这有什么意义呢?ACC中的值本来就是100,B中的值本来就是20,是的,在本例中,的确没有意义,但在实际工作中,则在PUSH B后往往要执行其他指令,而且这些指令会把A中的值,B中的值改掉,所以在程序的结束,如果我们要把A和B中的值恢复原值,那么这些指令就有意义了。

还有一个问题,如果我不用堆栈,比如说在PUSH ACC指令处用MOV 60H,A,在PUSH B处用指令MOV 61H,B,然后用MOV A,60H,MOV B,61H来替代两条POP指令,不是也一样吗?是的,从结果上看是一样的,但是从过程看是不一样的,PUSH和POP指令都是单字节,单周期指令,而 MOV指令则是双字节,双周期指令。更何况,堆栈的作用不止于此,所以一般的计算机上都设有堆栈,而我们在编写子程序,需要保存数据时,通常也不采用后面的方法,而是用堆栈的方法来实现。

例:写出以下程序的运行结果

MOV 30H,#12

MOV 31H,#23

PUSH 30H

PUSH 31H

POP 30H

POP 31H

结果是30H中的值变为23,而31H中的值则变为12。也就两者进行了数据交换。从这个例子可以看出:使用堆栈时,入栈的书写顺序和出栈的书写顺序必须相反,才能保证数据被送回原位,否则就要出错了。

算术运算类指令

1.不带进位位的加法指令

ADD A,#DATA ;例:ADD A,#10H

ADD A,direct ;例:ADD A,10H

ADD A,Rn ;例:ADD A,R7

ADD A,@Ri ;例:ADD A,@R0

用途:将A中的值与其后面的值相加,最终结果否是回到A中。

例:

MOV A,#30H

ADD A,#10H

则执行完本条指令后,A中的值为40H。

2.带进位位的加法指令

ADDC A,Rn

ADDC A,direct

ADDC A,@Ri

ADDC A,#data

用途:将A中的值和其后面的值相加,并且加上进位位C中的值。

说明:由于51单片机是一种8位机,所以只能做8位的数学运算,但8位运算的范围只有0-255,这在实际工作中是不够的,因此就要进行扩展,一般是将2个8位的数学运算合起来,成为一个16位的运算,这样,可以表达的数的范围就可以达到0-65535。如何合并呢?其实很简单,让我们看一个 10进制数的例子:

66+78。

这两个数相加,我们根本不在意这的过程,但事实上我们是这样做的:先做6+8(低位),然后再做6+7,这是高位。做了两次加法,只是我们做的时候并没有刻意分成两次加法来做罢了,或者说我们并没有意识到我们做了两次加法。之所以要分成两次来做,是因为这两个数超过了一位数所能表达的范置(0-9)。

在做低位时产生了进位,我们做的时候是在适当的位置点一下,然后在做高位加法是将这一点加进去。那么计算机中做16位加法时同样如此,先做低 8位的,如果两数相加产生了进位,也要“点一下”做个标记,这个标记就是进位位C,在PSW中。在进行高位加法是将这个C加进去。例:1067H+10A0H,先做67H+A0H=107H,而107H显然超过了0FFH,因此最终保存在A中的是7,而1则到了PSW中的CY位了,换言之,CY就相当于是100H。然后再做10H+10H+CY,结果是21H,所以最终的结果是2107H。

3.带借位的减法指令

SUBB A,Rn

SUBB A,direct

SUBB A,@Ri

SUBB A,#data

设(每个H,(R2)=55H,CY=1,执行指令SUBB A,R2之后,A中的值为73H。

说明:没有不带借位的减法指令,如果需要做不带位的减法指令(在做第一次相减时),只要将CY清零即可。

4.乘法指令

MUL AB

此指令的功能是将A和B中的两个8位无符号数相乘,两数相乘结果一般比较大,因此最终结果用1个16位数来表达,其中高8位放在B中,低8位放在A中。在乘积大于FFFFFH(65535)时,0V置1(溢出),否则OV为0,而CY总是0。

例:(A)=4EH,(B)=5DH,执行指令

MUL AB后,乘积是1C56H,所以在B中放的是1CH,而A中放的则是56H。

5.除法指令

DIV AB

此指令的功能是将A中的8位无符号数除以B中的8位无符号数(A/B)。除法一般会出现小数,但计算机中可没法直接表达小数,它用的是我们小学生还没接触到小数时用的商和余数的概念,如13 /5,其商是2,余数是3。除了以后,商放在A中,余数放在B中。CY和OV都是0。如果在做除法前B中的值是00H,也就是除数为0,那么0V=1。

