看完了黑马程序员的免费课程,感觉受益匪浅,写个笔记,记录一下

课程地址:SpringCloud+RabbitMQ+Docker+Redis+搜索+分布式,史上最全面的springcloud微服务技术栈课程|黑马程序员Java微服务_哔哩哔哩_bilibili

消息队列在使用过程中,面临着很多实际问题需要思考:

1.消息可靠性

消息从发送,到消费者接收,会经历多个过程:

其中的每一步都可能导致消息丢失,常见的丢失原因包括:

- 发送时丢失:
  - 生产者发送的消息未送达exchange
  - 消息到达exchange后未到达queue
- MQ宕机,queue将消息丢失
- consumer接收到消息后未消费就宕机

针对这些问题,RabbitMQ分别给出了解决方案:

- 生产者确认机制
- mq持久化
- 消费者确认机制
- 失败重试机制

下面我们就通过案例来演示每一个步骤。

首先,导入课前资料提供的demo工程:

项目结构如下:

1.1.生产者消息确认

RabbitMQ提供了publisher confirm机制来避免消息发送到MQ过程中丢失。这种机制必须给每个消息指定一个唯一ID。消息发送到MQ以后,会返回一个结果给发送者,表示消息是否处理成功。

返回结果有两种方式:

- publisher-confirm,发送者确认
  - 消息成功投递到交换机,返回ack
  - 消息未投递到交换机,返回nack
- publisher-return,发送者回执
  - 消息投递到交换机了,但是没有路由到队列。返回ACK,及路由失败原因。

注意:

1.1.1.修改配置

首先,修改publisher服务中的application.yml文件,添加下面的内容:

spring:rabbitmq:publisher-confirm-type: correlatedpublisher-returns: truetemplate:mandatory: true

说明:

- `publish-confirm-type`:开启publisher-confirm,这里支持两种类型:
  - `simple`:同步等待confirm结果,直到超时
  - `correlated`:异步回调,定义ConfirmCallback,MQ返回结果时会回调这个ConfirmCallback
- `publish-returns`:开启publish-return功能,同样是基于callback机制,不过是定义ReturnCallback
- `template.mandatory`:定义消息路由失败时的策略。true,则调用ReturnCallback;false:则直接丢弃消息

1.1.2.定义Return回调

每个RabbitTemplate只能配置一个ReturnCallback,因此需要在项目加载时配置:

修改publisher服务,添加一个:

package cn.itcast.mq.config;import lombok.extern.slf4j.Slf4j;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.BeansException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationContextAware;
import org.springframework.context.annotation.Configuration;@Slf4j
@Configuration
public class CommonConfig implements ApplicationContextAware {@Overridepublic void setApplicationContext(ApplicationContext applicationContext) throws BeansException {// 获取RabbitTemplateRabbitTemplate rabbitTemplate = applicationContext.getBean(RabbitTemplate.class);// 设置ReturnCallbackrabbitTemplate.setReturnCallback((message, replyCode, replyText, exchange, routingKey) -> {// 投递失败,记录日志log.info("消息发送失败,应答码{},原因{},交换机{},路由键{},消息{}",replyCode, replyText, exchange, routingKey, message.toString());// 如果有业务需要,可以重发消息});}
}

1.1.3.定义ConfirmCallback

ConfirmCallback可以在发送消息时指定,因为每个业务处理confirm成功或失败的逻辑不一定相同。

在publisher服务的cn.itcast.mq.spring.SpringAmqpTest类中,定义一个单元测试方法:

public void testSendMessage2SimpleQueue() throws InterruptedException {// 1.消息体String message = "hello, spring amqp!";// 2.全局唯一的消息ID,需要封装到CorrelationData中CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());// 3.添加callbackcorrelationData.getFuture().addCallback(result -> {if(result.isAck()){// 3.1.ack,消息成功log.debug("消息发送成功, ID:{}", correlationData.getId());}else{// 3.2.nack,消息失败log.error("消息发送失败, ID:{}, 原因{}",correlationData.getId(), result.getReason());}},ex -> log.error("消息发送异常, ID:{}, 原因{}",correlationData.getId(),ex.getMessage()));// 4.发送消息rabbitTemplate.convertAndSend("task.direct", "task", message, correlationData);// 休眠一会儿,等待ack回执Thread.sleep(2000);
}

