文章目录

  • 1. 继承Module类来构造模型
  • 2. Module的子类
    • 2.1 Sequential类
    • 2.2 ModuleList类
    • 2.3 ModuleDict类
  • 3. 构造复杂的模型
  • 小结

这里我们介绍一种基于Module类的模型构造方法:它让模型构造更加灵活。

1. 继承Module类来构造模型

Module类是nn模块里提供的一个模型构造类,是所有神经网络模块的基类,我们可以继承它来定义我们想要的模型。下面继承Module类构造本节开头提到的多层感知机。这里定义的MLP类重载了Module类的__init__函数和forward函数。它们分别用于创建模型参数和定义前向计算。前向计算也即正向传播。

import torch
from torch import nnclass MLP(nn.Module):# 声明带有模型参数的层,这里声明了两个全连接层def __init__(self, **kwargs):# 调用MLP父类Module的构造函数来进行必要的初始化。这样在构造实例时还可以指定其他函数# 参数,如“模型参数的访问、初始化和共享”一节将介绍的模型参数paramssuper(MLP, self).__init__(**kwargs)self.hidden = nn.Linear(784, 256) # 隐藏层self.act = nn.ReLU()self.output = nn.Linear(256, 10)  # 输出层# 定义模型的前向计算,即如何根据输入x计算返回所需要的模型输出def forward(self, x):a = self.act(self.hidden(x))return self.output(a)

以上的MLP类中无须定义反向传播函数。系统将通过自动求梯度而自动生成反向传播所需的backward函数。

我们可以实例化MLP类得到模型变量net。下面的代码初始化net并传入输入数据X做一次前向计算。其中,net(X)会调用MLP继承自Module类的__call__函数,这个函数将调用MLP类定义的forward函数来完成前向计算。

X = torch.rand(2, 784)
net = MLP()
print(net)
net(X)

输出:

MLP((hidden): Linear(in_features=784, out_features=256, bias=True)(act): ReLU()(output): Linear(in_features=256, out_features=10, bias=True)
)
tensor([[-0.1798, -0.2253,  0.0206, -0.1067, -0.0889,  0.1818, -0.1474,  0.1845,-0.1870,  0.1970],[-0.1843, -0.1562, -0.0090,  0.0351, -0.1538,  0.0992, -0.0883,  0.0911,-0.2293,  0.2360]], grad_fn=<ThAddmmBackward>)

注意,这里并没有将Module类命名为Layer(层)或者Model(模型)之类的名字,这是因为该类是一个可供自由组建的部件。它的子类既可以是一个层(如PyTorch提供的Linear类),又可以是一个模型(如这里定义的MLP类),或者是模型的一个部分。我们下面通过两个例子来展示它的灵活性。

2. Module的子类

我们刚刚提到,Module类是一个通用的部件。事实上,PyTorch还实现了继承自Module的可以方便构建模型的类: 如SequentialModuleListModuleDict等等。

2.1 Sequential类

当模型的前向计算为简单串联各个层的计算时,Sequential类可以通过更加简单的方式定义模型。这正是Sequential类的目的:它可以接收一个子模块的有序字典(OrderedDict)或者一系列子模块作为参数来逐一添加Module的实例,而模型的前向计算就是将这些实例按添加的顺序逐一计算。

下面我们实现一个与Sequential类有相同功能的MySequential类。这或许可以帮助读者更加清晰地理解Sequential类的工作机制。

class MySequential(nn.Module):from collections import OrderedDictdef __init__(self, *args):super(MySequential, self).__init__()if len(args) == 1 and isinstance(args[0], OrderedDict): # 如果传入的是一个OrderedDictfor key, module in args[0].items():self.add_module(key, module)  # add_module方法会将module添加进self._modules(一个OrderedDict)else:  # 传入的是一些Modulefor idx, module in enumerate(args):self.add_module(str(idx), module)def forward(self, input):# self._modules返回一个 OrderedDict,保证会按照成员添加时的顺序遍历成员for module in self._modules.values():input = module(input)return input

