该案例摘自《Keras深度学习入门、实战及进阶》第四章综合案例内容。
该案例的数据来源于Kaggle上的Flower Color Images(https://www.kaggle.com/olgabelitskaya/flower-color-images)。
数据内容非常简单:包含10种开花植物的210张图像(128×128×3)和带有标签的文件flower-labels.csv,照片文件采用.png格式,标签为整数(0~9)。
使用read.csv()将带有标签的文件flower-labels.csv导入到R中,并查看前六行。

> flowers <- read.csv('../flower_images/flower_labels.csv')
> dim(flowers)
[1] 210   2
> head(flowers)file label
1 0001.png     0
2 0002.png     0
3 0003.png     2
4 0004.png     0
5 0005.png     0
6 0006.png     1

一共有210行2列,第1列是图像文件名称,第2列是其对应的标签值。编号为0001、0002、0004、0005的彩色图像对应的标签为0,即为福禄考;0003彩色图像对应的标签为2,即为金盏花;0006彩色图像对应的标签为1,即为玫瑰。
label是目标变量,使用as.matrix()函数将其转换为矩阵后再利用to_categorical()函数将其转换为独热(one-hot)编码,转换后的数据如下所示。

> flower_targets <- as.matrix(flowers["label"])
> flower_targets <- keras::to_categorical(flower_targets, 10)
> head(flower_targets)[,1]   [,2]  [,3]  [,4]   [,5]  [,6]  [,7]  [,8]  [,9]  [,10]
[1,]    1    0    0    0    0    0    0    0    0     0
[2,]    1    0    0    0    0    0    0    0    0     0
[3,]    0    0    1    0    0    0    0    0    0     0
[4,]    1    0    0    0    0    0    0    0    0     0
[5,]    1    0    0    0    0    0    0    0    0     0
[6,]    0    1    0    0    0    0    0    0    0     0

可利用list.files()函数获取flower_images目录中所有彩色图像的文件名称。

> # 获取flower_images目录中的彩色照片
> image_paths <- list.files('../flower_images',pattern = '.png')
> length(image_paths)
[1] 210
> image_paths[1:3]
[1] "0001.png" "0002.png" "0003.png"

flower_images目录中一共有210张彩色图像,前3个图像文件的名称依次为"0001.png" 、“0002.png”、 “0003.png”。利用EBImage包的readImage()函数将前面8张彩色化图像读入到R中,并进行可视化。

> names <- c('phlox','rose','calendula','iris',
+             'max chrysanthemum','bellflower','viola',
+             'rudbeckia laciniata','peony','aquilegia')
> options(repr.plot.width=4,repr.plot.height=4)
> op <- par(mfrow=c(2,4),mar=c(2,2,2,2))
> for(i in 1:8){+   img <- readImage(paste('../flower_images',image_paths[i],sep = '/')) # 读入图像
+   plot(img)                                                # 绘制图像
+   text(x = 64,y = 0,
+        label = names[flowers[flowers$file==image_paths[i],'label']+1],
+        adj = c(0,1),col = 'white',cex = 3)                         # 添加标签
+ }
> par(op)


自定义image_loading()函数,实现逐步将flower_iamges的彩色图像读入到R中,并进行数据转换,使其达到符合深度学习建模时所需的自变量矩阵。

> # 自定义图像数据读入及转换函数
> image_loading <- function(image_path) {+   image <- image_load(image_path, target_size=c(128,128))
+   image <- image_to_array(image) / 255
+   image <- array_reshape(image, c(1, dim(image)))
+   return(image)
+ }

结合lapply()函数读取flower_images目录中的210张花彩色图像,由于返回结果为列表,所以再次利用array_reshape()函数对其进行转换。

> image_paths <- list.files('../flower_images',
+                    pattern = '.png',
+                    full.names = TRUE)
> flower_tensors <- lapply(image_paths, image_loading)
> flower_tensors <- array_reshape(flower_tensors,
+                           c(length(flower_tensors),128,128,3))
> dim(flower_tensors)
[1] 210 128 128   3
> dim(flower_targets)
[1] 210  10