1.2.消息持久化

生产者确认可以确保消息投递到RabbitMQ的队列中,但是消息发送到RabbitMQ以后,如果突然宕机,也可能导致消息丢失。

要想确保消息在RabbitMQ中安全保存,必须开启消息持久化机制。

- 交换机持久化
- 队列持久化
- 消息持久化

1.2.1.交换机持久化

RabbitMQ中交换机默认是非持久化的,mq重启后就丢失。

SpringAMQP中可以通过代码指定交换机持久化:

@Bean
public DirectExchange simpleExchange(){// 三个参数:交换机名称、是否持久化、当没有queue与其绑定时是否自动删除return new DirectExchange("simple.direct", true, false);
}

事实上,默认情况下,由SpringAMQP声明的交换机都是持久化的。

可以在RabbitMQ控制台看到持久化的交换机都会带上`D`的标示:

1.2.2.队列持久化

RabbitMQ中队列默认是非持久化的,mq重启后就丢失。

SpringAMQP中可以通过代码指定队列持久化:

@Bean
public Queue simpleQueue(){// 使用QueueBuilder构建队列,durable就是持久化的return QueueBuilder.durable("simple.queue").build();
}

事实上,默认情况下,由SpringAMQP声明的队列都是持久化的。

可以在RabbitMQ控制台看到持久化的队列都会带上`D`的标示:

1.2.3.消息持久化

利用SpringAMQP发送消息时,可以设置消息的属性(MessageProperties),指定delivery-mode:

- 1:非持久化
- 2:持久化

用java代码指定:

默认情况下,SpringAMQP发出的任何消息都是持久化的,不用特意指定。

1.3.消费者消息确认

RabbitMQ是阅后即焚机制,RabbitMQ确认消息被消费者消费后会立刻删除。

而RabbitMQ是通过消费者回执来确认消费者是否成功处理消息的:消费者获取消息后,应该向RabbitMQ发送ACK回执,表明自己已经处理消息。

设想这样的场景:

- 1)RabbitMQ投递消息给消费者
- 2)消费者获取消息后,返回ACK给RabbitMQ
- 3)RabbitMQ删除消息
- 4)消费者宕机,消息尚未处理

这样,消息就丢失了。因此消费者返回ACK的时机非常重要。

而SpringAMQP则允许配置三种确认模式:

•manual:手动ack,需要在业务代码结束后,调用api发送ack。

•auto:自动ack,由spring监测listener代码是否出现异常,没有异常则返回ack;抛出异常则返回nack

•none:关闭ack,MQ假定消费者获取消息后会成功处理,因此消息投递后立即被删除

由此可知:

- none模式下,消息投递是不可靠的,可能丢失
- auto模式类似事务机制,出现异常时返回nack,消息回滚到mq;没有异常,返回ack
- manual:自己根据业务情况,判断什么时候该ack

一般,我们都是使用默认的auto即可。

1.3.1.演示none模式

修改consumer服务的application.yml文件,添加下面内容:

spring:rabbitmq:listener:simple:acknowledge-mode: none # 关闭ack

修改consumer服务的SpringRabbitListener类中的方法,模拟一个消息处理异常:

@RabbitListener(queues = "simple.queue")
public void listenSimpleQueue(String msg) {log.info("消费者接收到simple.queue的消息:【{}】", msg);// 模拟异常System.out.println(1 / 0);log.debug("消息处理完成!");
}

测试可以发现,当消息处理抛异常时,消息依然被RabbitMQ删除了。

1.3.2.演示auto模式

再次把确认机制修改为auto:

spring:rabbitmq:listener:simple:acknowledge-mode: auto # 关闭ack

在异常位置打断点,再次发送消息,程序卡在断点时,可以发现此时消息状态为unack(未确定状态):

抛出异常后,因为Spring会自动返回nack,所以消息恢复至Ready状态,并且没有被RabbitMQ删除:

1.4.消费失败重试机制

当消费者出现异常后,消息会不断requeue(重入队)到队列,再重新发送给消费者,然后再次异常,再次requeue,无限循环,导致mq的消息处理飙升,带来不必要的压力:

怎么办呢?