我们用MySequential类来实现前面描述的MLP类,并使用随机初始化的模型做一次前向计算。

net = MySequential(nn.Linear(784, 256),nn.ReLU(),nn.Linear(256, 10), )
print(net)
net(X)

输出:

MySequential((0): Linear(in_features=784, out_features=256, bias=True)(1): ReLU()(2): Linear(in_features=256, out_features=10, bias=True)
)
tensor([[-0.0100, -0.2516,  0.0392, -0.1684, -0.0937,  0.2191, -0.1448,  0.0930,0.1228, -0.2540],[-0.1086, -0.1858,  0.0203, -0.2051, -0.1404,  0.2738, -0.0607,  0.0622,0.0817, -0.2574]], grad_fn=<ThAddmmBackward>)

2.2 ModuleList类

ModuleList接收一个子模块的列表作为输入,然后也可以类似List那样进行append和extend操作:

net = nn.ModuleList([nn.Linear(784, 256), nn.ReLU()])
net.append(nn.Linear(256, 10)) # # 类似List的append操作
print(net[-1])  # 类似List的索引访问
print(net)
# net(torch.zeros(1, 784)) # 会报NotImplementedError

输出:

Linear(in_features=256, out_features=10, bias=True)
ModuleList((0): Linear(in_features=784, out_features=256, bias=True)(1): ReLU()(2): Linear(in_features=256, out_features=10, bias=True)
)

既然SequentialModuleList都可以进行列表化构造网络,那二者区别是什么呢。ModuleList仅仅是一个储存各种模块的列表,这些模块之间没有联系也没有顺序(所以不用保证相邻层的输入输出维度匹配),而且没有实现forward功能需要自己实现,所以上面执行net(torch.zeros(1, 784))会报NotImplementedError;而Sequential内的模块需要按照顺序排列,要保证相邻层的输入输出大小相匹配,内部forward功能已经实现。

ModuleList的出现只是让网络定义前向传播时更加灵活,见下面官网的例子。

class MyModule(nn.Module):def __init__(self):super(MyModule, self).__init__()self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)])def forward(self, x):# ModuleList can act as an iterable, or be indexed using intsfor i, l in enumerate(self.linears):x = self.linears[i // 2](x) + l(x)return x

另外,ModuleList不同于一般的Python的list,加入到ModuleList里面的所有模块的参数会被自动添加到整个网络中,下面看一个例子对比一下。

class Module_ModuleList(nn.Module):def __init__(self):super(Module_ModuleList, self).__init__()self.linears = nn.ModuleList([nn.Linear(10, 10)])class Module_List(nn.Module):def __init__(self):super(Module_List, self).__init__()self.linears = [nn.Linear(10, 10)]net1 = Module_ModuleList()
net2 = Module_List()print("net1:")
for p in net1.parameters():print(p.size())print("net2:")
for p in net2.parameters():print(p)

输出:

net1:
torch.Size([10, 10])
torch.Size([10])
net2:

2.3 ModuleDict类

ModuleDict接收一个子模块的字典作为输入, 然后也可以类似字典那样进行添加访问操作:

net = nn.ModuleDict({'linear': nn.Linear(784, 256),'act': nn.ReLU(),
})
net['output'] = nn.Linear(256, 10) # 添加
print(net['linear']) # 访问
print(net.output)
print(net)
# net(torch.zeros(1, 784)) # 会报NotImplementedError

输出:

Linear(in_features=784, out_features=256, bias=True)
Linear(in_features=256, out_features=10, bias=True)
ModuleDict((act): ReLU()(linear): Linear(in_features=784, out_features=256, bias=True)(output): Linear(in_features=256, out_features=10, bias=True)
)

ModuleList一样,ModuleDict实例仅仅是存放了一些模块的字典,并没有定义forward函数需要自己定义。同样,ModuleDict也与Python的Dict有所不同,ModuleDict里的所有模块的参数会被自动添加到整个网络中。