6.加1指令

INC A

INC Rn

INC direct

INC @Ri

INC DPTR

用途很简单,就是将后面目标中的值加1。例:(A)=12H,(R0)=33H,(21H)=32H,(34H)=22H,DPTR=1234H。执行下面的指令:

INC A (A)=13H

INC R2 (R0)=34H

INC 21H (21H)=33H

INC @R0 (34H)=23H

INC DPTR 9; ( DPTR)=1235H

结果如上所示。

说明:从结果上看INC A和ADD A,#1差不多,但INC A是单字节,单周期指令,而ADD #1则是双字节,双周期指令,而且INC A不会影响PSW位,如(A)=0FFH,INC A后(A)=00H,而CY依然保持不变。如果是ADD A ,#1,则(A)=00H,而CY一定是1。因此加1指令并不适合做加法,事实上它主要是用来做计数、地址增加等用途。另外,加法类指令都是以A为核心的其中一个数必须放在A中,而运算结果也必须放在A中,而加1类指令的对象则广泛得多,可以是寄存器、内存地址、间址寻址的地址等等。

7.减1指令

DEC A

DEC RN

DEC direct

DEC @Ri

与加1指令类似,就不多说了。

逻辑运算类指令:

1.对累加器A的逻辑操作:

CLR A ;将A中的值清0,单周期单字节指令,与MOV A,#00H效果相同。

CPL A ;将A中的值按位取反

RL A ;将A中的值逻辑左移

RLC A ;将A中的值加上进位位进行逻辑左移

RR A ;将A中的值进行逻辑右移

RRC A ;将A中的值加上进位位进行逻辑右移

SWAP A ;将A中的值高、低4位交换。

例:(A)=73H,则执行CPL A,这样进行:

73H化为二进制为01110011,

逐位取反即为 10001100,也就是8CH。

RL A是将(A)中的值的第7位送到第0位,第0位送1位,依次类推。

例:A中的值为68H,执行RL A。68H化为二进制为01101000,按上图进行移动。01101000化为11010000,即D0H。

RLC A,是将(A)中的值带上进位位(C)进行移位。

例:A中的值为68H,C中的值为1,则执行RLC A

1 01101000后,结果是0 11010001,也就是C进位位的值变成了0,而(A)则变成了D1H。

RR A和RRC A就不多谈了,请大家参考上面两个例子自行练习吧。

SWAP A,是将A中的值的高、低4位进行交换。

例:(A)=39H,则执行SWAP A之后,A中的值就是93H。怎么正好是这么前后交换呢?因为这是一个16进制数,每1个16进位数字代表4个二进位。注意,如果是这样的:(A)=39,后面没H,执行SWAP A之后,可不是(A)=93。要将它化成二进制再算:39化为二进制是10111,也就是0001,0111高4位是0001,低4位是0111,交换后是01110001,也就是71H,即113。

2.逻辑与指令

ANL A,Rn ;A与Rn中的值按位与,结果送入A中

ANL A,direct ;A与direct中的值按位与,结果送入A中

ANL A,@Ri ;A与间址寻址单元@Ri中的值按位与,结果送入A中

ANL A,#data ;A与立即数data按位与,结果送入A中

ANL direct,A ;direct中值与A中的值按位与,结果送入direct中

ANL direct,#data ;direct中的值与立即数data按位与,结果送入direct中。

这几条指令的关键是知道什么是逻辑与。这里的逻辑与是指按位与

例:71H和56H相与则将两数写成二进制形式:

(71H) 01110001

(56H) 00100110

结果 00100000 即20H,从上面的式子可以看出,两个参与运算的值只要其中有一个位上是0,则这位的结果就是0,两个同是1,结果才是1。

c语言51单片机rrc,MCS-51单片机汇编指令详解相关推荐

  1. PIC中档单片机汇编指令详解(6)

    2019独角兽企业重金招聘Python工程师标准>>> 立即数与控制操作指令 SLEEP 单片机进入低功耗休眠模式 语法形式:SLEEP 操作数:无 执行时间:一个指令周期 执行过程 ...

  2. c51语言如何按位异或,51单片机教程:单片机逻辑与或异或指令详解

    而所有的或指令,就是将与指仿中的ANL 换成ORL,而异或指令则是将ANL 换成XRL.即 或指令: ORL A,Rn ;A和Rn中的值按位'或',结果送入A中 ORL A,direct;A和与间址寻 ...