1.4.1.本地重试

我们可以利用Spring的retry机制,在消费者出现异常时利用本地重试,而不是无限制的requeue到mq队列。

修改consumer服务的application.yml文件,添加内容:

spring:rabbitmq:listener:simple:retry:enabled: true # 开启消费者失败重试initial-interval: 1000 # 初识的失败等待时长为1秒multiplier: 1 # 失败的等待时长倍数,下次等待时长 = multiplier * last-intervalmax-attempts: 3 # 最大重试次数stateless: true # true无状态;false有状态。如果业务中包含事务,这里改为false

重启consumer服务,重复之前的测试。可以发现:

- 在重试3次后,SpringAMQP会抛出异常AmqpRejectAndDontRequeueException,说明本地重试触发了
- 查看RabbitMQ控制台,发现消息被删除了,说明最后SpringAMQP返回的是ack,mq删除消息了

结论:

- 开启本地重试时,消息处理过程中抛出异常,不会requeue到队列,而是在消费者本地重试
- 重试达到最大次数后,Spring会返回ack,消息会被丢弃

1.4.2.失败策略

在之前的测试中,达到最大重试次数后,消息会被丢弃,这是由Spring内部机制决定的。

在开启重试模式后,重试次数耗尽,如果消息依然失败,则需要有MessageRecovery接口来处理,它包含三种不同的实现:

- RejectAndDontRequeueRecoverer:重试耗尽后,直接reject,丢弃消息。默认就是这种方式

- ImmediateRequeueMessageRecoverer:重试耗尽后,返回nack,消息重新入队

- RepublishMessageRecoverer:重试耗尽后,将失败消息投递到指定的交换机

比较优雅的一种处理方案是RepublishMessageRecoverer,失败后将消息投递到一个指定的,专门存放异常消息的队列,后续由人工集中处理。

1)在consumer服务中定义处理失败消息的交换机和队列

@Bean
public DirectExchange errorMessageExchange(){return new DirectExchange("error.direct");
}
@Bean
public Queue errorQueue(){return new Queue("error.queue", true);
}
@Bean
public Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");
}

2)定义一个RepublishMessageRecoverer,关联队列和交换机

@Bean
public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
}

完整代码:

package cn.itcast.mq.config;import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.DirectExchange;
import org.springframework.amqp.core.Queue;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.amqp.rabbit.retry.MessageRecoverer;
import org.springframework.amqp.rabbit.retry.RepublishMessageRecoverer;
import org.springframework.context.annotation.Bean;@Configuration
public class ErrorMessageConfig {@Beanpublic DirectExchange errorMessageExchange(){return new DirectExchange("error.direct");}@Beanpublic Queue errorQueue(){return new Queue("error.queue", true);}@Beanpublic Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");}@Beanpublic MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");}
}

1.5.总结

如何确保RabbitMQ消息的可靠性?

- 开启生产者确认机制,确保生产者的消息能到达队列
- 开启持久化功能,确保消息未消费前在队列中不会丢失
- 开启消费者确认机制为auto,由spring确认消息处理成功后完成ack
- 开启消费者失败重试机制,并设置MessageRecoverer,多次重试失败后将消息投递到异常交换机,交由人工处理

2.死信交换机

2.1.初识死信交换机

2.1.1.什么是死信交换机

什么是死信?