3. 构造复杂的模型

虽然上面介绍的这些类可以使模型构造更加简单,且不需要定义forward函数,但直接继承Module类可以极大地拓展模型构造的灵活性。下面我们构造一个稍微复杂点的网络FancyMLP。在这个网络中,我们通过get_constant函数创建训练中不被迭代的参数,即常数参数。在前向计算中,除了使用创建的常数参数外,我们还使用Tensor的函数和Python的控制流,并多次调用相同的层。

class FancyMLP(nn.Module):def __init__(self, **kwargs):super(FancyMLP, self).__init__(**kwargs)self.rand_weight = torch.rand((20, 20), requires_grad=False) # 不可训练参数(常数参数)self.linear = nn.Linear(20, 20)def forward(self, x):x = self.linear(x)# 使用创建的常数参数,以及nn.functional中的relu函数和mm函数x = nn.functional.relu(torch.mm(x, self.rand_weight.data) + 1)# 复用全连接层。等价于两个全连接层共享参数x = self.linear(x)# 控制流,这里我们需要调用item函数来返回标量进行比较while x.norm().item() > 1:x /= 2if x.norm().item() < 0.8:x *= 10return x.sum()

在这个FancyMLP模型中,我们使用了常数权重rand_weight(注意它不是可训练模型参数)、做了矩阵乘法操作(torch.mm)并重复使用了相同的Linear层。下面我们来测试该模型的前向计算。

X = torch.rand(2, 20)
net = FancyMLP()
print(net)
net(X)

输出:

FancyMLP((linear): Linear(in_features=20, out_features=20, bias=True)
)
tensor(0.8432, grad_fn=<SumBackward0>)

因为FancyMLPSequential类都是Module类的子类,所以我们可以嵌套调用它们。

class NestMLP(nn.Module):def __init__(self, **kwargs):super(NestMLP, self).__init__(**kwargs)self.net = nn.Sequential(nn.Linear(40, 30), nn.ReLU()) def forward(self, x):return self.net(x)net = nn.Sequential(NestMLP(), nn.Linear(30, 20), FancyMLP())X = torch.rand(2, 40)
print(net)
net(X)

输出:

Sequential((0): NestMLP((net): Sequential((0): Linear(in_features=40, out_features=30, bias=True)(1): ReLU()))(1): Linear(in_features=30, out_features=20, bias=True)(2): FancyMLP((linear): Linear(in_features=20, out_features=20, bias=True))
)
tensor(14.4908, grad_fn=<SumBackward0>)

小结

  • 可以通过继承Module类来构造模型。
  • SequentialModuleListModuleDict类都继承自Module类。
  • Sequential不同,ModuleListModuleDict并没有定义一个完整的网络,它们只是将不同的模块存放在一起,需要自己定义forward函数。
  • 虽然Sequential等类可以使模型构造更加简单,但直接继承Module类可以极大地拓展模型构造的灵活性。

pytorch学习笔记(十五):模型构造相关推荐

  1. pytorch学习笔记十五:Hook函数与CAM可视化

    一.Hook函数概念 Hook函数机制:不改变模型主体,实现额外功能,像一个挂件或挂钩等. 为什么需要这个函数呢?这与Pytorch的动态图计算机制有关,在动态图的计算过程中,一些中间变量会释放掉,比 ...

  2. PyTorch学习笔记(五):模型定义、修改、保存

    往期学习资料推荐: 1.Pytorch实战笔记_GoAI的博客-CSDN博客 2.Pytorch入门教程_GoAI的博客-CSDN博客 本系列目录: PyTorch学习笔记(一):PyTorch环境安 ...

  3. python复制指定字符串_python3.4学习笔记(十五) 字符串操作(string替换、删除、截取、复制、连接、比较、查找、包含、大小写转换、分割等)...

    python3.4学习笔记(十五) 字符串操作(string替换.删除.截取.复制.连接.比较.查找.包含.大小写转换.分割等) python print 不换行(在后面加上,end=''),prin ...