我们利用caret包的createDataParitition()函数对数据进行等比例抽样,使得抽样后的训练集和测试集中的各类别占比与原数据一样。

> # 等比例抽样
> index <- caret::createDataPartition(flowers$label,p = 0.9,list = FALSE) # 训练集的下标集
> train_flower_tensors <- flower_tensors[index,,,] # 训练集的自变量
> train_flower_targets <- flower_targets[index,]   # 训练集的因变量
> test_flower_tensors <- flower_tensors[-index,,,] # 测试集的自变量
> test_flower_targets <- flower_targets[-index,]   # 测试集的因变量
  1. MLP模型建立及预测
    首先构建一个简单的多层感知机神经网络,利用训练集数据对网络进行训练。以下程序代码实现模型创建、编译及训练。
> mlp_model <- keras_model_sequential()
>
> mlp_model %>%
+   layer_dense(128, input_shape=c(128*128*3)) %>%
+   layer_activation("relu") %>%
+   layer_batch_normalization() %>%
+   layer_dense(256) %>%
+   layer_activation("relu") %>%
+   layer_batch_normalization() %>%
+   layer_dense(512) %>%
+   layer_activation("relu") %>%
+   layer_batch_normalization() %>%
+   layer_dense(1024) %>%
+   layer_activation("relu") %>%
+   layer_dropout(0.2) %>%
+   layer_dense(10) %>%
+   layer_activation("softmax")
>
> mlp_model %>%
+   compile(loss="categorical_crossentropy",optimizer="adam",metrics="accuracy")
>
> mlp_fit <- mlp_model %>%
+   fit(
+     x=array_reshape(train_flower_tensors, c(length(index),128*128*3)),
+     y=train_flower_targets,
+     shuffle=T,
+     batch_size=64,
+     validation_split=0.1,
+     epochs=30
+   )> options(repr.plot.width=9,repr.plot.height=9)
> plot(mlp_fit)


模型出现严重过拟合现象。训练集在第8个训练周期时准确率已经达到1,此时验证集的准确率仅有0.3,且之后训练周期的验证集准确率呈现下降趋势。
最后,利用predict_classes()对测试集进行类别预测,并查看每个测试样本的实际标签及预测标签。

> pred_label <- mlp_model %>%
+   predict_classes(x=array_reshape(test_flower_tensors,
+                              c(dim(test_flower_tensors)[1],128*128*3)),
+                   verbose = 0) # 对测试集进行预测
>
> result <- data.frame(flowers[-index,], # 测试集实际标签
+                 'pred_label' = pred_label) # 测试集预测标签
> result$isright <- ifelse(result$label==result$pred_label,1,0) # 判断预测是否正确
> result  # 查看结果file     label   pred_label  isright
10  0010.png     0          0       1
17  0017.png     0          9       0
30  0030.png     6          1       0
35  0035.png     3          5       0
43  0043.png     7          7       1
45  0045.png     1          0       0
52  0052.png     4          8       0
60  0060.png     8          0       0
64  0064.png     8          8       1
70  0070.png     4          8       0
71  0071.png     9          5       0
76  0076.png     3          5       0
95  0095.png     1          1       1
123 0123.png     4          5       0
160 0160.png     3          5       0
162 0162.png     9          7       0
197 0197.png     6          3       0
201 0201.png     1          5       0
207 0207.png     0          0       1

在19个训练样本中,仅有5个样本的标签被预测正确,分别为0010.png、0043.png、0064.png、0095.png和0207.png。
测试集的整体准确率为26.3%,仅仅比基准线10%(一共10个类别,随便乱猜都有10%猜对的可能)好一些。显然,此模型的结果是不太令人满意的。下一步将构建一个简单的卷积神经网络(CNN),查看模型的预测能力。
2. CNN模型建立与预测
此案例我们的卷积神经网络只包含一个卷积层,以下程序代码实现模型创建、编译及训练。

> cnn_model %>%
+   layer_conv_2d(filter = 32, kernel_size = c(3,3), input_shape = c(128, 128, 3)) %>%
+   layer_activation("relu") %>%
+   layer_max_pooling_2d(pool_size = c(2,2)) %>%
+   layer_flatten() %>%
+   layer_dense(64) %>%
+   layer_activation("relu") %>%
+   layer_dropout(0.5) %>%
+   layer_dense(10) %>%
+   layer_activation("softmax")
>
> cnn_model %>% compile(
+   loss = "categorical_crossentropy",
+   optimizer = optimizer_rmsprop(lr = 0.001, decay = 1e-6),
+   metrics = "accuracy"
+ )
> cnn_fit <- cnn_model %>%
+   fit(
+     x=train_flower_tensors,
+     y=train_flower_targets,
+     shuffle=T,
+     batch_size=64,
+     validation_split=0.1,
+     epochs=30
+   )
> plot(cnn_fit)


CNN效果明显优于MLP。利用训练好的CNN模型对测试集进行预测,并计算测试集的整体准确率。

> pred_label1 <- cnn_model %>%
+   predict_classes(x=test_flower_tensors,
+                verbose = 0) # 对测试集进行预测
>
> cnn_result <- data.frame(flowers[-index,], # 测试集实际标签
+                     'pred_label' = pred_label1) # 测试集预测标签
> cnn_result$isright <- ifelse(cnn_result$label==cnn_result$pred_label,1,0) #判断预测正确性
> # cnn_result  # 查看结果
> # 查看测试集的整体准确率
> cat(paste('测试集的准确率为:',
+         round(sum(cnn_result$isright)*100/dim(cnn_result)[1],1),"%"))
测试集的准确率为: 57.9 %

CNN模型对测试集的预测准确率达到58%,远优于MLP模型。
本书最后面还利用数据增强技术进一步提升模型准确率。通过数据增强技术模型对测试集的预测准确率达到68%,是个不小的进步。

对彩色花图像进行分类-基于R语言的Keras实现相关推荐

  1. Protein Cell:基于R语言的微生物组数据挖掘最佳流程(大众评审截止14号晚6点)...

    Protein & Cell综述:基于R语言的微生物组数据挖掘的最佳流程 近日,中国农业科学院刘永鑫组联合南京农业大学袁军组在国际期刊 Protein & Cell (IF = 15. ...