当一个队列中的消息满足下列情况之一时,可以成为死信(dead letter):

- 消费者使用basic.reject或 basic.nack声明消费失败,并且消息的requeue参数设置为false
- 消息是一个过期消息,超时无人消费
- 要投递的队列消息满了,无法投递

如果这个包含死信的队列配置了`dead-letter-exchange`属性,指定了一个交换机,那么队列中的死信就会投递到这个交换机中,而这个交换机称为死信交换机(Dead Letter Exchange,检查DLX)。

如图,一个消息被消费者拒绝了,变成了死信:

因为simple.queue绑定了死信交换机 dl.direct,因此死信会投递给这个交换机:

如果这个死信交换机也绑定了一个队列,则消息最终会进入这个存放死信的队列:

另外,队列将死信投递给死信交换机时,必须知道两个信息:

- 死信交换机名称
- 死信交换机与死信队列绑定的RoutingKey

这样才能确保投递的消息能到达死信交换机,并且正确的路由到死信队列。

2.1.2.利用死信交换机接收死信(拓展)

在失败重试策略中,默认的RejectAndDontRequeueRecoverer会在本地重试次数耗尽后,发送reject给RabbitMQ,消息变成死信,被丢弃。

我们可以给simple.queue添加一个死信交换机,给死信交换机绑定一个队列。这样消息变成死信后也不会丢弃,而是最终投递到死信交换机,路由到与死信交换机绑定的队列。

我们在consumer服务中,定义一组死信交换机、死信队列:

// 声明普通的 simple.queue队列,并且为其指定死信交换机:dl.direct
@Bean
public Queue simpleQueue2(){return QueueBuilder.durable("simple.queue") // 指定队列名称,并持久化.deadLetterExchange("dl.direct") // 指定死信交换机.build();
}
// 声明死信交换机 dl.direct
@Bean
public DirectExchange dlExchange(){return new DirectExchange("dl.direct", true, false);
}
// 声明存储死信的队列 dl.queue
@Bean
public Queue dlQueue(){return new Queue("dl.queue", true);
}
// 将死信队列 与 死信交换机绑定
@Bean
public Binding dlBinding(){return BindingBuilder.bind(dlQueue()).to(dlExchange()).with("simple");
}

2.1.3.总结

什么样的消息会成为死信?

- 消息被消费者reject或者返回nack
- 消息超时未消费
- 队列满了

死信交换机的使用场景是什么?

- 如果队列绑定了死信交换机,死信会投递到死信交换机;
- 可以利用死信交换机收集所有消费者处理失败的消息(死信),交由人工处理,进一步提高消息队列的可靠性。

2.2.TTL

一个队列中的消息如果超时未消费,则会变为死信,超时分为两种情况:

- 消息所在的队列设置了超时时间
- 消息本身设置了超时时间

2.2.1.接收超时死信的死信交换机

在consumer服务的SpringRabbitListener中,定义一个新的消费者,并且声明 死信交换机、死信队列:

@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "dl.ttl.queue", durable = "true"),exchange = @Exchange(name = "dl.ttl.direct"),key = "ttl"
))
public void listenDlQueue(String msg){log.info("接收到 dl.ttl.queue的延迟消息:{}", msg);
}

2.2.2.声明一个队列,并且指定TTL

要给队列设置超时时间,需要在声明队列时配置x-message-ttl属性:

@Bean
public Queue ttlQueue(){return QueueBuilder.durable("ttl.queue") // 指定队列名称,并持久化.ttl(10000) // 设置队列的超时时间,10秒.deadLetterExchange("dl.ttl.direct") // 指定死信交换机.build();
}

注意,这个队列设定了死信交换机为`dl.ttl.direct`

声明交换机,将ttl与交换机绑定:

@Bean
public DirectExchange ttlExchange(){return new DirectExchange("ttl.direct");
}
@Bean
public Binding ttlBinding(){return BindingBuilder.bind(ttlQueue()).to(ttlExchange()).with("ttl");
}

发送消息,但是不要指定TTL:

@Test
public void testTTLQueue() {// 创建消息String message = "hello, ttl queue";// 消息ID,需要封装到CorrelationData中CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());// 发送消息rabbitTemplate.convertAndSend("ttl.direct", "ttl", message, correlationData);// 记录日志log.debug("发送消息成功");
}

发送消息的日志:

查看下接收消息的日志:

因为队列的TTL值是10000ms,也就是10秒。可以看到消息发送与接收之间的时差刚好是10秒。

2.2.3.发送消息时,设定TTL

在发送消息时,也可以指定TTL:

@Test
public void testTTLMsg() {// 创建消息Message message = MessageBuilder.withBody("hello, ttl message".getBytes(StandardCharsets.UTF_8)).setExpiration("5000").build();// 消息ID,需要封装到CorrelationData中CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());// 发送消息rabbitTemplate.convertAndSend("ttl.direct", "ttl", message, correlationData);log.debug("发送消息成功");
}

查看发送消息日志:

接收消息日志:

这次,发送与接收的延迟只有5秒。说明当队列、消息都设置了TTL时,任意一个到期就会成为死信。

2.2.4.总结

消息超时的两种方式是?

