎么样?看完这篇文章,你或许会清晰很多 文/DataEye CEO 汪祥斌 从5月份白鹭的10亿估值,到最近悟空间.山水地.火缘步甲的千万级以上的融资,我们可以感受 ...

  9. 手把手教你完成CSDN对接百度统计 看完这篇文章你还不会对接 欢迎您提刀顺着网线来砍我!!!!

    大家好,我是:じ☆ve朽木,开发经验都是一步一步慢慢积累的,没有谁生来就具有的,只要我们付出了努力,肯定就会有收获!进入我的博客,带你了解Java知识,js小技巧,带你玩转高端物联网.博客地址为:じ☆ ...

  10. 看完这篇文章保你面试稳操胜券——React篇

    ✨ 进大厂收藏这一系列就够了,全方位搜集总结,为大家归纳出这篇面试宝典,面试途中祝你一臂之力!,共分为四个系列 ✨ 本 篇 为 < 看 完 这 篇 文 章 保 你 面 试 稳 操 胜 券 > ...

最新文章

  1. linux 下面安装mysql
  2. [汇编语言学习笔记][第二章寄存器]
  3. Scala字符串输出、键盘输入和文件操作
  4. Android setFocusableInTouchMode 方法使用和源码详解
  5. 阿里云有一群 “猪猪侠”
  6. linux各文件夹的作用
  7. ORACLE完整数据库实例迁移
  8. Java 18 就要来了,新功能很多!
  9. magicdraw 2022x
  10. OverFeat笔记
  11. 标签打印软件如何设置单排标签纸尺寸
  12. 关于Spring面试问答
  13. 2022年应届大学生做毕设是论文好做点还是设计好,哪个性价比更高
  14. iPhone查询商品历史价格详细教程
  15. NOT EXISTS真的不走索引么?如何优化NOT EXISTS!
  16. 大数据毕设 - 网络游戏数据分析与可视化(python 大数据)
  17. 跨平台桌面应用的开发框架——Electron
  18. 一扩四(​FE8.1)USB转接和一扩七(FE2.1)USB原理图和PCB分享
  19. 结构型模式-外观模式
  20. 按键精灵实用案例1:地址转换成经纬度——快速完成多个地址转换

热门文章

  1. SketchUp Pro 2022草图大师27个最常用的快捷键(含PC和Mac)
  2. 科目一知识点分类梳理
  3. Python简单实现微博自动点赞
  4. MP4视频损坏修复工具下载
  5. SonarLint 默认扫描规则
  6. android 安装p12证书,如何在Android中使用p12证书(客户端证书)
  7. 创建 VSTO 工作簿的 ClickOnce 安装包
  8. Java中文乱码问题如何解决?
  9. 生成drl文件_Allegro生成Gerber文件的方法
  10. 专业的CMMI3认证咨询公司告诉你从CMMI3升到CMMI5级有哪些优势?