  2. 基于R语言一元线性回归模型实例及代码

    基于R语言一元线性回归模型实例及代码 题目描述 数据特征及可视化 建立模型与初步评价 (自己写lm()代码) 显著性检验 整体显著性检验 数学理论 系数显著性检验 代码实现系统显著性检验 回归诊断 异 ...

  3. canoco5主成分分析步骤_基于R语言的主成分分析

    基于R语言的主成分分析 加入的SPSS群里有人问,怎么用SPSS进行主成分分析.确实没有注意到这种操作.很好奇,于是翻了翻孙振球的<医学统计学>,发现主成分分析这一块,竟使用了SAS!后来 ...

  4. r语言 线性回归 相关系数_基于R语言的lmer混合线性回归模型

    原文 基于R语言的lmer混合线性回归模型​tecdat.cn 混合模型适合需求吗? 混合模型在很多方面与线性模型相似.它估计一个或多个解释变量对响应变量的影响.混合模型的输出将给出一个解释值列表,其 ...

  5. 基于R语言实现的交通时空大数据处理

    2019独角兽企业重金招聘Python工程师标准>>> 基于R语言实现的交通时空大数据处理 Import public NYC taxi and Uber trip data int ...

  6. 【R语言实验】基于R语言的时间序列平稳性检验

    一.实验项目名称:基于R语言的时间序列平稳性检验 二.实验目的与要求: 平稳时间序列的概念,平稳性检验的时序图检验方法和自相关图检验方法. 三.实验原理: 时序图和自相关图检验时间序列的平稳性依据: ...

  7. 055B ENMTools教程-基于R语言对MaxEnt模型优化-MaxEnt调参教程--更新日期2021-9

    055B-1 视频附带资料下载和密码:软件-数据-文献下载-持续更新 055B-2 ENMTools软件下载安装 055B-3 R软件和工具包安装 055B-4 生物气候因子的精度说明与选择方法(理论 ...

  8. 基于R语言或Matlab直接读取压缩包中的数据

    写在前面 以gosif网站上的tiff数据为例. 该数据是地学上常用的一种数据,希望读取该网站上的gosif数据:http://data.globalecology.unh.edu/data/GOSI ...

  9. 基于R语言混合效应模型(mixed model)案例研究

    全文链接: http://tecdat.cn/?p=2596 在本文中,我们描述了灵活的竞争风险回归模型.回归模型被指定为转移概率,也就是竞争性风险设置中的累积发生率(点击文末"阅读原文&q ...

最新文章

  1. redis五大数据类型使用场景
  2. 学习 TTreeView [8] - AlphaSort、CustomSort、SortType
  3. c mysql 编译_MySQL编译安装之cmake
  4. tomcat temp 大量 upload 文件_渗透测试之文件上传漏洞总结
  5. 去超市一定要存包吗_大桥路某超市收银时出现多收现象!大家付完钱一定要核对...
  6. c语言编译前端,c语言编译器前端的设计与实现.doc
  7. linux .bin文件处理,linux下制作.bin文件方法简介
  8. Linux shell 对话框,如何在 Bash Shell 脚本中显示对话框
  9. USACO 3.4 Closed Fences (计算几何)
  10. Android新增输入设备
  11. java代码split分割数字类
  12. notebook打开外部文件_NOTEBOOK文件扩展名 - 什么是.notebook以及如何打开? - ReviverSoft...
  13. QT 打开选择文件对话框
  14. Java导出word模板
  15. SAI绘制神秘人教程
  16. 天津工业大学c语言题库,天津工业大学计算机专业C语言经典笔记
  17. 如何利用SEO方式使网站增加流量
  18. IO有Buffered IO 和 Direct IO
  19. 【VulnHub靶场】——BOREDHACKERBLOG: CLOUD AV
  20. 如何判断一个网站是WordPress搭建的网站以及网站SEO网络推广

热门文章

  1. Matlab的plot函数画线显示空白问题解决
  2. 【java有限状态机选型】
  3. 为 TDesignBlazor 添加暗黑模式
  4. 索尼美能达50微-版本区别及实拍测评(sony/minolta)50 f2.8 macro
  5. usaco-5.1-fc-passed
  6. PS批量给图片加水印
  7. 3.1 项目经理的角色习题集
  8. 华为云“云上先锋”·AI主题赛(垃圾分类)-Top7复盘
  9. 福岛第一核电站的辐射水平已明显下降
  10. 1905 统计子岛屿