- 给队列设置ttl属性,进入队列后超过ttl时间的消息变为死信
- 给消息设置ttl属性,队列接收到消息超过ttl时间后变为死信

如何实现发送一个消息20秒后消费者才收到消息?

- 给消息的目标队列指定死信交换机
- 将消费者监听的队列绑定到死信交换机
- 发送消息时给消息设置超时时间为20秒

2.3.延迟队列

利用TTL结合死信交换机,我们实现了消息发出后,消费者延迟收到消息的效果。这种消息模式就称为延迟队列(Delay Queue)模式。

延迟队列的使用场景包括:

- 延迟发送短信
- 用户下单,如果用户在15 分钟内未支付,则自动取消
- 预约工作会议,20分钟后自动通知所有参会人员

因为延迟队列的需求非常多,所以RabbitMQ的官方也推出了一个插件,原生支持延迟队列效果。

这个插件就是DelayExchange插件。参考RabbitMQ的插件列表页面:https://www.rabbitmq.com/community-plugins.html

使用方式可以参考官网地址:https://blog.rabbitmq.com/posts/2015/04/scheduling-messages-with-rabbitmq

2.3.1.安装DelayExchange插件

参考课前资料:

2.3.2.DelayExchange原理

DelayExchange需要将一个交换机声明为delayed类型。当我们发送消息到delayExchange时,流程如下:

- 接收消息
- 判断消息是否具备x-delay属性
- 如果有x-delay属性,说明是延迟消息,持久化到硬盘,读取x-delay值,作为延迟时间
- 返回routing not found结果给消息发送者
- x-delay时间到期后,重新投递消息到指定队列

2.3.3.使用DelayExchange

插件的使用也非常简单:声明一个交换机,交换机的类型可以是任意类型,只需要设定delayed属性为true即可,然后声明队列与其绑定即可。

1)声明DelayExchange交换机

基于注解方式(推荐):

也可以基于@Bean的方式:

2)发送消息

发送消息时,一定要携带x-delay属性,指定延迟的时间:

2.3.4.总结

延迟队列插件的使用步骤包括哪些?

•声明一个交换机,添加delayed属性为true

•发送消息时,添加x-delay头,值为超时时间

3.惰性队列

3.1.消息堆积问题

当生产者发送消息的速度超过了消费者处理消息的速度,就会导致队列中的消息堆积,直到队列存储消息达到上限。之后发送的消息就会成为死信,可能会被丢弃,这就是消息堆积问题。

解决消息堆积有两种思路:

- 增加更多消费者,提高消费速度。也就是我们之前说的work queue模式
- 扩大队列容积,提高堆积上限

要提升队列容积,把消息保存在内存中显然是不行的。

3.2.惰性队列

从RabbitMQ的3.6.0版本开始,就增加了Lazy Queues的概念,也就是惰性队列。惰性队列的特征如下:

- 接收到消息后直接存入磁盘而非内存
- 消费者要消费消息时才会从磁盘中读取并加载到内存
- 支持数百万条的消息存储

3.2.1.基于命令行设置lazy-queue

而要设置一个队列为惰性队列,只需要在声明队列时,指定x-queue-mode属性为lazy即可。可以通过命令行将一个运行中的队列修改为惰性队列:

rabbitmqctl set_policy Lazy "^lazy-queue$" '{"queue-mode":"lazy"}' --apply-to queues  

命令解读:

- `rabbitmqctl` :RabbitMQ的命令行工具
- `set_policy` :添加一个策略
- `Lazy` :策略名称,可以自定义
- `"^lazy-queue$"` :用正则表达式匹配队列的名字
- `'{"queue-mode":"lazy"}'` :设置队列模式为lazy模式
- `--apply-to queues  `:策略的作用对象,是所有的队列

3.2.2.基于@Bean声明lazy-queue

3.2.3.基于@RabbitListener声明LazyQueue

3.3.总结

消息堆积问题的解决方案?