  4. windows内核开发学习笔记十五:IRP结构

    windows内核开发学习笔记十五:IRP结构   IRP(I/O Request Package)在windows内核中,有一种系统组件--IRP,即输入输出请求包.当上层应用程序需要访问底层输入输 ...

  5. Polyworks脚本开发学习笔记(十五)-用Python连接Polyworks的COM组件

    Polyworks脚本开发学习笔记(十五)-用Python连接Polyworks的COM组件 用Polyworks脚本开发,没有高级语言的支持,功能难免单一,一些比较复杂的交互实现不了,界面和报告也很 ...

  6. IOS之学习笔记十五(协议和委托的使用)

    1.协议和委托的使用 1).协议可以看下我的这篇博客 IOS之学习笔记十四(协议的定义和实现) https://blog.csdn.net/u011068702/article/details/809 ...

  7. Mr.J-- jQuery学习笔记(十五)--实现页面的对联广告

    请看之前的:Mr.J-- jQuery学习笔记(十四)--动画显示隐藏 话不多说,直接上demo <!DOCTYPE html> <html lang="en"& ...

  8. 世界是有生命的(通向财富自由之路学习笔记十五)

    最近因为工作调度的事情,有了一段空闲的日子,有比较多的时间来回望自己走过的路以及如何走好以后的路.之前忙得很少时间来写博文,很少时间来写读书笔记,逐渐将自己一些很好的习惯丢弃了.从今天起将重拾写博文的 ...

  9. pytorch学习笔记十二:优化器

    前言 机器学习中的五个步骤:数据 --> 模型 --> 损失函数 --> 优化器 --> 迭代训练,通过前向传播,得到模型的输出和真实标签之间的差异,也就是损失函数,有了损失函 ...

  10. 前端学习笔记(十五)

    第十五章 HTML5新增标签 一.HTML5概述 1.简介         HTML5万维网的核心语言.标准通用标记语言下的一个应用超文本标记语言的第五次大修改.HTML5将成为 HTML.XHTML ...

最新文章

  1. Spring Data JPA 教程(翻译)
  2. JupyterNotebook随记(part2)--更改JupyterNotebook主题
  3. 使用nodejs创建Marketing Cloud的contact数据
  4. 指派问题(匈牙利算法)
  5. 【LeetCode笔记】287. 寻找重复数(Java、快慢指针、原地、链表)
  6. Unity中uGUI的控件事件穿透逻辑
  7. python的常用语句_python常用语句
  8. c语言成绩统计与学籍管理源码,[源码和文档分享]基于C语言的学生成绩管理系统...
  9. 菁英班OJ赛2022-2-24(第一周)
  10. 贪心/思维题 UVA 11292 The Dragon of Loowater
  11. C#调用默认浏览器打开网页的几种方法
  12. 计算机重装后如何添加打印机,系统重装后,电脑无法连接打印机怎么办?
  13. redis集群异常 — redis.clients.jedis.exceptions.JedisConnectionException: no reachable node in cluster
  14. 基于ZYNQ的VGA驱动
  15. Android--DES加密解密
  16. 一脸懵逼加从入门到绝望学习hadoop之Caused by: java.net.UnknownHostException: master报错
  17. python和jsp哪个好学_Python,Java和JavaScript,学哪个编程语言好就业?
  18. 如何设计大自然?#合成美学 #无学科专栏
  19. mysql 制定索引_使用use index优化sql查询
  20. ubuntu18.04 安装 ros2 foxy

热门文章

  1. Linux内核分析第一周——计算机是如何工作的
  2. 在cdh5.1.3中在mapreduce使用hbase
  3. 豆瓣上关于一万小时天才理论一书的一个评论
  4. 网页微信协议分析(一)——登录
  5. 可并堆试水--BZOJ1367: [Baltic2004]sequence
  6. sklearn-preprocessing预处理数据的方法
  7. 【转】Cron表达式简介
  8. LVDS之一_理解SerDes
  9. 计蒜之道2015程序设计大赛初赛第三场——腾讯手机地图
  10. DFN-LOW算法---割点、桥、强连通分量