  3. PIC中档单片机汇编指令详解(4)

    INCFSZ f数据寄存器内容递增1,并作判0标志 语法形式:INCFSZ f,d 操作数:f为数据寄存器的低7位地址(0x00~0x7F) d为目的寄存器的低7位地址(0x00~0x7F) 当d=f ...

  4. c语言将两个16位变为一个32位,16位汇编第六讲汇编指令详解第第三讲(示例代码)...

    16位汇编第六讲汇编指令详解第第三讲 1.十进制调整指令 1. 十进制数调整指令对二进制运算的结果进行十进制调整,以得到十进制的运算结果 2.分成压缩BCD码和非压缩BCD码调整 简而言之: 以前的时 ...

  5. 51单片机串口通信发送以及接收代码详解1

    #include <reg51.h> //实验现象:单片接收电脑发送的字符串,并发回给PC端的代码.//函数声明 void uart_init(void); void uart_seng_ ...

  6. 51单片机串口通信发送以及接收代码详解2

    #include <reg51.h> //实验现象:在电脑端没按下发送的时候,单片一直给电脑发送aaa字符串: //实验现象:在电脑端按下发送的时候,结束字符串aaa的发送代码,执行单片接 ...

  7. c语言 定时器作用,单片机定时器的作用及使用方法详解

    单片机定时器的作用及使用方法详解 单片机定时器在单片机的功能是很重要的,它一般被用作定时功能,来做定时检测.定时响应和定时控制,并且可以产生毫秒宽的脉冲信号来驱动步进电机.计时和计数的最终功能是通过计 ...

  8. 单片机-bmp280大气压强与温度传感器使用详解

    单片机-bmp280大气压强与温度传感器使用详解" 转载: https://blog.csdn.net/sunshinebooming/article/details/79637822 最近 ...

  9. 电大计算机C语言1253,1253《C语言程序设计》电大期末精彩试题及其问题详解

    1253<C语言程序设计>电大期末精彩试题及其问题详解 (34页) 本资源提供全文预览,点击全文预览即可全文预览,如果喜欢文档就下载吧,查找使用更方便哦! 19.90 积分 实用文档&l ...

  10. 单片机I/O口的结构的详解

    1.什么是源型 漏型?什么是上拉电阻?下拉电阻?什么是 线驱动输出 集电极开路输出,推挽式输出? 我们先来说说集电极开路输出的结构.集电极开路输出的结构如图1所示,右边的那个三极管集电极什么都不接,所 ...

最新文章

  1. pandas python groupby_pandas之分组groupby()的使用整理与总结
  2. loadrunner controller:实时查看VUser的运行情况
  3. 蔚来汽车股票一日成交额达274亿美元 居美股榜首
  4. 记录——《C Primer Plus (第五版)》第十章编程练习第九题
  5. 获取一个APK的版本号
  6. K8S 通过 yaml 文件创建资源
  7. Python验证码识别:利用pytesser识别简单图形验证码
  8. 鲸云效解读A/B测试,get这一篇就够了
  9. python打印数组
  10. 英威腾GD200A系列变频器实现多段速控制的相关参数设置及接线
  11. CRACK小试牛刀:关于GALGAME银色遥远爆破记录
  12. 浪潮之巅-读书笔记二
  13. c语言三维空间间绕坐标轴变换,浙江大学软件学院三维动画与交互技术考试概念拾掇...
  14. 数据分析——1.环境搭建(Jupyter Lab安装教程)
  15. FPGA交通灯 Verilog Modelsim
  16. 医学心脏数据集分割建模实战
  17. Attention Is All You Need读后感
  18. Multisim14.0 简易交通灯设计
  19. Visual Studio 2019 和 qt 5.15.1 下 opengl 的运用 - Lighting - 03 - Materials
  20. Error: Flutter plugin not installed; this adds Flutter specific functionality. - Flutter

热门文章

  1. Java 聊天室实现
  2. lumion自动保存_全是踩过的坑,20条新人必看的Lumion良好操作习惯
  3. python 生意参谋操作
  4. 芯片厂商的电机控制方案
  5. 两场直播丨易鲸捷分布式数据库的并发控制 、PostgreSQL日常工作分享
  6. 输入流-读取文件内容
  7. 3.郝斌C语言笔记——C编程预备计算机专业知识
  8. 手机如何打开.html,手机怎么打开HTML
  9. 计算机主机机箱结构图,带大家认识电脑主机拆开,内部结构
  10. python实战演练一:抓取我自己csdm博客信息的标题和文章链接,并存入文件夹《抓取信息》