- 队列上绑定多个消费者,提高消费速度
- 使用惰性队列,可以再mq中保存更多消息

惰性队列的优点有哪些?

- 基于磁盘存储,消息上限高
- 没有间歇性的page-out,性能比较稳定

惰性队列的缺点有哪些?

- 基于磁盘存储,消息时效性会降低
- 性能受限于磁盘的IO

4.MQ集群

4.1.集群分类

RabbitMQ的是基于Erlang语言编写,而Erlang又是一个面向并发的语言,天然支持集群模式。RabbitMQ的集群有两种模式:

•普通集群:是一种分布式集群,将队列分散到集群的各个节点,从而提高整个集群的并发能力。

•镜像集群:是一种主从集群,普通集群的基础上,添加了主从备份功能,提高集群的数据可用性。

镜像集群虽然支持主从,但主从同步并不是强一致的,某些情况下可能有数据丢失的风险。因此在RabbitMQ的3.8版本以后,推出了新的功能:**仲裁队列**来代替镜像集群,底层采用Raft协议确保主从的数据一致性。

4.2.普通集群

4.2.1.集群结构和特征

普通集群,或者叫标准集群(classic cluster),具备下列特征:

- 会在集群的各个节点间共享部分数据,包括:交换机、队列元信息。不包含队列中的消息。
- 当访问集群某节点时,如果队列不在该节点,会从数据所在节点传递到当前节点并返回
- 队列所在节点宕机,队列中的消息就会丢失

结构如图:

4.2.2.部署

参考课前资料:《RabbitMQ部署指南.md》

4.3.镜像集群

镜像集群:本质是主从模式,具备下面的特征:

- 交换机、队列、队列中的消息会在各个mq的镜像节点之间同步备份。
- 创建队列的节点被称为该队列的**主节点,**备份到的其它节点叫做该队列的**镜像**节点。
- 一个队列的主节点可能是另一个队列的镜像节点
- 所有操作都是主节点完成,然后同步给镜像节点
- 主宕机后,镜像节点会替代成新的主

结构如图:

4.3.2.部署

参考课前资料:《RabbitMQ部署指南.md》

4.4.仲裁队列

4.4.1.集群特征

仲裁队列:仲裁队列是3.8版本以后才有的新功能,用来替代镜像队列,具备下列特征:

- 与镜像队列一样,都是主从模式,支持主从数据同步
- 使用非常简单,没有复杂的配置
- 主从同步基于Raft协议,强一致

4.4.2.部署

参考课前资料:《RabbitMQ部署指南.md》

4.4.3.Java代码创建仲裁队列

@Bean
public Queue quorumQueue() {return QueueBuilder.durable("quorum.queue") // 持久化.quorum() // 仲裁队列.build();
}

4.4.4.SpringAMQP连接MQ集群

注意,这里用address来代替host、port方式

spring:rabbitmq:addresses: 192.168.150.105:8071, 192.168.150.105:8072, 192.168.150.105:8073username: itcastpassword: 123321virtual-host: /

SpringCloud 微服务(六)-服务异步通信相关推荐

  1. springboot2新版springcloud微服务,带你了解不一样的springboot2

    sb2.0新版springcloud微服务实战:Eureka+Zuul+Feign/Ribbon+Hystrix Turbine+SpringConfig+sleuth+zipkin springbo ...

  2. SpringCloud 微服务

    一微服务架构概述 1.1 微服务特性以及优点 每个服务可以独立运行在自己的进程里 一系列独立运行的微服务(goods,order,pay,user,search-)共同构建了整个系统 每个服务为独立的 ...

  3. springcloud 微服务鉴权_Java微服务框架spring cloud

    Spring Cloud是什么 Spring Boot 让我们从繁琐的配置文件中解脱了出来,而 Spring Cloud,它利用Spring Boot的开发便利性巧妙地简化了分布式系统基础设施的开发, ...

  4. 介绍6款热门的SpringCloud微服务开源项目,总有适合你的!

    今天介绍六款比较热门的SpringCloud微服务项目,感兴趣的可以clone下来研究一下,相信对你学习微服务架构很有帮助. 一.Cloud-Platform 介绍 Cloud-Platform是国内 ...

  5. SpringCloud 微服务(一)

    看完了黑马程序员的免费课程,感觉受益匪浅,写个笔记,记录一下 课程地址:https://www.bilibili.com/video/BV1LQ4y127n4?p=1 1.微服务框架,学习哪些内容 系 ...

  6. 容器化技术与微服务结合---结合springcloud微服务框架进行部署(含切换成阿里云docker仓库)(五)

    目录 系列 更换成阿里云仓库 开通阿里云镜像服务 创建仓库 本地k8s切换成阿里云的镜像仓库 测试阿里云镜像 准备简单的微服务 eureka 应用配置 k8s配置: demo-a 应用配置 k8s配置 ...

  7. springcloud微服务学习笔记

    此篇内容较长. 目录 一.关于微服务 二.微服务工程的构建 1.新建maven父工程 2.新建公共模块 3.新建微服务提供者8001 4.新建微服务消费者80 三.服务和发现注册中心(Eureka) ...

  8. 学习笔记:SpringCloud 微服务技术栈_高级篇⑤_可靠消息服务

    若文章内容或图片失效,请留言反馈.部分素材来自网络,若不小心影响到您的利益,请联系博主删除. 前言 学习视频链接 SpringCloud + RabbitMQ + Docker + Redis + 搜 ...

  9. SpringCloud微服务项目搭建

    常用链接 我的随笔 我的评论 我的参与 最新评论 我的标签 我的标签 springcloud(1) 随笔分类 编程(34) 随笔档案 2018年9月 (1) 2018年8月 (6) 2018年7月 ( ...

最新文章

  1. poj 1085 Triangle War 博弈论+记忆化搜索
  2. 如何让Edge浏览器整体作为一个窗口,而不是每个标签页(选项卡)作为一个窗口?
  3. python web cgi
  4. 【刷题】LOJ 6011 「网络流 24 题」运输问题
  5. python独立图形_在networkx中查找图形对象中的独立图形
  6. leetcode探索数组(一)
  7. js计算html的font-size
  8. Android WebView优化
  9. 飞鱼星的虚拟服务器设置,设置简单功能丰富 三步就能设置好_飞鱼星 G7_网络设备无线网络和技术-中关村在线...
  10. Maven3.8.1下载
  11. 密码重置用HTML怎么弄,如何用简单命令重置路由器密码
  12. sublime text 3143 授权码
  13. 随机点名器1(Java数组基础)
  14. EcIo,EcNo,RSSI,RSCP等常见参数详解
  15. Tableau、PowerBI、OBIEE、QuickBI的比较
  16. URP——着色器和材质——复杂光照Complex Lit
  17. nmn是什么公司产品,nmn对男性的影响,很是惊喜
  18. 基于QT的客户管理系统CRM
  19. 编程、创业、开源感悟——SDCC 2013讲师云风专访
  20. 污水处理程序 工厂污水处理控制系统 西门子PLC200smart和上位机wincc(

热门文章

  1. [GNN]笔记之图基本知识代码(一)
  2. WebGL/ThreeJS几何体、材质、纹理贴图,给几何体披上好看的外衣
  3. Color--颜色值以及颜色属性(学习记录)
  4. unity制作类似DNF动态血条(仅一层血条)
  5. python中的types是什么模块_python的types模块
  6. 银行票据识别解决方案,OCR应用分享
  7. Redis Lua脚本的详细介绍以及使用入门
  8. 安卓客户端带密码压缩或者解压zip文件
  9. 键盘的控制键区,你用过几个键?
  10. mysql的卸载与安装(超详细)